
INVESTIGATIONS OF FULLY HOMOMORPHIC ENCRYPTION
(IFHE)

UNIVERSITY OF BRISTOL

MAY 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-125

 UNITED STATES AIR FORCE ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2015-125 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /
CARL R. THOMAS MARK H. LINDERMAN
Work Unit Manager Technical Advisor, Computing
 & Communications Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MAY 2015
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

FEB 2011 – FEB 2015
4. TITLE AND SUBTITLE

INVESTIGATIONS OF FULLY HOMOMORPHIC ENCRYPTION (IFHE)

5a. CONTRACT NUMBER
FA8750-11-2-0079

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62303E

6. AUTHOR(S)

Nigel Smart

5d. PROJECT NUMBER
PROC

5e. TASK NUMBER
IF

5f. WORK UNIT NUMBER
HE

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Bristol
Department of Computer Science, Merchants Venturers Bldg., Woodland Rd
Bristol, United Kingdom, BS8-1UB

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA DARPA
525 Brooks Road 675 N Randolph Street
Rome NY 13441-4505 Arlington VA 22203-2114

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2015-125
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
The IFHE project (Investigation of Fully Homomorphic Encryption) originally set out to examine the security of FHE
schemes, and the lattice hard problems on which they are based. This turned out to be relatively difficult, mainly due to
the complexity of building software libraries which could support the advanced mathematics needed to perform
experiments on modern multi-core processors. For example the NTL library is now (2015) able to support multi-threaded
applications, but only if used with bleeding edge compilers on the latest Intel hardware. Thus the initial plan was perhaps
a little ahead of its time.
However, by leveraging additional sources of funding; most notably from the UK’s EPSRC and the EU’s ERC, the Bristol
team was able to make substantial headway in other areas related to the PROCEED program which were not originally
envisaged. These are centred around;
• General techniques for Fully Homomorphic Encryption • Practical methods for actively secure Multi-Party Computation
• General theory behind Multi-Party Computation. This report documents the progress made by the Bristol team.
15. SUBJECT TERMS

Fully Homomorphic Encryption, Secure Multi-Party Computation, Security, Privacy, Lattice

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
CARL R. THOMAS

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

483

i

Contents

Summary .. 1

Introduction .. 1

Methods, Assumptions and Procedures ... 2

Results and Discussion .. 2

General techniques for Fully Homomorphic Encryption. ... 2

Practical methods for actively secure Multi-Party Computation. 4

General theory behind Multi-Party Computation. .. 7

Lattice based cryptanalysis. .. 8

Conclusion ... 9

References ... 9

List of Symbols, Abbreviations and Acronyms ... 12

Appendix .. 13

1

Summary

The IFHE project (Investigation of Fully Homomorphic Encryption) originally set out

to examine the security of FHE schemes, and the lattice hard problems on which

they are based. This turned out to be relatively difficult, mainly due to the complexity

of building software libraries which could support the advanced mathematics needed

to perform experiments on modern multi-core processors. For example the NTL

library is now (2015) able to support multi-threaded applications, but only if used with

bleeding edge compilers on the latest Intel hardware. Thus the initial plan was

perhaps a little ahead of its time.

However, by leveraging additional sources of funding; most notably from the UK’s

EPSRC and the EU’s ERC, the Bristol team was able to make substantial headway

in other areas related to the PROCEED programme which were not originally

envisaged. These are centred around

 General techniques for Fully Homomorphic Encryption

 Practical methods for actively secure Multi-Party Computation

 General theory behind Multi-Party Computation

In this report we outline the various improvements and advances made by the team

in Bristol.

Introduction

The PROCEED programme’s goal was to investigate different methods for

computing on encrypted data; in particular Fully Homomorphic Encryption and Multi-

Party Computation. Over the course of the programme the IFHE team contributed a

number of key advances in these two areas. The divide the contributions into four

key sub-areas:

1. General techniques for Fully Homomorphic Encryption.

2. Practical methods for actively secure Multi-Party Computation.

3. General theory behind Multi-Party Computation.

4. Lattice based cryptanalysis.

Due to the ability to leverage additional funding, this report encompasses the whole

of the activity in this space conducted by the Bristol team. For results for which

DARPA funding was used to support the research we mark with three asterix’s ****

before the paragraph detailing the result. We feel that this will give the reader a

better notion of how the research funded by DARPA fits within the overall portfolio of

work in this space conducted in Bristol.

Perhaps the two key take home messages from the work conducted by the Bristol

team are the greatly improved performance of actively secure MPC calculations; in

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

2

particular the development of the SPDZ protocol (described below), and the greatly

improved practical performance of FHE schemes. These two advances are not

unrelated, since the SPDZ protocol makes use of the advances in FHE schemes.

Indeed one can see the SPDZ protocol as an example of where FHE technology can

already be used to improve the performance of other security protocols.

Methods, Assumptions and Procedures

The work conducted is a mixture of traditional cryptographic theory work, and applied

implementation work. This is a novel modus operandi, in that the Bristol group both

works on the theoretical development of new protocols and schemes (along with

their associated security proofs), and hand-in-hand works on building research

prototypes to test the underlying performance of the resulting protocols. This is

combined with a deep knowledge of pure mathematics (number theory in particular)

which enables us to contribute to foundational work in the area.

This combination has allowed us to contribute a number of key ideas to the field over

the course of the project:

 New techniques for Single Instruction Multiple Data (SIMD) operations of FHE

schemes. These are based on the structure of rings of cyclotomic integers.

 New techniques for bootstrapping FHE schemes. We presented two different

techniques for this; one based on extending earlier work on FHE schemes to

plaintext spaces embedded p-adic rings, and one to the use of different group

representations.

 Parameter size analysis for key generation. This has been key to developing

the instantiation of techniques for the SPDZ protocol suite.

 Our protocol design work has focused on efficient covertly secure offline

processing for the SPDZ protocol and to algorithms to implement fast online

functionalities; for example floating point calculations and ORAM access.

Results and Discussion

We discuss each of the four areas mentioned above in turn:

General techniques for Fully Homomorphic Encryption.

Much of our initial work in PROCEED centred around the development of FHE

techniques. In this work we focused on developing new ways of utilizing FHE

techniques to enable faster and more elaborate computations. In other work,

described in later sections, we applied these FHE techniques to enable faster MPC

protocols, and we examined the security of the underlying lattice based

cryptosystems.

*** The first output from our DARPA funded work on FHE was the development of a

method for SIMD evaluation for the original Gentry FHE scheme, [1]. Being journal

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

3

published the paper took many years to appear in final form. The paper showed how

Gentry’s original scheme [2], as optimized by Smart and Vercauteren [3], could be

modified to support the operation on many plaintext elements at once. In addition to

this key finding, the authors also proposed a method to perform bootstrapping in

SIMD parallelism. The work in this paper has been highly influential and the basic

idea has been exploited in all implementations of FHE schemes since. Although

much of the specific techniques are now less important since there are better

schemes than the original Gentry scheme now.

*** In order to support the above SIMD operations new key generation techniques

were needed for the FHE scheme; these were introduced in [4, 5], which built on

earlier work in [6]. In particular the usage of Fast Fourier Transform techniques were

used to simplify the key generation step for parameters in the Smart-Vercauteren

variant of Gentry’s FHE scheme, in order to enable SIMD operation of the scheme.

*** In [5] we presented attacks on the SHE schemes at the time in a model in which

the attacker had access to a decryption oracle, before any challenge ciphertext was

provided. Since all known FHE schemes include a decryption hint within the public

key, this means that we were restricted to SHE schemes. In addition since SHE

schemes are malleable only so-called lunch-time chosen ciphertext attacks were

analysed. We presented a number of attacks, and showed how one particular

scheme could be immunised against such attacks using a novel lattice based

knowledge assumption.

*** Our focus on FHE then turned to a series of papers with Gentry and Halevi on the

BGV FHE scheme [7]. This scheme, based on Ring-LWE, supports the SIMD vector

operations described above; but it is both more efficient and based on a harder

problem than the initial FHE schemes discussed above. In our first work on this

scheme in [8], we described how combining the SIMD addition and multiplication

operations, with permutation operations induced from the Galois group of the

underlying number field, enabled us to produce asymptotically efficient FHE

schemes. Whilst mainly theoretical in nature, the introduction of the concept of

homomorphically applying Galois action to the encrypted plaintext has turned out to

be highly important in practice for obtaining efficient general homomorphic

operations.

*** For plaintext rings in characteristic two, the Galois group not only provides a

mechanism to apply permutations to the plaintext slots, it also provides the

Frobenius automorphism; which enables very fast powering by powers of two. This

was exploited in our next paper [9], which presented the first large scale computation

performed using SHE/FHE technology. We showed that the evaluation of a circuit as

complex as that of the AES function was possible; albeit rather slowly. The use of

AES as a test bench circuit for computations on encrypted data was introduced by

myself in 2009 in [10]. In subsequent works various authors have been able to

homomorphically evaluate the AES circuit in under five minutes; which is remarkable

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

4

given the state of the art at the start of the PROCEED programme. This paper won

the IBM Pat Goldberg Award for Best Paper in Computer Science for 2012.

*** In our next paper [11] Gentry, Halevi, and myself, turned our attention to how to

perform efficient bootstrapping of BGV ciphertexts. We utilized a special ciphertext

modulus, which close to a power of the plaintext modulus, so as to provide an

algebraic decryption operation (as opposed to the circuit based approaches of earlier

works). This enabled a more efficient procedure. In extending the technique to

bootstrapping SIMD encryptions we required the development of techniques to

efficiently homomorphically evaluate Fourier Transforms.

*** Motivated by the need to perform homomorphic Fourier transforms, we then

turned our attention to a technique to homomorphically switch from one ring to

another. However, it turned out that such a technique would have wider applicability

in that it enabled more efficient noise management via choosing different rings at

different points in the computation. Thus, with Gentry, Halevi and Peikert, we

developed a complete theory of this operation which was described in [12] and [13].

*** In very recent work [14] myself and two members of my group develop a new

novel bootstrapping technique for BGV ciphertexts which has lower depth than all

previous techniques. The methodology makes use of the general representation

technique of [11], but it uses a new way of representing the various groups under

consideration. It is unclear at present whether this new technique will be practically

relevant, since the decrease in depth is paid for by an increase in the computational

complexity (i.e. the number of multiplications).

Outside of the DARPA project, a student in my group, working with colleagues from

Microsoft Research in Redmond, developed an improved variant of the NTRU based

FHE scheme [15]. The paper presents a number of optimizations of the NTRU based

scheme, as well as implementation results.

Practical methods for actively secure Multi-Party Computation.

Probably the most important results from the IFHE project was the development of

the SPDZ protocol; this is an n-party MPC protocol which is actively/covertly secure.

It is in the pre-processing model, and the pre-processing utilizes the SIMD

optimizations of the BGV FHE scheme as described above in [8]. After the

development of the basic protocol, our work (funded mainly by the EPSRC and ERC)

focused on building a large MPC system based on the basic protocol. In the

following paragraphs we elaborate on the various optimizations and improvements

obtained.

*** This entire line of work started with the joint work with Aarhus University

explained in [16]. This paper took a number of ideas from earlier MPC protocols

developed by Aarhus (namely the use of pre-processing and MACs to obtain active

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

5

security), and greatly improved the overall efficiency and practicality of the methods.

As mentioned above a key innovation was the use of FHE technology as a means to

obtain a performance improvement over protocols which did not utilize FHE

technology; thus this is probably the first example of where FHE technology

developed in PROCEED was used to improve performance of a security protocol.

In SPDZ, online circuit evaluations are done via secret-sharing the inputs, and

having each party evaluating the circuit almost locally in his shares. This can be

done very efficiently, with only multiplication requiring the communication of two field

elements. All circuit value are augmented with a message authentication code

(MACs). Parties communicating, or using incorrect values in his local evaluation, will

be detected by the other parties. Previous MAC schemes required each party linear

storage in the total number of participants. SPDZ brings it down to a constant.

*** As an early test of the SPDZ system we implemented a system to evaluate the

AES functionality [17]; again the choice of AES as a test case was due to our

proposing this in [10]. The initial results were relatively good, and comparable to

systems with a weaker security guarantee. However, now the run times can be

considerably improved.

*** The preprocessing of SPDZ relies on somewhat homomorphic encryption (SHE).

This SHE scheme allows one to homomorphically add a number of ciphertexts, and

to perform a single homomorphic multiplication. This is in constrast with fully

homomorphic encryption, which allows an unbounded number of multiplications. Key

open problems in the initial paper [16] was that the protocol did not enable reactive

computation, that no procedure was given to agree the FHE public/private key pair.

These problems were solved in [18] where a method was given for the parties to

agree in a cryptographic key. Also, support for reactive computations was given;

exploiting the secret-sharing approach, it was shown how to check MACs without

having to reveal the key for this check; hence, after one single online computation is

done, the participants can carry on in a different computation, with the remaining

authenticated entropy generated in the preprocessing with the secret MAC key. The

online evaluations can even occur concurrently, since SPDZ operates in the UC

security framework. This paper won the Best Paper Award at ESORICS 2013.

The main advantage of the SPDZ protocol is its very efficient online phase, which

only requires standard symmetric and information theoretic primitives to implement.

Since this is the only part of the protocol dependent on the parties' inputs to the

function, the running time of the online phase determines the latency a user

experiences when waiting for the output, and hence is crucial to implement in the

most efficient way possible. Moreover, to be able to implement complex functions in

MPC we need a suitable set of tools to compile and run programs written in some

high-level language. To do this, we designed and implemented an MPC virtual

machine for the online phase, which parses and executes a special MPC-based set

of basic instructions. We then created a compiler that reads Python-like programs

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

6

and performs various optimizations to output efficient bytecode that can be run by

the VM. One of the key optimizations is to minimize the number of rounds of

communication in a given program by analyzing the control flow graph, which greatly

reduces latency. Using this toolchain, we created very efficient implementations of

common functions including crypto-specific benchmarks AES and SHA-1, as well as

other functions such as sorting and floating point arithmetic, which have applications

to more general scenarios. The entire system is described in [19]. We are continuing

to improve and extend the features of the compiler, and in the future would like a

system that can formally verify the correctness and security of protocols.

Traditionally, MPC only allows one to execute binary or arithmetic circuits. This

makes advanced data structures, such as arrays, very inefficient

because one has to scan the entire array for every access. A technique

called oblivious RAM (ORAM) facilitates more efficient data structures in

MPC. The scope of ORAM goes beyond MPC, generally hiding the access pattern

in a client-server model. A recent result on ORAM much simplified the necessary

computation. This allowed for the first implementation of arrays and priority queues

in secret-sharing MPC [20]. Both are used the Bristol implementation of an algorithm

for shortest paths in a graph (Dijkstra's algorithm), which is significantly faster than

previous implementations. For our implemention, we had to improve various aspects

of our platform, for example the support of non-recursive functions and better

parallelization. Future research in this area will focus on implementing general RAM

programs in MPC and aspects thereof such as cost-privacy trade-offs.

*** Whilst SPDZ is highly suited to arithmetic circuits, it is less well suited to binary

circuits. For binary circuits the best protocol seems to be TinyOT [21]. However,

TinyOT is only suited to two players. In [22] we extended the TinyOT protocol to the

multi-party case. The protocol we describe allows active secure evaluation of

Boolean circuits in the dishonest majority setting with static corruptions. The idea is

that of using an information-theoretic MAC applied to the oblivious transfer (OT)

based GMW protocol, and producing in the offline phase a large number of random

authenticated OTs, which are then used to perform Beaver's style multiplications in

the online phase. The efficiency of the offline phase is guaranteed by a variant of an

OT-extension protocol. The main tool we use is an extension of the authenticated Bit

(aBit) primitive from [21] from the two-party to the multi-party setting, that is obtained

combining, in a nontrivial way, ideas from [21], [18] and [16]. In particular, we use a

global unknown shared key instead of pairwise keys for bits authentication, and

then, by executing the pairwise aBit protocol, we are able to obtain secret shared

random bits, together with shared MACs, by all n-parties.

After publication we realised that the paper [22] contained a minor bug, we are

currently working with the Aarhus group on a joint paper which merges the work in

[21] and [22], and corrects the bug in the published version of [22].

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

7

General theory behind Multi-Party Computation.

As well as the more practical aspects of MPC, we also examined more theoretical

aspects. Much of the work done in this area was by my two post-docs Choudhury

and Patra who were funded by EPSRC; and have since returned to Bangalore where

they now have permanent academic positions.

*** In [23] we examined the situation of a server farm with thousands of nodes, which

wanted to run an MPC calculation where a given (small’ish) percentage are corrupt.

We present a protocol which does not require full communication between all nodes

at all times, yet still obtains full active, and robust, security. This is done via a

sequence of checkpoints, and then running between the checkpoints, an actively

secure dishonest majority protocol between a suitably large sub-committee. By

selecting the dishonest majority sub-protocol so that we can detect cheaters we are

then able to apply standard player elimination strategies so as to obtain an overall

robust protocol.

*** On one hand FHE allows us to perform computation on encrypted data using very

little communication but a lot of computational resources; whereas standard MPC

protocols require little computational resources, but a lot of computation. In [24] we

presented a technique which interpolates between the FHE-MPC protocol of Gentry

and more standard MPC protocols. The protocol enables one to select a depth of

sub-circuit which is dealt with via the FHE part, and the rest is done via an MPC

protocol. This division of the circuit into layers is reminiscent of the previous paper

[23].

*** In most MPC protocols one assumes that the function to be computed is public,

and hence known to all parties. However, there are some situations where one might

want to keep the function private. Treating the function as one players input is clearly

captured by an MPC protocol which enables one to implement a Universal Turing

machine. Thus this problem is purely one of efficiency. In [25] a protocol is given,

which is essentially optimal, in the case of active adversaries. Active security is

obtained via the use of MACs, like the SPDZ protocol, however the underlying MPC

protocol is very different in nature.

Related to the PROCEED programme was a series of papers by my post-docs

Choudhury and Patra on aspects of MPC in the case of asynchronous networks.

Almost all practical MPC protocols assume that the underlying network is

synchronous, however real networks are asynchronous. This is a particular problem

in MPC as a receiver will never know if the fact he did not receive a message is due

to network issues, or a corrupted sender. Thus there is a whole sub-area of MPC

research (currently mostly theoretical) which deals with issues related to

asynchronicity. Bristol’s work in this area during the time of the PROCEED

programme resulted in the following outputs [26] [27] [28] [29] [30] [31]

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

8

Finally in [32] secure two-party computation with single adaptive corruptions in the

nonerasure model where at most one party is adaptively corrupted was studied. To

distinguish this notion from fully adaptive security, where both parties may get

corrupted, we denote it by one-sided adaptive security. Our goal in this work is to

make progress in the study of the efficiency of two-party protocols with one sided

security. Our measure of efficiency is the number of public key encryption

operations. Loosely speaking, our primitives are parameterized by a public key

encryption scheme for which we count the number of key generation, encryption and

decryption operations. More concretely, these operations are captured by the

number of exponentiations in several important groups.

Lattice based cryptanalysis.

Lattice-based cryptography is one of the main candidates for cryptography that

remains secure against cryptanalysis using a quantum computer. For some time

now, cryptographers and quantum algorithms researchers alike have not found any

quantum attack that provides a speed-up similar to Shor's algorithm for RSA and

Discrete Log. However, Grover's algorithm is also important for cryptography, as it

implies that we need to use keys that are twice as long in the symmetric setting for

example. Of particular relevance to PROCEED is the fact that all FHE schemes

currently known rely for their security on the hardness of various lattice based

problems.

In [33], my students examined the effects of using Grover inside the so-called sieving

algorithms for solving the shortest vector problem in lattices. Previously, there had

been one work using Grover on a single (and different) algorithm, but we extend this

to the whole class of sieving algorithms. Our analysis shows that the application of

Grover allows sieving-type algorithms to be asymptotically faster than the best

classical algorithms (which do not use sieving). As a rule of thumb, it appears that

the keys need to be increased by a factor 4/3 to achieve the same classical level of

security.

*** My student and I further examined the relation between different parameters and

security in [34], but for the best known classical of algorithm. Previous work had

always discarded the dimension parameter as a second order term for security.

However, we are interested in FHE schemes, where the dimension needs to be huge

for the functionality of the scheme. We designed an approach that takes the

dimension into account as well, which led to a decrease in parameters for the same

security when we applied it to several FHE schemes.

Lattices are not only important for the construction of cryptography. The history of

lattices in cryptanalysis stretches even further, all the way back to the breaking of

knapsack-based schemes and breaking RSA with partial information on the key. It

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

9

turns out that lattices are quite good at extending lots of different instances of partial

information into the full information, e.g., the secret key.

*** In joint work with colleagues from Adelaide [35] we combined a side-channel

attack on ECDSA in OpenSSL with lattice algorithms to recover the secret key. We

modified the previous approaches to combine instances where the amount of partial

information varies per instance. Our results show that such attacks can be very

efficient, both in terms of the number of signatures required and the time required.

Conclusion

As can be seen the IFHE project has created a large number of outputs in a range of

topics related to the PROCEED programme. The main outputs have shown how

computation on encrypted data is now much closer to a deployable protocol

compared to the state of the art at the start of the programme. We have identified

areas in which FHE can be used as a performance enhancing technology (e.g. the

SPDZ protocol), and we have shown that active security can be achieved for MPC

protocols with very little performance overhead compared to passively secure

protocols.

Our work in this space has attracted considerable interest from partners outside of

the PROCEED programme. Follow up work is continuing in the EU funded

PRACTICE project on MPC, and in the HEAT project on FHE. We have also

conducted a joint project with Thales funded by the UKs DSTL into applications of

MPC with in the UK defence sector. Finally, with Bar-Ilan University we have formed

a company Dyadic Security which is looking at applications of MPC to breach

mitigation on computer networks.

References

[1] N. P. Smart and F. Vercauteren, “Fully Homomorphic SIMD Operations,”

Designs, Codes and Cryptography, vol. 71, pp. 57-81, 2014.

[2] C. Gentry, A fully homomorphic encryption scheme., PhD Thesis, Stanford

University, 2009.

[3] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with relatively

small key and ciphertext sizes,” in Public Key Cryptography - PKC 2010, 2010.

[4] P. Scholl and N. P. Smart, “Improved Key Generation for Gentry's Fully

Homomorphic Encryption Scheme,” in Cryptography and Coding - IMACC 2011,

2011.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

10

[5] J. Loftus, A. May, N. P. Smart and F. Vercauteren, “On CCA-Secure Somewhat

Homomorphic Encryption,” in Selected Areas in Cryptography - SAC 2011,

2012.

[6] C. Gentry and S. Halevi, “Implementing Gentry's fully-homomorphic encryption

scheme,” in Advances in Cryptology - EUROCRYPT 2011, 2011.

[7] Z. Brakerski, C. Gentry and V. Vaikuntanathan, “(Leveled) fully homomorphic

encryption without bootstrapping.,” in ACM, Innovations in Theoretical Computer

Science 2012, 2012.

[8] C. Gentry, S. Halevi and N. P. Smart, “Fully homomorphic encryption with

polylog overhead,” in Advances in Cryptology - EUROCRYPT 2012, 2012.

[9] C. Gentry, S. Halevi and N. P. Smart, “Homomorphic evaluation of the AES

circuit,” in Advances in Cryptology - CRYPTO 2012, 2012.

[10] B. Pinkas, T. Schneider, N. P. Smart and S. C. Williams, “Secure two-party

computation is practical,” in Advances in Cryptology - AsiaCrypt 2009, 2009.

[11] C. Gentry, S. Halevi and N. P. Smart, “Better Boostrapping in Fully

Homomorphic Encryption,” in Public Key Cryptography - PKC 2012, 2012.

[12] C. Gentry, S. Halevi, C. Peikert and N. P. Smart, “Ring Switching in BGV-Style

Homomorphic Encrypton,” in Security and Cryptography for Networks - SCN

2012, 2012.

[13] C. Gentry, S. Halevi, C. Peikert and N. P. Smart, “Field Switching in BGV-Style

Homormorphic Encryption,” Journal of Computer Security, pp. 663-684, 2013.

[14] E. Orsini, J. van de Pol and N. P. Smart, “Bootstrapping BGV Ciphertexts with a

Wider Choice of p and q,” in To appear Public Key Cryptography - PKC 2015,

2015.

[15] J. Bos, K. Lauter, J. Loftus and M. Naehrig, “Improved security for a ring-based

Fully Homomorphic Encryption scheme,” in Cryptography and Coding - IMACC

2013, 2013.

[16] I. Damgård, V. Pastro, N. P. Smart and S. Zakarias, “Multiparty computation

from somewhat homomorphic encryption,” in Advances in Cryptology - CRYPTO

2012, 2012.

[17] I. Damgård, M. Keller, E. Larraia, C. Miles and N. P. Smart, “Implementing AES

via an actively/covertly secure dishonest majority MPC protocol,” in Security and

Cryptography for Networks - SCN 2012, 2012.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

11

[18] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl and N. P. Smart, “Practical

covertly secure MPC for dishonest majority,” in ESORICS 2014, 2013.

[19] M. Keller, P. Scholl and N. P. Smart, “An architecture for practical actively

secure MPC with dishonest majority,” in ACM-CCS 2013, 2013.

[20] M. Keller and P. Scholl, “Efficient Oblivious Data Structures for MPC,” in

Advances in Cryptology - AsiaCrypt 2014, 2014.

[21] J. Nielsen, P. Nordholt, C. Orlandi and S. Burra, “A new approach to practical

active-secure two-party computation,” Crypto 2012, vol. Springer LNCS 7417,

pp. 681-700, 2012.

[22] E. Larraia, E. Orsini and N. P. Smart, “Dishonest majority Multi-Party

Computation for Binary Circuits,” in Advances in Cryptology - CRYPTO 2014,

2014.

[23] A. Choudhury, A. Patra and N. P. Smart, “Reducing the overhead of MPC over a

large population,” in Security and Cryptography for Networks - SCN 2014, 2014.

[24] A. Choudhury, J. Loftus, E. Orsini, A. Patra and N. P. Smart, “Between a Rock

and a Hard Place: Interpolating between MPC and FHE,” in Advances in

Cryptology - AsiaCrypt 2013, 2013.

[25] P. Mohassel, S. Sadeghian and N. P. Smart, “Actively secure private function

evaluation,” in Advances in Cryptology - AsiaCrypt 2014, 2014.

[26] A. Choudhury and A. Patra, “On the communication complexity of reliable and

secure message transmission in asynchronous networks.,” in Information

Security and Cryptology - ICISC 2011, 2011.

[27] A. Choudhury and A. Patra, “Brief Announcement: Efficient Optmally Resilient

Statistical AVSS and its Applications,” in ACM PODC 2012, 2012.

[28] A. Choudhury, “Breif Announcement: Optimal Amortized Secret Sharing with

Cheater Identification,” in ACM PODC 2012, 2012.

[29] A. Badanidiyuru, A. Patra, A. Choudhury, S. Kannan and R. Pandu, “On the

trade-off between network connectivity, round complexity and communication

complexity of reliable message transmission,” Journal of the ACM, vol. 22, pp. 1-

35, 2012.

[30] A. Choudhury, “Breaking the O(n |C|) barrier for unconditionally secure

asynchronous multiparty computation,” in Topics in Cryptology - INDOCRYPT

2013, 2013.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

12

[31] A. Choudhury, M. Hirt and A. Patra, “Asynchronous multiparty computation with

linear communication complexity,” in DISC 2013, 2013.

[32] C. Hazay and A. Patra, “One-sided adaptively secure two-party computation,” in

Theory of Cryptography - TCC 2014, 2014.

[33] T. Laarhoven, M. Mosca and J. van de Pol, “Solving the shortest vector problem

in lattices faster using quantum search.,” in Post-Quantum Cryptography - PKC

2013, 2013.

[34] J. van de Pol and N. P. Smart, “Estimating key sizes for high dimensional lattice-

based systems,” in Coding and Cryptography - IMACC 2013, 2013.

[35] N. Benger, J. van de Pol, N. P. Smart and Y. Yarom, “"Ooh Ahh... Just a Little

Bit": A small amount of side channel can go a long way,” in Cryptographic

Hardware and Embedded Systems - CHES 2014, 2014.

List of Symbols, Abbreviations and Acronyms
AES Advanced Encryption Standard

BGV Brakerski-Gentry-Vaikuntanathan FHE Scheme

FHE Fully Homomorphic Encryption

LWE Learning With Errors

MPC Multi-Party Computation

ORAM Oblivious Random Access Memory

SHE Somewhat Homomorphic Encryption

SIMD Single Instruction Multiple Data

SPDZ Smart-Pastro-Damgard-Zakarais MPC Protocol

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13

Appendix

The following appendix contains the papers which are the output of the project. For

each paper we give the full version from the IACR ePrint Archive and not the

extended abstract (which is the one usually published in conferences).

Page Title

14 Fully Homomorphic SIMD Operations.

33 Improved Key Generation for Gentry's Fully Homomorphic Encryption Scheme

46 On CCA-Secure Somewhat Homomorphic Encryption

64 Fully homomorphic encryption with polylog overhead

104 Homomorphic evaluation of the AES circuit

139 Better Boostrapping in Fully Homomorphic Encryption

159 Ring Switching in BGV-Style Homomorphic Encrypton

178 Field Switching in BGV-Style Homormorphic Encryption

198 Bootstrapping BGV Ciphertexts with a Wider Choice of p and q

222 Multiparty computation from somewhat homomorphic encryption

269 Implementing AES via an actively/covertly secure dishonest majority MPC

protocol

286 Practical covertly secure MPC for dishonest majority

331 Dishonest majority Multi-Party Computation for Binary Circuits

353 Reducing the overhead of MPC over a large population

389 Between a Rock and a Hard Place: Interpolating between MPC and FHE

421 Actively secure private function evaluation

446 Ooh Ahh... Just a Little Bit": A small amount of side channel can go a long way

465 A Little Bit More.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Noname manuscript No.
(will be inserted by the editor)

Fully Homomorphic SIMD Operations

N.P. Smart · F. Vercauteren

the date of receipt and acceptance should be inserted later

Abstract At PKC 2010 Smart and Vercauteren presented a variant of Gentry’s fully homomorphic public key encryption
scheme and mentioned that the scheme could support SIMD style operations. The slow key generation process of
the Smart–Vercauteren system was then addressed in a paper by Gentry and Halevi, but their key generation method
appears to exclude the SIMD style operation alluded to by Smart and Vercauteren. In this paper, we show how to select
parameters to enable such SIMD operations. As such, we obtain a somewhat homomorphic scheme supporting both
SIMD operations and operations on large finite fields of characteristic two. This somewhat homomorphic scheme can be
made fully homomorphic in a naive way by recrypting all data elements seperately. However, we show that the SIMD
operations can be used to perform the recrypt procedure in parallel, resulting in a substantial speed-up. Finally, we
demonstrate how such SIMD operations can be used to perform various tasks by studying two use cases: implementing
AES homomorphically and encrypted database lookup.

1 Introduction

For many years a long standing open problem in cryptography has been the construction of a fully homomorphic en-
cryption (FHE) scheme. The practical realisation of such a scheme would have a number of consequences, such as
computation on encrypted data held on an untrusted server. In 2009 Gentry [10,11] came up with the first construction
of such a scheme based on ideal lattices. Soon after Gentry’s initial paper appeared, two other variants were presented
[6,23]; the method of van Dijk et al. [6] is a true variant of Gentry’s scheme and relies purely on the arithmetic of
the integers; on the other hand the scheme of Smart and Vercauteren [23] is a specialisation of Gentry’s scheme to a
particular set of parameters.

All schemes make use of Gentry’s idea of first producing a somewhat homomorphic encryption scheme and then
applying a bootstrapping process to obtain a complete FHE scheme. This bootstrapping process requires a “dirty”
ciphertext to be publicly reencrypted into a “cleaner” ciphertext. This requires that the somewhat homomorphic scheme
can homomorphically implement its own decryption circuit, and so must be able to execute a circuit of a given depth.

Gentry and Halevi [12] presented an optimized version of the Smart–Vercauteren variant. In particular, the optimized
version has an efficient key generation procedure based on the Fast Fourier Transform and a simpler decryption circuit.
These two major optimizations, along with some other minor ones, allow Gentry and Halevi to actually implement a
“toy” FHE scheme, including the ciphertext cleaning operation.

N.P. Smart
Dept. Computer Science,
University of Bristol,
Merchant Venturers Building,
Woodland Road,
Bristol, BS8 1UB,
United Kingdom.
E-mail: nigel@cs.bris.ac.uk

F. Vercauteren
COSIC - Electrical Engineering,
Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10,
B-3001 Heverlee,
Belgium.
E-mail: fvercaut@esat.kuleuven.ac.be

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Smart and Vercauteren mentioned in [23] that their scheme can be adapted to support SIMD (Single-Instruction
Multiple-Data) style operations on non-trivial finite fields of characteristic two, as opposed to operations on single bits,
as long as the parameters are chosen appropriately. However, the parameters proposed in both [12] and [23] do not
allow such SIMD operations, nor direct operation on elements of finite fields of characteristic two of degree greater
than one. In particular, the efficient key generation method of [12] precludes the use of parameters which would support
SIMD style operations. Using fully homomorphic SIMD operations would be an advantage in any practical system since
FHE schemes usually embed relatively small plaintexts within large ciphertexts. Allowing each ciphertext to represent a
number of independent plaintexts would therefore enable more efficient use of both space and computational resources.

In this paper we investigate the use of SIMD operations in FHE systems in more depth. In particular we show how
by adapting the parameter settings of [12,23] one can obtain the benefits of SIMD operations, whilst still maintaining
many of the important efficiency improvements obtained by Gentry and Halevi. We thus obtain a somewhat homomor-
phic scheme supporting SIMD operations, and operations on large finite fields of characteristic two. We then discuss
how one can use the SIMD operations to perform the recrypt procedure in parallel. In addition we explain how such
SIMD operations could be utilized to perform a number of interesting higher level operations, such as performing AES
encryption homomorphically and searching an encrypted database on a remote server.

The paper is structured as follows. Section 2 presents some basic facts about finite fields and algebras defined as
quotients of polynomial rings. Section 3 explains how these algebras allow us to create a somewhat homomorphic
encryption scheme whose message space consists of multiple parallel copies of a given finite field of characteristic
two. Section 4 describes a recryption procedure for the somewhat homomorphic scheme that preserves the underlying
message space structure. Section 5 contains our main contribution, namely, a recryption procedure that makes use of
the SIMD operations. This new procedure significantly reduces the cost of recryption. To justify our claims, Section 7
presents implementation timings for a toy example. Finally, Section 8 gives possible applications of the SIMD structure
of our FHE scheme, including bit-sliced implementations of algorithms, such as performing AES encryption using an
encrypted key, and database search.

Since the appearance of the current paper on IACR e-Print in March 2011 the basic idea of utilizing SIMD operations
has been used by a number of authors, and the methods in this paper have been extended. In particular in [22] the authors
present further optimizations of the key generation method proposed in this paper. It had already been noted in [2] that
the ring-LWE based FHE schemes also posses exactly the same form of SIMD operation in this paper. In a series of
work [13–16] Gentry, Halevi and Smart make extensive use of FHE based SIMD operations in a number of contexts
related to the BGV cryptosystem [2]. In [13] they show how using SIMD operations combined with the BGV scheme
allows one to obtain an asymptotically efficient FHE scheme; then in [14] they show (among other results) how a SIMD
evaluation of the FFT transform can be used to possibly improve bootstrapping functionality; then in [15] they actually
implement the example application we present in Section 8.2; finally in [16] they show how one can in SIMD switch
the underlying finite field over which one is working to a smaller one, thus obtaining performance improvements as one
descends via a levelled FHE scheme. In [9] the authors also utilize the SIMD mode of the basic somewhat homomorphic
BGV scheme to achieve a higher efficient offline phase for a multi-party computation protocol.

1.0.1 Notations

We end this introduction by presenting the notations that will be used throughout this paper. Assignment to variables
will be denoted by x ← y. If A is a set then x ← A implies that x is selected from A using the uniform distribution.
If A is an algorithm then x ← A implies that x is obtained from running A, with the resulting probability distribution
being induced by the random coins of A. For integers x, d, we denote [x]d the reduction of x modulo d into the interval
[−d/2, d/2). If y is a vector then we let yi denote the i’th element of y.

Polynomials over an indeterminate X will (usually) be denoted by uppercase roman letters, e.g. F (X). We make
an exception for the cyclotomic polynomials which are as usual denoted by Φm(X). Elements of finite fields and
number fields defined by a polynomial F (X), i.e. elements of F2[X]/F (X) and Q[X]/F (X), can also be represented
as polynomials in some fixed root of F (X) in the algebraic closure of the base field. We shall denote such polynomials
by lower case greek letters, with the fixed root (being an element of the field) also being denoted by a lower case greek
letter; for instance γ(θ) where F (θ) = 0. When the underlying root of F (X) is clear we shall simply write γ.

For a polynomial F (X) ∈ Q[X] we let ‖F (X)‖∞ denote the∞-norm of the coefficient vector, i.e. the maximum
coefficient in absolute value. Similarly, for an element γ ∈ Q[X]/F (X) we write ‖γ‖∞ for ‖γ(X)‖∞ where γ(X) is
the corresponding unique polynomial of degree < deg(F). If F (X) ∈ Q[X] then we let dF (X)c denote the polynomial
in Z[X] obtained by rounding the coefficients of F (X) to the nearest integer. Similary, for an element γ ∈ Q[X]/F (X)
we write dγc for dγ(X)c.

15

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

2 Fields and Homomorphisms

To present the SIMD operations in full generality and to understand how they can be utilized we first set up a number
of finite fields and homomorphisms between them. We let F (X) ∈ F2[X] denote a monic polynomial of degree N that
we assume to split into exactly r distinct irreducible factors of degree d = N/r

F (X) :=
rY
i=1

Fi(X).

In practice F (X) will be the reduction modulo two of a specially chosen monic irreducible polynomial over Z. This
polynomial F (X) defines a number field K = Q(θ) = Q[X]/(F), where θ is some fixed root in the algebraic closure
of Q.

Let A denote the algebra A := F2[X]/(F), then by the Chinese Remainder Theorem we have the natural isomor-
phisms

A ∼= F2[X]/(F1)⊗ · · · ⊗ F2[X]/(Fr),

∼= F2d ⊗ · · · ⊗ F2d ,

i.e. A is isomorphic to r copies of the finite field F2d . Arithmetic in A will be defined by polynomial arithmetic in the
indeterminate X modulo the polynomial F (X). Our goal in this section is to relate arithmetic in A explicitly with the
elements in subfields of the F2d .

We let θi denote a fixed root of Fi(X) in the algebraic closure of F2. To aid notation we define Li := F2[X]/(Fi)
and note that all the Li are isomorphic as fields, where the isomorphisms are explicitly given by

Λi,j :

Li −→ Lj
α(θi) 7−→ α(ρi,j(θj)) ,

with ρi,j(θj) a fixed root of Fi in Lj , i.e. we have Fi(ρi,j(X)) ≡ 0 (mod Fj(X)).
For each divisor n of d, the finite field Kn := F2n is contained in F2d . We assume a fixed canonical representation

for Kn as F2[X]/Kn(X) for some irreducible polynomial Kn(X) ∈ F2[X] of degree n, which is often fixed by the
application. We let ψ denote a fixed root of Kn(X) in the algebraic closure of F2. Since Kn is contained in each of Li
defined above, we have explicit homomorphic embeddings given by

Ψn,i :

Kn −→ Li
α(ψ) 7−→ α(σn,i(θi)) ,

with σn,i(θi) a fixed root of Kn(X) in Li, i.e. Kn(σn,i(X)) ≡ 0 (mod Fi(X)). Note that the above mapping is linear
in the coefficients of α(ψ).

Combining the above homomorphic embedding with the Chinese Remainder Theorem, we obtain a homomorphic
embedding of l ≤ r copies of Kn into the algebra A via

Γn,l :

(
Kln −→ A

(κ1(ψ), . . . , κl(ψ)) 7−→
Pl
i=1 κi(σn,i(X)) ·Hi(X) ·Gi(X),

.

The polynomials Hi(X) and Gi(X) are given by the Chinese Remainder Theorem and are defined as

Hi(X)← F (X)/Fi(X) and Gi(X)← 1/Hi(X) (mod Fi(X)).

We shall denote component wise addition and multiplication of elements in Kln by k1 + k2 and k1 × k2. As such
we have constructed two equivalent methods of computing with elements in Kln: the first method simply computes
component wise on vectors of l elements in Kn, whereas the second method first maps all inputs to the algebra A using
Γn,l, performs computations in A and finally maps back to Kln via Γ−1

n,l . Note that by construction Kln and Γn,l(Kln) are
isomorphic, so that Γ−1

n,l is always well defined on the result of the computation.
The goal of this paper is to produce a fully homomorphic encryption scheme that allows us to work via SIMD

operations on l copies of Kn at a time, for all n dividing d, by computing in the algebraA. In particular, this enables us to
support SIMD operations both in F2 and F2d . To make things concrete the reader should consider the example of F (X)
being the 3485-th cyclotomic polynomial. In this situation the polynomial F (X) has degree N = ϕ(3485) = 2560,
and modulo two it factors into 64 polynomials each of degree 40. This polynomial therefore allows us to compute in
parallel with up to 64 elements of any subfield of F240 . For instance, by selecting n = 1 and l = 64 we perform 64
operations in F2 in parallel; selecting n = 40 and l = 1 we perform operations in a single copy of the finite field F240 ;
whereas selecting n = 8 and l = 16 we perform SIMD operations on what is essentially the AES state matrix, namely
16 elements of F28 .

16

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

3 Somewhat Homomorphic Scheme Supporting SIMD Operations in Kn

In this section, we recall the Smart–Vercauteren variant of Gentry’s somewhat homomorphic scheme and show that
it can support SIMD operations in r copies of the finite field Kn by modifying key generation. Note that the recent
FHE schemes based on ring-LWE [3] also support such style operations, and may be preferable in practice due to their
improved key generation procedures; for an extension of some of the ideas in this paper to the ring-LWE schemes see [2,
13–16]. However, whilst our SIMD style operations extend to the ring-LWE based somewhat homomorphic schemes,
our parallel recryption step does not carry over. We will return to this point later on.

3.1 Smart-Vercauteren somewhat homomorphic scheme

Let F ∈ Z[X] be a monic irreducible polynomial of degree N and let K = Q(θ) = Q[X]/(F) denote the number
field defined by F . Gentry’s original scheme uses two co-prime ideals I and J in the number ring Z[θ]. The ideal I
is chosen to have small norm N (I) =](Z[θ]/I) and determines the plaintext space, namely Z[θ]/I. For this reason,
I = (2) is chosen in practice. Note that in the case of a general F the quotient ring Z[θ]/(2) is an algebra of a somewhat
more general type than discussed in Section 2. We shall choose F later on such that one obtains precisely the type of
algebra considered in Section 2. The ideal J determines the private/public key pair: the private key consists of a “good”
representation of J , whereas the public key consists of a “bad” representation of J .

To clarify the notions of “good” and “bad”, we first describe the Smart–Vercauteren instantiation. The ideal J is
chosen to be principal, i.e. generated by one element γ ∈ Z[θ], and has the following additional property: let d =
N (J) =](Z[θ]/J) = |NK/Q(γ)|, where NK/Q(·) denotes the number field norm of K to Q, then there exists a unique
α ∈ Zd such that

J = (γ) = (d, θ − α) .

The element α, and the integer d, can be computed in polynomial time by, for example, computing the Hermite Normal
Form representation of the ideal.

The “good” representation of J (i.e. the private key) corresponds to the small generator γ, whereas the “bad” repre-
sentation (i.e. public key) is (d, θ−α). The additional property of J is equivalent with the requirement that the Hermite
Normal Form representation of J has the following specific form0BBBBBB@

d 0 0 . . . 0
−α 1 0 0
−α2 0 1 0

...
. . .

−αN−1 0 0 1

1CCCCCCA ,

where the entries below d in the first column are taken modulo d. Another characterisation of this property is that the
ideal J simply contains an element of the form θ − α. This is clearly necessary since J can be generated by (d, θ − α),
but it is also sufficient. Indeed, since γ ∈ J , this implies that d ∈ J , so (d, θ − α) ⊂ J and since both ideals have the
same norm, we must have J = (d, θ − α). As such, there exists an element ν ∈ Z[θ] with ν · γ = θ − α. To derive an
easy verifiable condition on γ, we define the algebraic number ζ ∈ Z[θ] such that

ζ · γ = d . (1)

Multiplying ν · γ = θ − α on both sides with ζ gives the condition d · ν = θ · ζ − α · ζ. Write ζ =
PN−1
i=0 ζi · θi and

F (X) =
PN
i=0 Fi ·X

i, then computing the product θ · ζ explicitly and reducing modulo d finally leads to:

α · ζi = ζi−1 − ζN−1Fi mod d , (2)

for all i = 0, . . . , N − 1 where ζ−1 = 0.
Note that the two element representation (d, θ − α) defines an easily computable homomorphism

H : Z[θ]→ Zd : η =
N−1X
i=0

ηi · θi 7→ H(η) =
N−1X
i=0

ηi · αi mod d . (3)

The homomorphism H also makes it very easy to test if an element η ∈ Z[θ] is contained in the ideal J , namely η ∈ J
if and only if H(η) = 0. Furthermore, given the “good” representation γ, it is possible to invert H on a small subset of
Z[θ] as shown by the following lemma.

17

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Lemma 1 Let J = (γ) = (d, θ − α) and ζ · γ = d and let H be defined as in (3). Let η ∈ Z[θ] with ‖η‖∞ < U , then
we have

η = H(η)−
‰
H(η) · ζ

d

�
· γ for U =

d

2 · δ∞ · ‖ζ‖∞
,

where δ∞ = sup
n
‖µ·ν‖∞
‖µ‖∞·‖ν‖∞ : µ, ν ∈ Z[θ]

o
. Furthermore, for ‖η‖∞ < U we have

[H(η) · ζ]d = [η · ζ]d = η · ζ . (4)

Proof It is easy to see that H(η)− η is contained in the principal ideal generated by γ. As such, there exists a β ∈ Z[θ]
such that H(η)− η = β · γ. Using ζ = d/γ, we can write

β =
H(η) · ζ

d
− η · ζ

d
. (5)

Since β has integer coefficients, we can recover it by rounding the coefficients of the first term if the coefficients of the
second term are strictly bounded by 1/2. This shows that η can be recovered from H(η) for ‖η‖∞ < d/(2 · δ∞ · ‖ζ‖∞).
Furthermore, equation (5) shows that [H(η) · ζ]d = [η · ζ]d and since ‖η‖∞ < U , we have [η · ζ]d = η · ζ.

Corollary 1 Using the notation of Lemma 1, assume that ‖η‖∞ < U/L, for some L > 1, then for i = 0, . . . , N − 1 we
have

− 1

2L
<
H(η) · ζi

d
−
‰
H(η) · ζi

d

�
<

1

2L
,

i.e. H(η) · ζi/d is within distance 1/2L of an integer, where (as before) ζi is the ith coefficient of ζ in the polynomial
basis.

Proof Follows directly from equation (5) and the assumption on η.

The above lemma shows that we can recover an element η from its image under H , when its norm is not too large.
As such we obtain a trapdoor one way function that can be used as the basis for encryption. Using these preliminaries
we are now ready to define key generation, encryption and decryption.

KEY GENERATION: Input parameters: N , t
Generate a monic irreducible polynomial F ∈ Z[X] of degree N with small coefficients, defining the number field
K = Q(θ) = Q[X]/(F). Choose an element γ ∈ Z[θ] with γ = 1 mod 2 such that the coefficients of γ are smaller
in absolute value than 2t (at least one coefficient should be a t-bit integer). This can be done for example by uniformly
selecting γ from all polynomials of degree N − 1 with coefficients bounded by 2t in absolute value, although other
distributions are possible. Compute the norm d = |NK/Q(γ)| as well as the element ζ ∈ Z[θ] with ζ · γ = d. If d is even,
choose a new γ. If d is odd, compute α = −ζN−1 · F0/ζ0 and verify whether (2) holds for all i = 1, . . . , N − 1. If not,
generate a new γ. Otherwise, the public key is the pair pk := (d, α) whereas the private key is the element sk := ζ.

In practice, N will be of the order a few thousand and t a few hundred. The size of d can be approximated roughly
by NN · 2Nt; this therefore results in a d of several million bits.

ENCRYPTION: Input parameters: µ, pk := (d, α), message M ∈ A := F2[X]/(F (X))
The plaintext space consists of (a subalgebra of) the algebra A := F2[X]/(F (X)). Represent the message M as a
polynomial M(X) ∈ Z[X] with coefficients in {0, 1}. Uniformly generate a “noise” polynomial R(X) ∈ Z[X] of
degree < N , subject to with ‖R(X)‖∞ ≤ µ, and compute the ciphertext as

c← [M(α) + 2 ·R(α)]d .

Note that the ciphertext is an element in Zd and that encryption simply corresponds to applying the homomorphism H

to the algebraic integer C(θ) := M(θ) + 2 · R(θ). Furthermore, it should be clear that if we can recover C(θ), then
we can decrypt simply by computing C(X) mod 2. The encryption function is denoted as c ← Encrypt(M(X), pk).
If M(X) ∈ A then we say M

˛̨
α

= M(α) (mod d) is a “trivial” encryption of M(X), i.e. it is an encryption with no
randomness.

DECRYPTION: Input parameters: ciphertext c ∈ Zd, sk := ζ

Given the ciphertext c ∈ Zd, compute the element C(θ) as

C(θ) = c−
‰
c · ζ
d

�
,

and then setM(X) = C(X) mod 2. Note that here we used the fact that γ ≡ 1 mod 2. We can obtain a simpler decryp-
tion procedure using the last statement in Lemma 1. Indeed, if c is a decryptable ciphertext, we know that ‖C(θ)‖∞ < U

and thus that
[c · ζ]d = C(θ) · ζ .

18

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Since γ ≡ 1 mod 2 and d is odd with d = γ · ζ, we see that also ζ ≡ 1 mod 2. Furthermore, C(θ) = M(θ) + 2R(θ),
so we obtain

[c · ζ]d mod 2 = M(θ) mod 2 = M(X) .

This shows that for ζ =
PN−1
i=0 ζiθ

i we can recover the coefficients of M(X) = m0 +m1 ·X + · · ·+mN−1 ·XN−1

one by one, by computing
mi = [c · ζi]d (mod 2) .

We write M(X) ← Decrypt(c, sk). Note that to save space for key storage, it suffices to store ζ0, since the other ζi
follow from equation (2). In particular, we obtain the closed expression ζi = wi · ζ0 with

wi = − 1

F0

0@ NX
j=i+1

Fj · αj−i
1A (mod d) . (6)

Since the wi can be publicly computed, we can decrypt mi = [c · wi · ζ0]d (mod 2). We pause to note that it is this
linear relationship between the distinct decryption keys ζi which enables the parallel recryption procedure we describe
later. For ring-LWE based somewhat homomorphic schemes supporting SIMD operations, where such a simple linear
relation does not hold, it seems much harder to produce a parallel recryption procedure using the squashing paradigm
of Gentry. Although see [14] for a possibly more efficient method in this direction.

HOMOMORPHIC OPERATIONS: It is easy to see that the scheme is somewhat homomorphic, where the operations being
performed are addition and multiplication of ciphertexts modulo d. Indeed, let ci = H(Ci(θ)) = H(Mi(θ) + 2R1(θ))
for i = 1, 2, then we have that

c1 + c2 = H(M1(θ) +M2(θ) + 2(R1(θ) +R2(θ)))

c1 · c2 = H(M1(θ) ·M2(θ) + 2(M1(θ)R2(θ) +M2(θ)R1(θ) + 2R1(θ)R2(θ))) .

This shows that operations on the ciphertext space induce corresponding operations on the plaintext space, i.e. the alge-
braA. Thus it is clear that the somewhat homomorphic scheme supports SIMD operations and operations on elements in
possibly large degree (i.e. degree n) finite fields. To make a distinction when we are performing homomorphic operations
we will use the notation ⊕ and � to denote the homomorphic addition and multiplication of ciphertexts.

3.2 Efficient key generation and SIMD operations

Whilst the FHE scheme works for any polynomial F with small coefficients, the common case, as in [12] and [23], is
to use the polynomial F (X) := X2n

+ 1. As pointed out by Gentry and Halevi [12] this enables major improvements
in the key generation procedure over that proposed by Smart and Vercauteren [23]. If we let ηi denote the roots of the
polynomial F over the complex numbers, or over a sufficiently large finite field, then we can compute ζ and d as follows:

– Compute ωi ← γ(ηi) ∈ C for all i.
– Compute d←

Q
ωi.

– Compute ω∗i ← 1/ωi.
– Interpolate the polynomial ζ/d from the data values ω∗i .

The key observation is that since F (X) is of the form X2n

+ 1, the ηi are 2n+1-th roots of unity and so to perform
the polynomial evaluation and interpolation above we can apply the Fast Fourier Transform (FFT). Indeed, Gentry and
Halevi present an even more optimized scheme to compute d and ζ which requires only polynomial arithmetic, but this
makes significant use of the fact that the trace of 2-power roots of unity is always zero.

The problem with selecting F (X) = X2n

+ 1 is that it has only one irreducible factor modulo two. In particular if
we select F (X) = X2n

+ 1 then the underlying plaintext algebra is given by

A := F2[X]/(F) ∼= F2[X]/(X − 1)2
n

.

In other words, F does not split into a set of distinct irreducible factors modulo two as we required to enable SIMD
operations.

We now present a possible replacement for F (X). The key observation is that we need an F (X) which enables
fast key generation via FFT like algorithms, which has small coefficients, and which splits into distinct irreducible
factors modulo two of the same degree. In addition we need a relatively large supply of such polynomials to cope with
increasing security levels (i.e. N), different numbers of parallel operations (i.e. l) and different degree two finite fields
in which operations occur (i.e. n). In particular need to pick an F (X) which generates a Galois extension of degree n.
In addition we need to select a polynomial F (X) such that 2 is neither ramified, nor an index divisor, in the associated

19

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

number field generated by a root of F (X). These conditions ensure that the algebra mod two splits into distinct finite
fields of the same degree.

One is then led to consider other cyclotomic polynomials as follows. We select an odd integer m and recall that the
m-th cyclotomic polynomial is defined by

Φm(X) :=
Y
η

(X − η)

where η ranges over all m-th primitive roots of unity. We have deg(Φm(X)) = φ(m), and that Φm(X) is an irreducible
polynomial with integer coefficients. In the practical range for m, the coefficients of Φm are very small, e.g. for all
m ≤ 40000 the coefficients are bounded by 59 and are in most cases much smaller than this upper bound.

The field Q(θ) is a Galois extension and hence each prime ideal splits in Q(θ) into a product of prime ideals of the
same degree and ramification index. If m is odd then the prime two does not ramify in the field Q(θ), nor is it an index
divisor. In particular, by Dedekind’s criterion, this means that the polynomial Φm(X), of degree N = φ(m), factors
modulo two into a product of r = N/d distinct irreducible polynomials of degree equal to the unique degree d of the
prime ideals lying above the ideal (2). This degree d is the smallest integer such that 2d ≡ 1 (mod m).

Hence, by selecting F (X) := Φm(X) in our construction of the algebra A over F2, we find that A is isomorphic to
a product of r finite fields of degree d = N/r. The only issue is whether one can perform the key generation efficiently.
To do this we use Fourier Transforms with respect to the m-th roots of unity. In particular given the polynomial γ in the
key generation procedure we compute the evaluation at the m-th roots of unity via a Fourier Transform, and produce
the norm d by selecting the N required values to multiply together (consisting of the evaluations of the primitive roots
of unity). One can then compute 1/γ by inverting the Fourier coefficients and then interpolating via the inverse Fourier
Transform.

In other words the same optimization as mentioned earlier can be applied: Instead of taking the standard Cooley-
Tukey [7] FFT method for powers of two, we apply the Good-Thomas method [17,25] for when m is a product of two
coprime integers, or Cooley-Tukey when m is a prime power. Either method reduces the problem to computing FFTs
for prime power values of m, for which we can use the Rader FFT algorithm [21]. This in itself reduces the problem to
computing a convolution of two sequences, which is then performed by extension of the sequences to length a power
of two followed by the application of the Cooley-Tukey algorithm to the extended sequence. Overall the FFT then
takes O(m · logm) operations on elements of size O(log2 d) bits. In practice m ≈ 2 · N and so this gives the same
complexity for key generation as using F (X) = X2n

+ 1, however the implied constants are slightly greater. This
means we can achieve almost the same complexity for key generation as in the 2-power root of unity case. In [22] the
above approach is extended and further optimizations are applied, so as to reduce the cost to nearer to what one sees
when using F (X) = X2n

+ 1.

4 Fully Homomorphic Scheme and Naive Recryption Method

To turn the somewhat homomorphic scheme of the previous section into a fully homomorphic scheme, we follow
Gentry’s bootstrapping approach, i.e. we squash the decryption circuit so much that it can be evaluated by the somewhat
homomorphic scheme. In particular, we use the optimized procedure described by Gentry and Halevi in [12].

4.1 The Recryption Method of Gentry and Halevi

Recall that each message bit mi can be recovered as mi = [c ·wi · ζ0]d (mod 2) with the wi being publicly computable
constants defined in (6). Since [c · wi]d can be computed without knowledge of ζ0 it suffices to show how [c · ζ0]d
(mod 2) can be computed with a low complexity circuit.

The idea is to write the private key ζ0 as the solution to a sparse-subset-sum problem. In particular, we will define s
sets of S elements as follows (a discussion on the sizes of s and S will be given later): choose s elements xi ∈ [0, . . . , d),
a random integer R ∈ [1, . . . , d) and define the i-th set Bi = {xi · Rj (mod d) | j ∈ [0, . . . , S)} such that the private
key ζ0 can be written as the sum

ζ0 =
sX
i=1

S−1X
j=0

bi,j · xi ·Rj (mod d) ,

where for each i only one bi,j = 1 and all other bi,j are zero. The index j for which bi,j = 1 will be denoted by ei and
so we can write ζ0 =

Ps
i=1 xi · R

ei (mod d). The result is that we have written ζ0 as the sum of s elements, where
one element is taken from each Bi. To enable recryption or ciphertext cleaning, we will augment the public key with

20

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

additional information: compute the ciphertexts ci,j ← Encrypt(bi,j , pk) for 1 ≤ i ≤ s, 0 ≤ j < S, then the public key
now consists of the data “

d, α, s, S,R,
n
xi, {ci,j}S−1

j=0

os
i=1

”
.

Denote yi,j = c · xi ·Rj (mod d) for i = 1, . . . , s and j = 0, . . . , S− 1 such that 0 ≤ yi,j < d, then the decryption
function [c · ζ0]d (mod 2) can be rewritten as

[c · ζ0]d (mod 2) =

24 sX
i=1

S−1X
j=0

bi,j · yi,j

35
d

(mod 2)

=

0@ sX
i=1

S−1X
j=0

bi,j · yi,j

1A− d ·
2666

sX
i=1

S−1X
j=0

bi,j ·
yi,j
d

7775 (mod 2)

=
sM
i=1

S−1M
j=0

bi,j · yi,j (mod 2)⊕

2666
sX
i=1

S−1X
j=0

bi,j ·
yi,j
d

7775 (mod 2) .

Note that the latter double sum T =
Ps
i=1

PS−1
j=0 bi,j ·

yi,j

d is equal to c·ζ0/d and if we assume that c is the image ofC(θ)
under H , where ‖C(θ)‖∞ < U/(s+1), then we know by Corollary 1 that T is within distance 1/2(s+1) of an integer.
If we now replace each yi,j

d with an approximation zi,j up to p bits after the binary point, i.e. |zi,j − yi,j/d| < 2−(p+1),
then since there are only s non-zero terms, we have that |T −

Ps
i=1

PS−1
j=0 bi,j ·zi,j | < s ·2−(p+1). Rounding the double

sum over the zi,j will thus give the same result as rounding T as long as

1

2(s+ 1)
+ s · 2−(p+1) < 1/2 ,

which implies that p ≥ dlog2(s + 1)e. Furthermore, in the inner sum we are adding S numbers of which only one
is non-zero. As such, we can compute the k-th bit of this sum by simply XOR-ing the k-th bits of the bi,j · zi,j for
j = 1, . . . , S. We are then left with an addition of s numbers, each which consists of p bits after the binary point.

We are now ready to formulate the recrypt algorithm by mapping these equations into the encrypted domain. To this
end, we require two helper functions. The first function b ← compute bits(y) takes as input an integer 0 ≤ y < d and
outputs the vector of bits b = (b0, b1, . . . , bp) such that˛̨̨̨

y

d
− (b0 +

b1
2

+
b2
22

+ · · ·+ bp
2p

)

˛̨̨̨
<

1

2p+1
.

This is easily computed by determining u← d(2p · y)/dc, and then reading the bits from the (small) integer u.
The second function school book add(A) takes as input an s × (p + 1) array A of ciphertexts, where each row

contains the encryptions of the (p + 1) bits of an integer. The result of the function is a (p + 1) vector containing the
encryptions of the (p + 1) bits of the sum of these s integers modulo 2p+1. The school book method is discussed in
more detail in [12] where it is shown that it takes time

Tschool book add :=

s · 2p−1 +

p−1X
k=1

(s+ k) · 2p−k
!
· Tmod,d

where Tmod,d denotes the time of performing one multiplication modulo d.
In Algorithm 1 we present the algorithm for recrypting the first bit of the message underlying a ciphertext c, i.e. the

algorithm computes [c · ζ0]d (mod 2) in the encrypted domain using the augmented public key. This is essentially the
recryption algorithm used by Gentry and Halevi, where the message space is one bit only.

4.2 Some Initial Modifications

Before progressing to our parallel recryption method we first pause to re-examine the Gentry-Halevi method in the con-
text of largest message spaces. To obtain the recyption of the i-th coefficient we simly input [c · wi]d instead of c, since
decrypting the i-th bit is given by [c ·wi · ζ0]d (mod 2). We denote the cost of executing this algorithm for a one bit ci-
phertext as Tbits. Ignoring the modular additions, we see that Tbits =

“
(S + 1) · s ·+s · 2p−1 +

Pp−1
k=1(s+ k) · 2p−k

”
·

Tmod,d.

21

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Algorithm 1: BitRecrypt(c, pk): Recrypting the First Bit of the Plaintext Associated With Ciphertext c
A← 0, where A ∈Ms×(p+1)(Zd).
sum← 0.
for i from 1 upto s do

y ← c · xi (mod d).
for j from 0 upto S − 1 do

if y is odd then
sum← sum⊕ ci,j .

b← compute bits(y).
for u from 0 upto p do

Ai,u ← Ai,u ⊕ (bu · ci,j).
y ← y ·R (mod d).

a← school book add(A).
c← sum⊕ a0.
return (c).

To recrypt a whole ciphertext c, we first form ciphertexts ci = BitRecrypt([c ·wi]d, pk) for i = 0, . . . , N −1, which
are recryptions of the coefficients of the underlying polynomial M(X) by submitting [c · wi]d to Algorithm 1. Then
given ci we form the ciphertext

c←
N−1X
i=0

ci � αi

which will be a recryption of the original ciphertext. Note, to control the noise this last sum is computed naively, and not
via Horner’s rule, i.e. we multiply each coefficient ciphertext ci by αi (mod d) and then sum. The resulting algorithm is
summarized in Algorithm 2. Assuming the αi (mod d) andwi are precomputed, the total cost of recrypting a ciphertext

Algorithm 2: Recrypting Ciphertext c version 1
c← 0.
for i from 0 upto N − 1 do

ci ← BitRecrypt([c · wi]d, pk).
c← c⊕ ci � αi.

return (c).

corresponding to an arbitrary element in A (using our naive method) is essentially N · Tbits + 2 · N · Tmod,d. If SIMD
style operations, and operations on larger datatypes, are to be supported we therefore need a more efficient method to
perform recryption; since the above cost could be prohibitive. We therefore now turn to utilizing our SIMD operations
to improve the performance of recryption of such ciphertexts.

5 Parallel Recryption

Whilst Algorithm 1 will recrypt a ciphertext that encodes an element of the algebra A, it can be made significantly more
efficient. Firstly, the procedure recrypts a general element inA, yet in practice we will only have that c contains l ·n ≤ N
encrypted bits. Secondly, since the recrypt procedure is a binary circuit we can run it on the r embedded copies of F2,
i.e. we can use the SIMD style operations to recrypt r bits in parallel.

The first optimization is easy to obtain: recall that Γn,l maps a vector of l binary polynomials (κ1(ψ), . . . , κl(ψ))
each of of degree less than n, into a polynomial a(X) of degree less than N . The map Γn,l thus defines an isomorphism
between Kln and Γn,l(Kln) so Γ−1

n,l is well defined on the result of the computation. We can represent Γ−1
n,l explicitly by

an (n · l)×N binary matrix B over F2 which is defined as follows:

coeff(κi, j) =
N−1X
k=0

Bj+i·n+1,k+1 · coeff(a(X), k).

Using B we can therefore first obtain encryptions of all the coefficients of the κi, recrypt these using Algorithm 1 and
then reconstruct the recrypted ciphertext using Γn,l. In particular, denote with ci1,i2 a recryption of the i1th coefficient
of the i2th component in Kln, then we can obtain a full recryption of an element in Kln by computing

c←
n−1X
i1=0

lX
i2=1

ci1,i2 �
““
Γn,l(0, . . . , 0, ψ

i1 , 0, . . . , 0)
” ˛̨
α

”
,

22

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

where (0, . . . , 0, ψi1 , 0, . . . , 0) ∈ Kln is the element whose i2th component is equal to ψi1 , and M(X)
˛̨
α

is the trivial
encryption of the element M(X) in the algebra A.

Recall that given a ciphertext c, the value [c · wi]d is an encryption of the ith coefficient of a(X). Since the scheme
is homomorphic and using the matrix B we conclude that

ci1,i2 =

"
N−1X
k=0

Bi1+i2·n+1,k+1[c · wk]d

#
d

=

"
c ·

N−1X
k=0

Bi1+i2·n+1,k+1 · wk

!#
d

is a valid encryption of coeff(κi2 , i1). Note that these quantities are obtained as the sum of maximum N ciphertexts,
which implies that the original c has to be an encryption of C(θ) with ‖C(θ)‖∞ < U/((s+ 1) ·N) for Algorithm 1 to
recrypt correctly. The second algorithm thus first computes the n · l constants (the wi are no longer required)

vi1,i2 =
N−1X
k=0

Bi1+i2·n+1,k+1 · wk (mod d) ,

and then computes the recryptions ci1,i2 = BitRecrypt([c ·vi1,i2]d, pk). Notice how we have reduced the number of calls
to recrypt from N down to n · l and that we require only n · l constants vi1,i2 instead of the N constants wi. The result is
summarized in Algorithm 3. Assuming the

“
Γn,l(0, . . . , 0, ψ

i1 , 0, . . . , 0)
” ˛̨
α

and vi1,i2 are precomputed, the total cost
of recrypting a ciphertext is essentially n · l · Tbits + 2 · n · l · Tmod,d.

Algorithm 3: Recrypting Ciphertext c version 2
c← 0.
for i1 from 0 upto n− 1 do

for i2 from 0 upto l − 1 do
ci1,i2 ← BitRecrypt([c · vi1,i2]d, pk).
c← c⊕ ci1,i2 �

`
Γn,l(0, . . . , 0, ψ

i1 , 0, . . . , 0)
´ ˛̨
α

.
return (c).

So far we have not exploited the SIMD capabilities of the somewhat homomorphic scheme. Therefore our next goal
is to produce the recryptions ci1,i2 in parallel for i2 = 1, . . . , l. Thus we aim to compute a ciphertext ĉi1 from c such
that ĉi1 represents a recryption of the message

(coeff(κ1, i1), . . . , coeff(κl, i1)) ,

where c represents an encryption of (κ1, . . . , κl). We use the notation ĉi to distinguish it from the recryption ci above.
The key observation is that the recrypt procedure is the evaluation of a binary circuit, and that this binary circuit is

identical (bar the constants) no matter which component we are recrypting. In addition the algebra splits into (at least) l
finite fields of characteristic two, thus we can embed the binary circuit into each of these l components and perform the
associated recryption in parallel. For a fixed i1 we therefore want to execute the computation of the vector

([c · vi1,1 · ζ0]d (mod 2), . . . , [c · vi1,l · ζ0]d (mod 2))

in the encrypted domain in parallel. Recall that each component of this vector is computed as

[c · vi1,k · ζ0]d (mod 2) =
sM
i=1

S−1M
j=0

bi,j · y
(k)
i,j (mod 2)⊕

2666
sX
i=1

S−1X
j=0

bi,j · z
(k)
i,j

7775 (mod 2) ,

where y(k)i,j = c ·vi1,k ·xi ·R
j and z(k)i,j an approximation of y(k)i,j /d up to p bits after the binary point. Recall that to obtain

the bit Bk =
lPs

i=1

PS−1
j=0 bi,j · z

(k)
i,j

k
(mod 2) we used the function school book add(M) with input an s× (p+ 1)

array M where the ith row contained ⊕S−1
j=0 bi,j · compute bits(y

(k)
i,j). In fact, Bk was simply the first bit in the bit vector

returned by school book add(M).
If we now want to execute the above computation in the kth component (instead of the first), we basically have

to multiply everything by Γn,l(0, . . . , 0, 1, 0, . . . , 0), where (0, . . . , 0, 1, 0, . . . , 0) is the vector of l elements of Kn
whose kth element is equal to one, with all other elements being zero. To avoid costly modular multiplications by

23

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Γn,l(0, . . . , 0, 1, 0, . . . , 0)
˛̨
α

, we will use l different encryptions of bi,j , depending on which of the l components of the
algebra we are using. In particular, we no longer augment the public key with the data“

p, s, S,R,
n
xi, {ci,j}S−1

j=0

os
i=1

”
,

where ci,j ← Encrypt(bi,j , pk), but instead replace the ci,j components with elements ei,j,k where

ei,j,k ← Encrypt
`
bi,j · Γn,l(0, . . . , 0, 1, 0, . . . , 0), pk

´
for 1 ≤ i ≤ s, 0 ≤ j < S, 0 ≤ k < l .

This means we need to increase the size of the augmented public key by essentially a factor of l. Once we have computed
all the ĉi1 ’s we can simply recover c by computing

c←
n−1X
i1=0

ĉi1 �
““
Γn,l(ψ

i1 , . . . , ψi1)
” ˛̨
α

”
.

The resulting algorithm is given in Algorithm 4. Note that to compute each ĉi1 we only require one call to the function
school book add(A); compared to l calls in Algorithm 3.

Algorithm 4: Recrypting Ciphertext c version 3: parallel recryption of all i1th coefficients of the n elements
embedded in a ciphertext c
c← 0.
for i1 from 0 upto n− 1 do

sum← 0.
A← 0, where A ∈Ms×(p+1)(Z/dZ).
for i2 from 0 upto l − 1 do

ci1,i2 ← c · vi1,i2 (mod d).
for j from 1 upto s do

y ← ci1,i2 · xj (mod d).
for k from 0 upto S − 1 do

if y is odd then
sum← sum⊕ ej,k,i2 .

b← compute bits(y).
for u from 0 upto p do

Aj,u ← Aj,u ⊕ (bu · ej,k,i2).
y ← y ·R (mod d).

a← school book add(A).
ĉi1 ← sum⊕ a0.
c← c⊕ ĉi1 �

``
Γn,l(ψ

i1 , . . . , ψi1)
´ ˛̨
α

´
.

return (c).

We let Tpar(n, l) denote the cost of performing this recryption operation on a message consisting of l field elements
from Kn held in parallel. Assuming the

“
Γn,l(ψ

i1 , . . . , ψi1)
” ˛̨
α

and the vi1,i2 are precomputed we obtain that

Tpar(n, l) = n (S · s · l+ s · l+ l+ 1) · Tmod,d + n · Tschool book add .

The main cost advantage therefore stems from the fewer calls to the function school book add.
Naively it would appear that our parallel version of recrypt, using Algorithm 4, is more efficient than the naive

version using Algorithm 2. However, one may need larger public keys to actually implement the parallel recryption (as
it is a more complex circuit). We also need to compare whether doing operations in parallel and with large data entries
(via the algebraA) is more efficient than doing the same operations but with bits using the standard bit-wise FHE scheme
but with more complex circuits. It is to this topic we now turn by examining some “toy” examples for small security
parameters:

6 Security Analysis and Parameters

The analysis of Gentry of the basic FHE scheme and associated bootstrapping operation applies in our situation. The
security of the underlying somewhat homomorphic scheme is based on the hardness of a variant of the bounded distance
decoding (BDDP) problem; whereas the security of the bootstrapping procedure is based on the sparse subset sum
problem (SSSP). Indeed the minor modifications we make in future sections to the public key result in exactly the same

24

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

security reductions. Thus an adversary against the scheme can either be turned into an algorithm to solve a decision
variant of the BDDP, or a SSSP.

When selecting key sizes for cryptographic schemes, in practice one almost always selects key sizes based on the
best known attacks and not on the hard problems from which a security problem reduces. We have various parameters
we need to select s, S,N , t and µ. The sizes ofN , t and µ determine whether one can break the scheme by distinguishing
ciphertexts, or (more seriously) by message or key recovery. Parameter selection is here based on the hardness of solving
explicit closest vector problems (CVPs), in lattices of dimension N , involving basis matrices with coefficients bounded
by d (a function of t and N), and for close vectors whose distance to the lattice is related to the size of µ. An algorithm
to solve the CVP/BDDP can be directly used to recover plaintexts as explained in [23]. The larger the ratio of t to µ the
easier it is to recover plaintexts, but the ratio of t to µ also determines how complicated a circuit the basic somewhat
homomorphic scheme can evaluate. Indeed the smaller the ratio of t to µ the less expressive our somewhat homomorphic
scheme is. In selecting N , t and µ one needs to make a careful analysis of the current state of the art in lattice basis
reduction; a topic which is beyond the scope of this paper.

On the other hand, it is not the case that an algorithm to solve the sparse subset sum problem can be used to break
the scheme. The security proof in [11] uses the FHE adversary to solve the following SSSP

ζ0 =
sX
i=1

S−1X
j=0

bi,j · (xi ·Rj) (mod d).

The simulator (solving SSSP) is given ζ0 and the weights xi ·Rj (mod d), and uses random ciphertexts ci,j to represent
the encryption of the bi,j . Since the proof has already shown that ciphertexts of specific values are indistinguishable
from encryptions of random values, the adversary does not know it is in a simulation. The proof in [11] shows how the
simulator can then solve the SSSP. Whilst this easily establishes the fact that the recrypt procedure does not reduce the
security of the scheme, assuming of course the scheme is KDM secure and the SSSP is hard, it actually tells us very
little in practice. In particular it says: “If the adversary knows the secret key, then recovering another representation of
the secret key is equivalent to solving the SSSP”.

The parameters s and S determine (in practice) a hidden sparse subset sum problem rather than a standard SSSP.
Namely, the adversary needs to solve the above subset sum problem where he is not given access to the value ζ0. Taking
the pragmatic view of parameter selection based on the best known attack, it is clear that neither the lattice attacks on
the SSSP nor the time-memory trade off methods to solve the SSSP apply in the hidden case. This has important direct
implications for parameter size selection. For example, if a time-memory trade off is possible then we need to select
S and s such that Sbs/2c > 2λ, where we do not believe the adversary can perform 2λ operations. However, since the
time-memory trade off against the hidden SSSP appears impossible, we select can instead select Ss > 2λ.

This observation has a number of consequences: Firstly we can select S to be much smaller than Gentry–Halevi do,
secondly this means we do not need to complicate the recryption procedure with the index encoding method they use
to save space, since S is now small enough to not require it. Thirdly this halves the degree of the resulting recryption
circuit which makes the scheme more efficient, and fourthly it saves on the computational cost of recryption, since we
need to do less work.

In summary: in practice one should select N , t and µ according to best practice from lattice basis reduction. For real
systems this means that parameters need to be chosen that are significantly larger than the toy examples presented in
Gentry–Halevi. However, when selecting s and S one can be less conservative than Gentry–Halevi.

In Section 5 we detailed a parallel recryption procedure which has the same multiplicative depth as the one above; but
which requires more addition operations, where the number of extra additions depends on the level of SIMD operations
required. Thus the value of t may need to be larger than that required in non SIMD based schemes. Asymptotically the
constant increase will make no difference, but for “practical” parameters one may have a noticeable difference. Thus
we now turn to presenting experimental results for “toy” security levels. This is done purely to show that our algorithms
make a difference even for choices of N,µ and t corresponding to low security levels.

7 Experimental Results

So the question arises as to whether it is simpler to perform FHE on bits, or to perform FHE via the algebra A. In this
section we concentrate on estimating the performance in terms of the run time and the sizes of the resulting ciphertexts
which need to be stored. First recall key generation; we choose N and a polynomial F (X) with small coefficients, we
then choose an element γ ∈ Z[θ] which has coefficients of order 2t. This results in a value for d of size approximately
NN · 2t·N ; thus we require roughly O(N · (t+ logN)) bits to represent a single ciphertext.

25

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

We first let T (n) denote the function which returns the number of F2 multiplications needed to perform a multipli-
cation in the field Kn = F2n . Using Karatsuba multiplication (for example) we find, for n a power of two, that

T (n) :=

1 if n = 1,
3 · T (n/2) otherwise.

This is clearly only an estimate of the overall cost, as we are ignoring the required additions and management of the
data.

There are various different options one has for implementing operations on l′ finite fields each of size 2n
′
. In the

following discussion we concentrate on the following four options; clearly other options are available but we select these
as a way of demonstrating the different ways how our techniques could be used.

OPTION 1:: We operate on bits using the standard bit-wise FHE schemes, i.e. we take n = l = 1 in our FHE scheme.
We will then require l′ · n′ · t ·N bits to store our l′ finite field elements, and the cost of performing a single SIMD style
multiplication on the l′ finite fields will cost around l′ · T (n′) · Tbits multiplications.

OPTION 2:: We operate on the l′ finite field elements where each element uses a single ciphertext, i.e. we take n = n′

and l = 1 in our FHE scheme. This option has the benefit that we can work with the finite field, but we are not forced to
operate in a SIMD manner all the time. With such an option we will require l′ ·t·N bits to store our l′ finite field elements,
and performing a single SIMD style multiplication on the l′ finite fields will cost around l′ · Tpar(n

′, 1) multiplications.

OPTION 3:: We operate on all l′ finite fields in a SIMD fashion using only a single ciphertext, i.e. we take n = n′ and
l = l′ in our FHE scheme. Thus we will require t ·N to store our l′ finite field elements, and performing a single SIMD
style multiplication on the l′ finite fields will cost around Tpar(n

′, l′) multiplications.

OPTION 4:: Here we operate on bits, but we operate on them in a SIMD fashion by having a ciphertext represent l′ bits,
i.e. we take n = 1 and l = l′ in our FHE scheme. With this option we require n′ · t · N bits to store the l′ finite field
elements, and SIMD style multiplication will require T (n′) · Tpar(1, l

′) multiplications.
We summarize the above choices, for the concrete parameters of n′ = 8 and l′ = 16, in the following table. We

select a value for N around the size of 2000, purely to enable comparison with the work of [12]. We iterate this value
is purely for illustrative purposes to show the difference between the various options; it should not be taken to indicate
the N ≈ 2000 is a secure security level. Fixing n′, l′ and N rather than leaving them variable is done as the overhead of
the SIMD operations crucially depends on the specific combination of finite field and cyclotomic field chosen, and has
no nice asymptotic meaning. We select a single parameter instance simply not to overwhelm the reader with data, since
our goal is purely to show feasibility of our algorithms even at low security levels.

Note, that for Option 1 we select N = 2048 since if we are only encrypting bits then using the polynomial F (X) =
X2n

+ 1 will always be more efficient than using F (X) = Φ3485(X). In addition we keep the parameter t as an
indeterminate, as we will be returning to that later.

Ciphertext Runtime
N Space (≈ bits) Approx Cost

Option 1 2048 262144 · t 432 · Tbits

Option 2 2560 40960 · t 16 · Tpar(8, 1)
Option 3 2560 2560 · t Tpar(8, 16)
Option 4 2560 20480 · t 27 · Tpar(1, 16)

Thus if one is soley interested in reducing the memory of the calculation one would select Option 3. To determine
which one is most efficient one needs to actually implement the schemes, since the actual costs of each operation
depend on the value of t needed. So we implemented the above algorithms for the four cases (N,n, l) = (2048, 1, 1),
(2560, 8, 1), (2560, 8, 16) and (2560, 1, 16), so as to comparre the four options in the above analysis.

In all cases we found that taking t = 400 resulted in a scheme in which we were able to recrypt clean ciphertexts;
however to enable fully homomorphic encryptions we need to recrypt dirty ciphertexts, and be able to perform some
additional operations. For the first two of our four cases we found that t = 600 was sufficient, whilst for the second
two we found that t = 800 was sufficient; note, we increased t in multiples of 100, thus smaller values could have been
sufficient.

In the four cases we found the following recrypt times. We also present, assuming we wished in all cases to imple-
ment operations on l′ = 16 values in F2n′ , where n′ = 8, the actual time needed to perform a multiplication in F28

followed by a full recrypt, and the total size of all ciphertexts needed to represent such data. In our implementation of
the field algorithms for Option 1 and Option 4 we used the Karatsuba method mentioned above, and only performed re-
cryption when implementing a multiplication using the FHE scheme; i.e. recryption was not performed upon additions.
The algorithms were implemented in C++ using the NTL library and were run on a machine with six Intel Xeon 2.4
GHz processors and 48 GB of RAM.

26

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Basic FHE Scheme Performing Ops For (n′, l′) = (8, 16)
Recrypt Mult & Recrypt Ciphertext

(N,n, l) t (p, S) Time (sec) Method Time (sec) Size
(2048, 1, 1) 600 (4, 32) 15 Option 1 7148 18.00MB
(2560, 8, 1) 600 (4, 32) 187 Option 2 2983 3.00MB
(2560, 8, 16) 800 (4, 32) 723 Option 3 735 0.25MB
(2560, 1, 16) 800 (4, 32) 89 Option 4 2406 2.00MB

The large t value is needed in the last two examples due to the increased complexity of the underlying recryption
circuit. We end by noting the following: In our toy example we see that SIMD operations and parallel recryption offer
some performance advantages. The exact benefit depends on a number of factors. Firstly the size of n′ and l′; these are
determined by an application and are often small. In turn n′ and l′ affect the choice of N , which also depends on the
desired security level. The precise values of t and µ allowed are then determined by security analysis of lattice problems.
Our toy experiments show that our ability to perform SIMD operations do not affect the size of t very much and that the
parallel recryption operation is as practical as standard recryption.

The exact choice of which Option is best however depends on an application. Just as in standard SIMD vs non-
SIMD operations on a standard processor, whether one utilizes the SIMD instructions in a program depends on the
precise program being run.

8 Possible Applications

Before discussing two possible applications we note that one issue with SIMD operations on data is that sometimes we
wish to move data between various elements in the l values on which we are operating. This is often a problem, since the
hardware/mathematics/software which supports the SIMD operations precludes such operations. However, in our FHE
scheme such operations can be performed at no additional cost.

Indeed given a SIMD word consisting of l elements in a finite field F2n one can produce a new SIMD word which
consists of any linear function of the bits creating the original SIMD word. To see this we notice that it simply requires
multiplying the matrix B used in the parallel recrypt procedure by the matrix defining the linear map. Thus, we can
perform this linear function as part of the recryption performed for the previous operation. In particular this means we can
shuffle the elements in our SIMD word, or extract specific elements, or extract specific bits, etc. Indeed extracting specific
bits in parallel was the core of our parallel recrypt procedure explained above. Note, that this ability to shift around
elements and extract elements from a SIMD word is done during the recryption procedure; in the BGV style schemes
these operations can be accomplished algebraically on the SIMD word via the use of the homomorphic application of
Galois automorphisms, see [13] for further details.

We now turn to our two examples: The first example, namely homomorphic evaluation of AES under some homo-
morphic key, is used to demonstrate how SIMD operations in high level (F28) algebraic structures, allow us to evaluate
complex operations relatively easily. Evaluation of AES circuits using FHE operations has been mentioned as a possible
usage scenario in [19]. The second example, one of database lookup, provides an example of how data can be searched
using SIMD style operations more efficiently than using the bit-wise homomorphic operations envisaged in [11].

In this section we assume that all operations are performed with post-processing by the recryption operation. Thus we
are no longer interested in the size of the circuit which implements a functionality but simply the cost of the operations
involved. As explained above we have essentially three key operations; the two algebraic operations Mult and Add,
plus the linear operations on bits mentioned above. We shall denote the cost of these three operations by CM , CA
and CL, and we note that CL essentially comes for free as part of recryption. For example, if an operation requires two
multiplications, one addition and three linear operations we shall denote this cost (for simplicity) by 2·CM+CA+3·CL.

8.1 Bit-Slicing

Any algorithm which is run on a circuit using bit operations can be run multiple times at once, by executing the algorithm
on a set of parameters which supports operations on multiple bits in parallel. Such a technique is often called bit-slicing
when applied to a single algorithm; however the technique is essentially also a bit-wise form of SIMD operation. Hence,
any application performed using an FHE algorithm which supports the parallel recrypt procedure in this paper could be
potentially sped-up by at least an order of magnitude by operating on multiple versions of the same algorithm in parallel.

27

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

8.2 Application to AES

As an example of the benefits of using SIMD enabled FHE scheme, over the traditional bitwise FHE, we examine the
case of how one would implement an AES functionality using FHE. Namely, we want a server to encrypt a message
using a key which is only available via an FHE encryption. Using AES as a relatively complex example application
of secure computation has also been recently suggested for a number of other related technologies; namely two and
multi-party MPC [8,20]. It is also particularly well suited to SIMD execution due to its overall design. Indeed in [15]
the authors extend the ideas of this section to the BGV system; and present actual running times for a fully homomorphic
evaluation of the AES circuit.

The method we propose is to encode the entire AES state matrix in a single ciphertext. Recall that the state matrix
is a 4-by-4 matrix of elements in F28 . We therefore first need to select an m so that the ideal (2) splits into at least 16
prime ideals of degree divisible by eight in the field defined by Φm(X). There are a large number of such examples,
including the example we have used in this paper of taking m = 3485. Note that since φ(m) is equal to 4×16 we could
also perform 4 AES computations in parallel as well, although we will restrict ourselves to one for ease of exposition.
In terms of our previous section we let K8 = F28 denote the standard representation of F28 , i.e.

K8 := F2[X]/(X8 +X4 +X3 +X + 1),

and we let A denote the algebra consisting of 64 copies of F240 , each with the representation induced by the given factor
of Φm(X) (mod 2).

We assume the AES state matrix is given by

0BB@
s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

1CCA ,

which we encode as an element of K16
8 as (s0,0, s0,1, . . . , s3,3). Using the map Γ8,16 we obtain an element of A, which

can then be evaluated at α modulo p to obtain a trivial encryption of the message state (before the first round).
To implement AES we assume that the round keys ki have been presented in encrypted form, using the above

embedding via Γ8,16. Computing the round keys from a given key can be done using the same operations needed
to execute the rounds. Thus if we can implement the rounds using efficient Fully Homomorphic SIMD (FH-SIMD)
operations, then we can also compute the encryptions of the round keys given the initial key.

The round structure of AES is made up of four basic operations, which we now discuss in turn.

8.2.1 AddRoundKey

This is the simplest operation and is clearly performed for all sixteen bytes in parallel by doing a single ⊕ operation of
the FHE scheme. This step can be done at the cost of CA.

8.2.2 ShiftRows

In this operation row i is shifted left by i− 1 positions. This is clearly an example of a linear operation from earlier, in
that we map the ciphertext corresponding to

(s0,0, s0,1, s0,2, s0,3, s1,0, s1,1, s1,2, s1,3, s2,0, s2,1, s2,2, s2,3, s3,0, s3,1, s3,2, s3,3)

into a ciphertext corresponding to

(s0,0, s0,1, s0,2, s0,3, s1,1, s1,2, s1,3, s1,0, s2,2, s2,3, s2,0, s2,1, s3,3, s3,0, s3,1, s3,2).

Since this is a reordering the cost is given by CL.

28

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

8.2.3 MixColumns

In this step we perform a matrix multiplication on the left of the state matrix by a fixed matrix given by

0BB@
X X + 1 1 1
1 X X + 1 1
1 1 X X + 1

X + 1 1 1 X

1CCA .

This is accomplished in four stages

1. Compute the trivial encryption c1 of Γ8,16((X,X, . . . ,X)), clearly this can be precomputed.
2. Compute c2 ← c⊗ c1.
3. By application of three linear operations we can create ciphertexts c3, c4, c5 and c6 corresponding to c2 shifted up

by one row, c shifted up by one row, c shifted up by two rows, and c shifted up by four rows (where shift rows is
performed with rotation).

4. Compute c2 ⊕ c3 ⊕ c4 ⊕ c5 ⊕ c6 and output the result.

Notice that our SIMD operations allows us to perform the 16 multiplications in parallel in the second step. The cost of
the MixColumns operation is then CM + 4 · CA + 4 · CL.

8.2.4 SubBytes

This is the most complex of all the AES operations, however there is much existing literature on straight line (i.e. no
branching) executions of the AES S-Boxes at byte level. For example the approach in [4] transforms the polynomial
bases into a “nice” normal basis and then decomposes the arithmetic for inversion into F24 and then F22 operations.
At which point all the arithmetic is just logical operations, and hence amenable to FH-SIMD operations. However, this
approach is more suited to real hardware, or to FH-SIMD operations where the basic data type is a bit (e.g. when using
say (n, l) = (1, 16) in our main scheme).

As we are restricted to operations which can be performed efficiently in our scheme a more naive approach is
probably to be preferred. Recall that the AES S-Box consists of inverting each state byte in K8 (where we define
0−1 = 0), followed by an F2-linear operation. Also recall that x−1 = x254 in the field K8. We can therefore apply the
S-Box operation to our encrypted state using the following method:

– t← c.
– For i = 1 to 6 do

– t← t⊗ t.
– t← t⊗ c.

– t← t⊗ t.
– Extract eight ciphertexts t0, . . . , t7 such that ti is the (parallel) encryption of the i-th bit of all 16 values in t.
– Perform the linear operation on t0, . . . , t7 in parallel to produce ciphertexts s0, . . . , s7.
– Map these ciphertexts back to an encryption of an element in A.

The first step, that of producing an encryption t of x254 where c is an encryption of x, requires at most 13 fully homo-
morphic multiplications. The second step of extracting the ciphertexts t0, . . . , t7 is essentially a single linear operation.
The third step of adding the elements t0, . . . , t7 together to produce s0, . . . , s7, requires 4 · 8 = 32 homomorphic addi-
tions, due to the nature of the linear operation in AES. The final step of obtaining a single ciphertext from s0, . . . , s7 is
also an application of a linear operation. Thus the total cost of SubBytes is given by 13 · CM + 32 · CA + 2 · CL.

We note that our SIMD evaluation of the AES round function not only benefits in our system from being able to
execute 16 operations in parallel. We also have the benefit of being able to deal directly with F28 arithmetic operations,
as well as decompose into bits where necessary in the linear transformation in the S-Box operation. The total cost of a
round function being given by

14 · CM + 37 · CA + 7 · CL,

although by interleaving operations a lower cost could probably be obtained.

29

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

8.3 Data Base Lookup

We end by examining a more realistic application scenario, namely one of searching an encrypted database on a remote
server. Suppose a user has previously encrypted a database and stored it on a cloud service provider, and now she wishes
to retrieve some of the data. We first note that the usual atomic database operation of search actually consists of two
operations. The first operation is one of search, whereas the second is one of retrieval. The following method performs
the search using FHE and the retrieval using Private Information Retrieval (PIR).

We assume the database is such that one can determine beforehand which fields will be searched on. In some sense
this is akin to the basic premise of public key encryption with keyword search [1], however we have a more complicated
data retrieval operation to perform. To simplify the discussion we assume that there is only one database field which is
searchable, and another field which contains the information. Each database entry (in the clear) is then given by a tuple
(i, s, d), where s is the search term, d is the data and i is some index which is going to enable retrieval. The number of
such items we denote by r. We assume that i and s are n bits in length, and thus can be encoded as an element of the
finite field Kn = F2n .

To encrypt the database the user picks a public/private key pair (pk, sk) for our scheme, as well as a symmetric key
K for a symmetric encryption scheme (EK , DK). Let us assume that the encryption scheme can support l operations in
F2n in parallel. When placing the database on the cloud service provider the user divides the database into dr/le blocks
of l items. Then to actually send the server the jth encrypted data block, for j = 0, 1, 2, . . . , dr/le − 1 we send

(ij , cj ,Ej) =
`
il·j+1, . . . , il·(j+1),

Encrypt(Γn,l(sl·j+1, . . . , sl·(j+1)), pk),

EK(dl·j+1), . . . , EK(dl·(j+1))
´
.

We now discuss how the user retrieves all data items which correspond to the search term s. We first recover an encryp-
tion of an encoding of the index terms which contain this search term. This is done by sending the server one ciphertext,
and receiving one in return. The sent “query” ciphertext is equal to

q = Encrypt(Γn,l(s, . . . , s), pk),

i.e. an encryption of l copies of the query term s.
The server then takes each data block (ij , cj ,Ej) and computes c(1)j = q ⊕pk cj . The value c(1)j is then homomor-

phically raised to the power 2n − 1, by performing 2n applications of Mult. This results in a ciphertext c(2)j which is an
encryption of a vector of zero and ones, with a one only occurring in position k when s is not equal to the kth component
of the vector underlying the ciphertext cj .

The server then computes c(3)j = (c
(2)
j ⊕pk Encrypt(Γn,l(1, 1, . . . , 1), pk))⊗pk Encrypt(Γn,l(ij), pk), and the set of

ciphertexts c(3)j are then added together using Add to obtain a final ciphertext c′, which is returned to the user. Note, that
this “search” query has a cost of (2 · n+ 1) · CM + 2 · CA per data block.

The plaintext underlying the returned ciphertext c′ consists of l components, where the kth component is given byM
s=sl·j+k

il·j+k.

If there is only one match per component then we have recovered the matching indices and hence can recover the actual
data by engaging in a PIR protocol [5,18]. The problem arises when we have the possibility of more than one match per
component per query. In this situation we need an encoding algorithm to enable us to recover the exact PIR inputs we
need to recover the data.

In the extreme case we have a possibility of every component containing dr/le matches, i.e. the search term s

matches with every item in the database. In which case we obtain, via a trivial encoding, that we must have dr/le ≤ n.
This essentially implies that the length of the database is bounded by the number of bits we can encrypt, i.e. r < l · n.

However, if we can ensure that a maximum of t matches can occur per SIMD component then we can produce a
more effective encoding as follows: Firstly we assume the encoding used for data retrieval in the PIR is such that we
recover the data item corresponding to an index/component position pair. This simplifies our discussion as we only have
to concentrate on decoding a single component.

We set m = dr/le, and to each of the m blocks we associate an n-bit index i. We want to therefore be able, given
an xor of the indices z = ij1 ⊕ . . .⊕ ijs , with s ≤ t, to recover the set {ij1 , . . . , ijs}. To construct the encoding we take
the parity matrix of an [N,K,D] linear code over F2 of length N , rank K and minimum distance D, which we assume
is greater 2 · t. This is a matrix of dimension (N − K) × N . We then take as our indices the columns of this matrix,
which implies that these indices must fit in n bits, hence N −K ≤ n. Given an xor of at most t indices we can recover

30

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

which indices were xor-ed together by decoding the [N,K,D] linear code. To see this notice that the sum of indices z
is a syndrome of a codeword in the linear code. Thus by recovering the error positions in the code from the syndrome
we know which indices, i.e. which columns of the parity check matrix, were xor-ed together. Thus the total number of
distinct indices we can cope with is bounded by the column size of the parity check matrix, i.e. N . Hence, we obtain
m = dr/le ≤ N .

As an example of a possible encoding scheme we take a primitive BCH code which exists for any pair of values
of (s, t) such that s ≥ 3 and t < 2s−1. The primitive BCH code over F2 then has parameters given by N = 2s − 1,
N−K ≤ s ·t andD ≥ 2 ·t+1. If we take our FHE scheme of the previous section using themth cyclotomic polynomial
with m = 3485, then we have l = 64, n ≤ d = 40 and φ(m) = 2560. Given the bounds

dr/le ≤ N = 2s − 1 and s · t ≤ n,

and supposing we take t = 3, so we can recover at most three collisions on search terms within each component, then by
setting n = d = 40 and (s, t) = (13, 3) we obtain a valid encoding. This implies that the total number of items within
the database is bounded by l ·N = 524224. Clearly using more optimal codes, or different cyclotomic polynomials one
can obtain larger values of the whole database, or one can deal with more collisions within a component.

The above methodology using our SIMD enabled FHE scheme to search on l components at once in an efficient
manner, results in a linear speed up in the search of the encrypted database. However, there is another advantage of our
splitting the database into l components; we can deal with (albeit having a probability of invalid indices being returned)
having more collisions between the search terms. In the above example we could deal with up to three collisions in
each component, this meant that our method would be guaranteed to be correct if there were at most three items in
the database corresponding to each search item. However, if we assume that the search items are randomly distributed
between the l components, then in practice we can deal with more collisions, since our results will be correct as long as
there are at most t collisions per component. The generalised birthday bound [24] says that we can have

(t!)1/t · l(t−1)/t

collisions before the probability of obtaining more than t collisions in one of the l components is greater than 1/2. In
our above numerical example, with t = 3 and l = 64, this equates to just over 29 matches in our database.

9 Acknowledgements

This material is based on research sponsored by the European Commission through the ICT Programme under Contract
ICT-2007-216676 ECRYPT II. The first author was also supported by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory (AFRL) under agreement number FA8750-11-2-0079, by the Royal So-
ciety via a Royal Society Wolfson Merit Award, by the ERC via Advanced Grant ERC-2010-AdG-267188-CRIPTO,
and the EPSRC via grant EP/I03126X. The second author was supported by a Postdoctoral Fellowship of the Research
Foundation - Flanders (FWO).

The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Defense
Advanced Research Projects Agency (DARPA) or the U.S. Government.

References

1. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with keyword search. Advances in Cryptology –
Eurocrypt 2004, Lecture Notes in Comput. Sci. 3027, 506–522, 2004.

2. Z. Brakerski, C. Gentry and V. Vaikuntanathan. Fully homomorphic encryption without bootstrapping. Innovations in Theoretical
Computer Science –ITCS 2012, 309–325, ACM, 2012.

3. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from Ring-LWE and security for key dependent messages. Advances
in Cryptology – Crypto 2011, Lecture Notes in Comput. Sci. 6841, 505–524, 2011.

4. D. Canright. A very compact S-Box for AES. Cryptographic Hardware and Embedded Systems – CHES 2005, Lecture Notes in Comput.
Sci. 3659, 441–455, 2005.

5. B. Chor, E. Kushilevitz, O. Goldreich and M. Sudan. Private information retrieval. J. ACM, 45, 965–981, 1998.
6. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the integers. Advances in Cryptology –

Eurocrypt 2010, Lecture Notes in Comput. Sci. 6110, 24–43, 2010.
7. J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier series. Math. Comp., 19, 297–301, 1965.
8. I. Damgård and M. Keller. Secure multiparty AES. Financial Cryptography – FC 2010, Lecture Notes in Comput. Sci. 6052, 367–374,

2010.
9. I. Damgård, V. Pastro, N.P. Smart and S. Zakarias. Multiparty computation from somewhat homomorphic encryption. To appear Advances

in Cryptology – Crypto 2012.

31

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

10. C. Gentry. Fully homomorphic encryption using ideal lattices. Symposium on Theory of Computing – STOC 2009, ACM, 169–178, 2009.
11. C. Gentry. A fully homomorphic encryption scheme. Manuscript, 2009.
12. C. Gentry and S. Halevi. Implementing Gentry’s fully-homomorphic encryption scheme. Advances in Cryptology – Eurocrypt 2011,

Lecture Notes in Comput. Sci. 6632, 129–148, 2011.
13. C. Gentry, S. Halevi and N.P. Smart. Fully homomorphic encryption with polylog overhead. Advances in Cryptology – Eurocrypt 2012,

Lecture Notes in Comput. Sci. 7237, 465–482, 2012.
14. C. Gentry, S. Halevi and N.P. Smart. Better bootstrapping in fully homomorphic encryption. Public Key Cryptography – PKC 2012,

Lecture Notes in Comput. Sci. 7293, 1–16, 2012.
15. C. Gentry, S. Halevi and N.P. Smart. Homomorphic evaluation of the AES circuit. To appear Advances in Cryptology – Crypto 2012.
16. C. Gentry, S. Halevi and N.P. Smart. Ring switching in BGV-style homomorphic encryption. IACR ePrint 2012/240, http://eprint.

iacr.org/2012/240/.
17. I.J. Good. The interaction algorithm and practical Fourier analysis. J.R. Stat. Soc., 20, 361–372, 1958.
18. E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database, computationally-private information retrieval. Foundations

of Computer Science – FoCS ’97, 364–373, 1997.
19. K. Lauter, M. Naehrig, V. Vaikuntanathan. Can homomorphic encryption be practical? Cloud Computing Security Workshop – CCSW

2011, 113–124, ACM, 2011.
20. B. Pinkas, T. Schneider, N.P. Smart, S.C. Williams. Secure two-party computation is practical. Advances in Cryptology – Asiacrypt 2009,

Lecture Notes in Comput. Sci. 5912, 250-267, 2009.
21. C.M. Rader. Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE, 56, 1107–1108, 1968.
22. P. Scholl and N.P. Smart. Improved key generation for Gentry’s fully homomorphic encryption scheme. Cryptography and Coding –

IMACC 2011, Lecture Notes in Comput. Sci. 7089, 10–22, 2011.
23. N.P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and ciphertext sizes. Public Key Cryptography –

PKC 2010, Lecture Notes in Comput. Sci. 6056, 420–443, 2010.
24. K. Suzuki, D. Tonien, K. Kurosawa and K. Toyota. Birthday paradox for multi-collisions. Information Security and Cryptology – ICISC

2006, Lecture Notes in Comput. Sci. 4296, 29–40, 2006.
25. L.H. Thomas. Using a computer to solve problems in physics. Application of Digital Computers, 1963.

32

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Improved Key Generation For Gentry’s Fully
Homomorphic Encryption Scheme

P. Scholl and N.P. Smart

Dept. Computer Science,
University of Bristol,

Woodland Road,
Bristol, BS8 1UB,
United Kingdom.

Abstract. A key problem with the original implementation of the Gen-
try Fully Homomorphic Encryption scheme was the slow key generation
process. Gentry and Halevi provided a fast technique for 2-power cyclo-
tomic fields. We present an extension of the Gentry–Halevi key genera-
tion technique for arbitrary cyclotomic fields. Our new method is roughly
twice as efficient as the previous best methods. Our estimates are backed
up with experimental data.

The major theoretical cryptographic advance in the last three years was the
discovery by Gentry in 2009 of a fully homomorphic encryption scheme [4, 5].
Gentry’s scheme was initially presented as a completely theoretical construction,
however it was soon realised that by specialising the construction one could ac-
tually obtain a system which could at least be implemented; although not yet
in such a way as to enable practical computations. The first such implementa-
tion was presented by Smart and Vercauteren [10]. The Smart and Vercauteren
implementation used arithmetic of cyclotomic number fields. In particular they
focused on the field generated by the polynomial F (X) = X2n

+ 1, but they
noted that the scheme could be applied with arbitrary (even non-cyclotomic)
number fields. A main problem with the version of Smart and Vercauteren was
that the key generation method was very slow indeed.

In [6] Gentry and Halevi presented a new implementation of the variant of
Smart and Vercauteren, but with a greatly improved key generation phase. In
particular Gentry and Halevi note that key generation (for cyclotomic fields) is
essentially an application of a Discrete Fourier Transform, followed by a small
amount of computation, and then application of the inverse Discrete Fourier
Transform. They then show that one does not even need to perform the DFT’s
if one selects the cyclotomic field to be of the form X2n

+ 1. They do this by
providing a recursive method to deduce two constants, from the secret key, which
enables the key generation algorithm to construct a valid associate public key.
The key generation method of Gentry and Halevi is fast, but appears particularly
tailored to working with two-power roots of unity.

However, the extra speed of their key generation method comes at a cost.
Restricting to two-power roots of unity means that one is precluded from the

33

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

type of SIMD operations discussed in [11]. To enable such operations one needs
to be able to deal with general cyclotomic number fields. In [11] it is pointed out
that the DFT/inverse-DFT method can be easily applied to the case of general
cyclotomic fields via the use of the FFT algorithms such as those of Good–
Thomas [7, 12], Rader [9] and others. However, the simple recursive method of
Gentry and Halevi does not seem to apply.

Other works have examined ways of improving key generation, and fully
homomorphic encryption schemes in particular. For example [8] has a method to
construct keys for essentially random number fields by pulling random elements
and analyzing eigenvalues of the corresponding matrices; this method however
does not allow the efficiency improvements of [10] and [6] with respect to reduced
ciphertext sizes etc. More recent fully homomorphic schemes based on the LWE
assumption [3] have more efficient key generation procedures than the original
Gentry scheme; and appear to be more suitable in practice. However for this
work we concentrate purely on the schemes in the “Gentry family”.

In this paper we present an analysis of the key generation algorithm, for Gen-
try based schemes, for general cyclotomic fields, generated by the the primitive
m-th roots of unity. In particular, we show that Gentry and Halevi’s recursive
method can be generalised to deal with prime power values of m, and also any
m with just a few small, repeated prime factors. We also show for general m
that the DFT/inverse-DFT method is sub-optimal, and that an algorithm exists
which requires only a single DFT application to compute the secret key. Our
general key generation method is essentially twice as fast as previous methods;
both theoretically and in practice.

The paper is organized as follows: In Section 1 we present the required math-
ematical background and notation. In Section 2 we present the required infor-
mation about the key generation method for the variant of Gentry’s scheme we
will be discussing. Then in Section 3 we describe how one could execute the
key generation procedure assuming as soon as two coefficients of one associated
polynomial g(X) and one coefficient of another associated polynomial h(X) are
computed. Algorithms to compute these three coefficients are then presented in
Section 4. Finally in Section 5 we present some experimental results.

1 Mathematical Background

Let F (X) = Φm(X) denote the m-th cyclotomic polynomial, i.e. the irreducible
polynomial whose roots are the primitive m-th roots of unity. This polynomial
has degree N = φ(m), where φ(·) is Euler’s phi-function. We let the m-th roots
of unity be denoted by ω0

m, . . . , ω
m−1
m , which are defined as powers of ωm =

exp(2π
√
−1

m), the principal m-th root of unity. The roots of F (X) are those values
ωim where gcd(i,m) = 1. We let ρ0, . . . , ρN−1 denote these primitive m-th roots
of unity (i.e. the roots of F).

If f(X) ∈ Z[X] is an arbitrary polynomial then we let fi denote the coefficient
of Xi in f(X). For a polynomial f(X) we let ‖f‖∞ = maxdeg(f)

i=0 |fi| denote the
infinity-norm (i.e. the max-norm) of its coefficient vector. Given two polynomials

34

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

f(X) and g(X) the resultant of f and g is defined to be

resultant(f, g) =
∏
α,β

(α− β)

where α ranges over the roots of f(X) and β ranges over the roots of g(X). We
also have that

resultant(f, g) =
∏
α

g(α). (1)

Given a polynomial x(X) of degree m−1, which is simply a list of coefficients
x0, x1, . . . , xm−1, the Discrete Fourier Transform (DFT) is defined by the evalu-
ation of this polynomial at all of the m-th roots of unity. So the k-th coefficient
of the DFT is then

xk =
m−1∑
i=0

xiω
i·k
m .

Näıve computation of the DFT from this definition takes O(m2) operations. Fast
Fourier Transform (FFT) algorithms reduce this to O(m logm). The inverse-
DFT is the procedure which takes m evaluations of a polynomial at the m-th
roots of unity, and then recovers the polynomial. We write x ← DFT(x) and
x← DFT−1(x).

2 Key Generation for Gentry

Key generation for Gentry’s FHE scheme depends on two parameters m and t.
The value m defines the underlying cyclotomic field as above, and we define N =
φ(m), which is the degree of the cyclotomic polynomial F (X). The parameter t
is used to define how “small” the secret key is. Note that in practice the word
“small” is a relative term and we are not really dealing with small numbers at
all. To generate keys for Gentry’s FHE scheme one can proceed as follows:

– v(X)← Z[X] with ‖v‖∞ ≤ 2t and v(X) ≡ 1 (mod 2).
– Compute w(X) ∈ Z[X] such that

d = v(X) · w(X) (mod F (X))

where d = resultant(v, f).
– If v(X) and w(X) do not have a common root modulo d then return to the

beginning and choose another v(X).
– Let α ∈ Zd denote the common root.
– Set pk← (α, d) and sk← (w(X), d).

Note, there are various minor variations on the above procedure in the literature.
In Smart and Vercauteren [10] the polynomial v(X) is rejected unless d is prime;
this is done due to the method the authors used to compute the common root α.
Gentry and Halevi [6] notice that if v(X) and f(X) have a common root modulo
f(X) then it is given by α = −wN−1/w0 (mod d). Gentry and Halevi, make an

35

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

additional modification, in that the condition on v(X) ≡ 1 (mod 2) is dropped,
and replaced by the condition that d ≡ 1 (mod 2); this means the authors only
need to compute one coefficient of w(X) for their application. However, in [11],
the authors show that selecting v(X) ≡ 1 (mod 2) enables SIMD style operations
on data, as long as m 6= 2r. They also show that whilst all coefficients of w(X)
are needed in the secret key, one can generate all of them via the relation

wi =

{
αwi+1 + Fi+1wN−1 (mod d) if 0 ≤ i < N − 1
−αw0 (mod d) if i = N − 1

(2)

The main question is then how to compute w0 and d. In [6, 11] it is pointed out
that the following DFT-based procedure can be applied:

– v← DFT(v(X)).
– d←

∏
gcd(i,m)=1 vi.

– wi ← d/vi.
– w(X)← DFT−1(w).

Gentry and Halevi [6] then go on to notice that one can actually compute w(X)
and d without any need for computing DFTs. They do this, since they solely
focus on the case m = 2r, which enables them to present the calculation of
d and w(X) as the calculation of computing two coefficients of an associated
polynomial g(X).

In this paper we generalise this method of Gentry and Halevi to arbitrary
values of m; for non-prime powers of m we will still require the application
of a single DFT algorithm, but will no longer need the inverse DFT. The key
observation is that d and w(X) are related, for general m, to the coefficients of
two associated polynomials g(X) and h(X). It is to these polynomials, and their
properties, that we now turn.

3 The Polynomials g(X) and h(X)

Before proceeding we introduce Ramanujan sums, for those readers who are not
acquainted with them. A Ramanujan sum is simply a sum of powers of primitive
roots of unity:

Cm(k) :=
m−1∑
i=0

(i,m)=1

ωki =
∑

d|(k,m)

µ
(m
d

)
d

where the second sum is over the positive divisors of gcd(k,m), and µ is the
Möbius function. For a proof of this formula see e.g. [2, p. 162]. The Ramanujan
sum can therefore be easily computed provided m can be factored efficiently;
this will always be the case in our applications since m is a small integer. It
is clear from this formula that Cm(−k) = Cm(k). We also have the following
result, which we will need:

36

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Proposition 1. Let Fi denote the i-th coefficient of the m-th cyclotomic poly-
nomial F (X). Then for k = 0, . . . , N − 1,

N−1∑
i=1

Cm(i− k) · Fi+1 = −Cm(−k − 1).

Proof. Suppose that θ is a root of F . Observing that since F is a cyclotomic
polynomial, F0 = FN = 1, and so

−1 =
N∑
i=1

Fiθ
i =

N−1∑
i=0

Fi+1θ
i+1.

This is equivalent to

−θ−k−1 =
N−1∑
i=0

Fi+1θ
i−k.

The above relation can then be applied to the individual summands in Cm(k)
(which are powers of the roots of F) to give the desired result.

We now turn to our key generation method. Given v(X) we define the fol-
lowing polynomials,

g(X) :=
N−1∏
i=0

(v(ρi)−X)

h(X) :=
N−1∏
i=0

(v(ρi)−X/ρi).

The polynomial g here is the same as that defined in [6]. However, when m is
not a power of 2 we also need to introduce h(X) in order to help us find w.

The constant-term and degree one coefficients of these polynomials, i.e. g0,
g1, h0 and h1, must then be computed. We leave discussion of how this step is
done until the next section. In this section we detail how, given these coefficients,
we can compute w(X) and d. Note that because of Equation 1, the values g0
and h0 are both equal to the resultant, d, of v and f .

We also have

g1 = −
N−1∑
i=0

∏
j 6=i

v(ρj) = −
N−1∑
i=0

∏N−1
j=0 v(ρj)
v(ρi)

= −
N−1∑
i=0

d

v(ρi)
= −

N−1∑
i=0

w(ρi) (3)

and similarly,

h1 = −
N−1∑
i=0

w(ρi)
ρi

. (4)

37

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

To determine the coefficients of w, we first look at a more general form of the
above expressions for g1 and h1, and show how this relates to w. Define for k ≥ 0
the following sequence of sums

Wk :=
N−1∑
i=0

w(ρi)
ρki

.

Our strategy from here onwards is to give a simple expression for Wk in terms
of the coefficients of w, and then show that the values of Wk can be easily
computed independently using the information we already have of g1 and h1.
Next, by looking at successive terms of Wk, a set of simultaneous equations
involving the coefficients of w will arise, and it will be shown that these can be
solved to recover all of w.

Observe that, as a result of Equations 3 and 4, we have W0 = −g1, W1 = −h1.
More generally, we see that

Wk =
N−1∑
i=0

∑N−1
j=0 wj · ρji

ρki
=
N−1∑
j=0

wj ·
N−1∑
i=0

ρj−ki =
N−1∑
j=0

Cm(j − k) · wj .

Thus the above equation gives us an expression for Wk as a simple linear com-
bination of the coefficients of w, by the Ramunujan sums Cm(j − k). Applying
Equation 2, this allows us to deduce

Proposition 2.
Wk = α ·Wk+1 (mod d).

Proof.

Wk =
N−1∑
i=0

Cm(i− k) · wi

=
N−2∑
i=0

Cm(i− k) · α · wi+1 + wN−1 ·
N−2∑
i=0

Cm(i− k) · Fi+1

+ Cm(N − k − 1) · wN−1

= α ·
N−2∑
i=0

Cm(i− k) · wi+1 + wN−1 ·
N−1∑
i=0

Cm(i− k) · Fi+1

= α ·
N−1∑
i=1

Cm(i− k − 1) · wi − wN−1 · Cm(−k − 1)

= α ·
N−1∑
i=1

Cm(i− k − 1) · wi + α · w0 · Cm(−k − 1)

= α ·Wk+1

From which comes the following immediate corollary:

38

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Corollary 1.
Wk = −g1 · α−k (mod d).

Note that Proposition 2 immediately implies that α = g1/h1 mod d, and thus
any value of Wk can be easily determined using the corollary. This allows us to
create a system of linear equations in the coefficients of w, from the values of
W0, . . . ,WN−1, as follows:

Cm(0) Cm(1) · · · Cm(N − 1)
Cm(1) Cm(0) · · · Cm(N − 2)

...
...

. . .
...

Cm(N − 2) Cm(N − 3) · · · Cm(1)
Cm(N − 1) Cm(N − 2) · · · Cm(0)

 ·

w0

w1

...
wN−1

= −g1 ·

1
α−1

α−2

...
α1−N

 (mod d)

We write the above equation as C · w = −g1 · α. The matrix C possesses the
interesting property that every diagonal is constant; as such it is a symmetric
Toeplitz matrix. There is a method to solve such a system of equations in only
O(N2) operations, as opposed to the usual O(N3) required for a general matrix
[13]. We note, that for a given value of m the matrix C is fixed and hence
computing its inverse can be considered as a precomputation. Thus with this
precomputation the cost of computing the key, given the coefficients g0, g1, and
h0, is a linear operation in N .

When it comes to computing the inverse of the matrix C, we note that it
appears experimentally to be of the form, for all m,

C−1 =
1
m
Z,

for some integral N × N matrix Z whose coefficients are bounded in absolute
value by m. However, we were unable to prove this. In any case we can assume
this is true, then efficiently compute the inverse of C by inverting C/m using
standard floating point arithmetic and then rounding the resulting coefficients
to integers. This matrix can then be divided by m, tested for correctness and
stored.

4 Determining g0, g1 and h1

In this section we examine methods to determine the coefficients g0, g1 and h1.
We first present a general method, which works for arbitrary values of m and

39

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

leads to key generation that is essentially twice as fast as existing methods. We
then describe a method for “special” values of m, namely those containing a large
number of repeated factors, such as when m is a prime power. By specialising
the results of this section, and the method in the previous section to the case
m = 2r, we obtain the key generation method of Gentry and Halevi.

4.1 General m

We note that the desired coefficients of g and h can be computed directly from
the FFT of v. Thus by applying one FFT and the techniques of the previous
section we can avoid the second inverse-FFT required of the method in Section 2.
Hence, we can obtain a method which is essentially twice as fast as that proposed
in 2.

Recall that the FFT of v gives the values v(ρ0), v(ρ1), . . . , v(ρN−1). With
these computed, g0 is obtained by simply multiplying them together (as is done
in the FFT-based key generation algorithm). Then note that

g1 = −
N−1∑
i=0

g0
v(ρi)

and

h1 = −
N−1∑
i=0

g0
ρi · v(ρi)

.

So the coefficients g1 and h1 can all be computed in O(N) operations (albeit on
numbers of O(N · t) bits in length), once the initial FFT of v is computed. This
may not seem a major improvement, after all we have only really saved one FFT
out of two; but there is a huge implied constant in the big-Oh notation due to
the fact that the coefficients of the polynomial w(X) are all of size around 2N ·t,
which is practice will result in many millions of bits of precision being needed in
the FFT algorithms.

4.2 The case m = pr

We first define the following two polynomials

a(X) =
p−1∏
j=0

v(αj ·X)

b(X) =
p−1∑
j=0

∏
j 6=i

v(αj ·X).

where α0, . . . , αp−1 denote the p-th roots of unity. By elementary Galois theory
we find that the coefficients of a must be rational integers. We observe that
a(αi ·X) = a(X), so it must follow that the i-th coefficient of a will be zero if i

40

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

is not a multiple of p. By a similar argument we also deduce that b(X) ∈ Z[X]
and that bi = 0 if i is not a multiple of p.

Our algorithm will depend on starting with the polynomials a(X) and b(X).
These can be easily computed due to the following observations. Firstly, by [1,
Proposition 4.3.4], we have

a(Xp) = p1−p · resultantY (v(Y), p ·X − p · Y p).

where resultantY (f, g) denotes the resultant polynomial in Y of the bivariate
polynomials f and g. Note that when computing this resultant, every occur-
rence of Y p in the polynomial v(Y) can be replaced with X to vastly speed up
computation time.

Now notice also that

b(X) =
p−1∑
i=0

a(X)
v(αi ·X)

=
p−1∑
i=0

a(αi ·X)
v(αi ·X)

=
p−1∑
i=0

(a/v) · (αiX).

Then by writing (a/v)(X) =
∑N−1
j=0 Bj ·Xj and changing the order of summa-

tions, we obtain:

b(X) =
N−1∑
j=0

Bj ·Xj ·

(
p−1∑
i=0

αji

)
= p

N/p−1∑
j=0

Bp·j .

So the polynomial b(x) can be computed from the coefficients of the quotient
polynomial a/v; note that this is an exact polynomial division over Z[X].

Now recall the definition of g, in terms of v evaluated at the primitive roots
of unity:

g(X) :=
N−1∏
i=0

(v(ρi)−X).

Since m = pr, it can be shown that the primitive m-th roots of unity are heavily
related to the p-th roots of unity, α0, . . . , αp−1. For any k ∈ {0, . . . , p− 1},

ρi+k·N/p = αk · ρi.

Using this fact, the length-(N −1) product defining g above can be re-expressed
as a length-(N/p − 1) product of p-products, involving the p-th roots of unity.
Applying this to g and then evaluating modulo X2 (to obtain the lowest two

41

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

coefficients) gives

g(X) =
N/p−1∏
i=0

p−1∏
j=0

(v(αj · ρi)−X)

=
N/p−1∏
i=0

(
p−1∏
j=0

v(αj · ρi)︸ ︷︷ ︸
a(ρi)

−X ·
p−1∑
j=0

∏
j 6=i

v(αj · ρi)︸ ︷︷ ︸
b(ρi)

)
(mod X2)

=
N/p−1∏
i=0

(
a(ρi)−X · b(ρi)

)
(mod X2).

Since a(X) and b(X) are integer polynomials whose i-th coefficient is zero if p
does not divide i, and that F (X) (the pr-th cyclotomic polynomial) has non-zero
coefficients only for coefficients of X to the power of some multiple of pr−1, we
have that a′(X) := a(X) (mod F (X)) and b′(X) := b(X) (mod F (X)) will also
be polynomials whose i-th coefficient is zero if p does not divide i.

So, if we define the polynomials V,U , such that V (Xp) = a(X) (mod F (X))
and U(Xp) = b(X) (mod f(X)), then we have reduced the original product of
length N over v of degree N − 1 down to a product of length N/p over the
polynomials V and U , which have degree N/p− 1. This process can be applied
recursively, until we end up with a final product of size N/pr−1 = p−1. This last
product can then be computed in the näıve manner to obtain g(X) (mod X2).
A similar reduction can also be applied to h.

The algorithm in Figure 1 shows how this reduction can be applied to com-
pute g0 and g1. A simple modification to the algorithm will also allow h1 to
be computed at the same time. The proof of correctness for this is an obvious
generalisation of the proof for the Gentry and Halevi reduction [6] and so is
omitted.

4.3 m contains repeated factors

The algorithm described above can be used to speed up computation of g and
h whenever m contains a repeated prime factor. If m = pr11 · · · prs

s , then for
every ri > 1, ri − 1 steps of the algorithm in Figure 1 can be carried out. So
after each of these reductions the final product to be computed will be of size
(p1 − 1) · · · (ps − 1). Clearly this speed improvement is most pronounced when
m = pr for some small p, but it is nevertheless useful to note that gains can be
made for any m with repeated prime factors.

5 Experiment Results

We now present some computational results for the relative performance of
our new key generation method compared to the previous version. The orig-
inal method was implemented in C++ using the MPFR library for arbitrary

42

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Compute-g-Coefficients(v, p, r)

1 m← pr

2 F (X)← Φm(X)
3 U(X)← 1
4 V (X)← v(x)
5 while m > p
6 v(X)← V (X) (mod F (X))
7 V (X)← resultantY (v(Y), p ·X − p · Y p)/pp−1

8 q(X)← U(X) · V (Xp)/v(X)
9 for i← 0 to deg(q)/p

10 Ui ← qp·i
11 U(X)← U(X) (mod F (X))

12 U(X)← U(X1/p)
13 m← m/p
14 F (X)← Φm(X)
15 // After the reduction, p− 1 terms are left in the product.

16 ρ← e2·π·
√
−1/p.

17 g0 ←
p−1Y
i=1

V (ρi), g1 ←
p−1X
i=1

U(ρi)
Y
j 6=i

V (ρi)

18 return g0, g1

Fig. 1. Algorithm to compute g0 and g1 when m = pr.

precision floating point arithmetic, compiled using GCC 4.3.5. Our new method
was coded with the computer algebra system Sage. Both algorithms were run
on a high-powered server featuring an Intel Xeon E5620 processor running at
2.4GHz, with a 12MB cache and 48GB of memory.

We first describe the performance at four different values of m, each with
different factorization properties. Namely, m = 4391, 5555, 6561 and 10125,
which result in values of n = φ(m) in the range [4000, 5400]. The results (in
minutes) for a value of t = 400 are given in Table 1.

m 4391 5555 (= 5 · 11 · 101) 6561 (= 38) 10125 (= 34 · 53)

φ(m) 4390 4000 4374 5400

Original Method 274 137 204 451
New Method 164 67 30 123
% Improvement 40% 51% 85% 72%

Table 1. Comparison of key generation methods for t = 400 and various values of m.
Times are in minutes.

43

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

In Figure 2, we show how the performance of each algorithm as affected by
t, for a fixed choice of m. We test each m with several different choices of the
parameter t, the bit size of the generated coefficients. The bit length of a key will
be approximately t ·φ(m), so increasing t increases the size of the numbers being
computed on, and also requires a greater precision for any necessary floating
point operations.

It is clear that our new method is significantly faster than the FFT method
for all choices of m. In particular, when m contains many small repeated factors
(here, for m = 6561 and 10125) the improvement gained is almost an order of
magnitude. When the hybrid approach is taken, we see that the cost of recovering
the key by inverting the matrix is far lower than that of using the second (inverse)
FFT in the standard FFT method, and results in a speed increase of around 40-
50%, as expected.

100 200 400 600 800
0

200

400

t

T
im

e
ta

k
en

(m
in

)

FFT based, m = 4391 FFT based, m = 5555

FFT based, m = 6561 FFT based, m = 10125

New Method, m = 4391 New Method, m = 5555

New Method, m = 6561 New Method, m = 10125

Fig. 2. Comparison of methods for various different values of m, as the parameter t
increases.

6 Acknowledgements

The second author was supported by the European Commission through the
ICT Programme under Contract ICT-2007-216676 ECRYPT II and via an ERC
Advanced Grant ERC-2010-AdG-267188-CRIPTO, by EPSRC via grant COED–
EP/I03126X, the Defense Advanced Research Projects Agency (DARPA) and

44

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

the Air Force Research Laboratory (AFRL) under agreement number FA8750-
11-2-0079, and by a Royal Society Wolfson Merit Award. The US Government
is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation thereon. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of
DARPA, AFRL, the U.S. Government, the European Commission or EPSRC.

References

1. H. Cohen. A Course in Computational Algebraic Number Theory. Springer GTM
138, 1993.

2. T.M. Apostol Introduction to Analytic Number Theory. Springer-Verlag, New
York, 1976.

3. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-
LWE and security for key dependent messages. Advances in Cryptology – Crypto
2011, Springer LNCS 6841, 505–524, 2011.

4. C. Gentry. Fully homomorphic encryption using ideal lattices. Symposium on
Theory of Computing – STOC 2009, ACM, 169–178, 2009.

5. C. Gentry. A fully homomorphic encryption scheme. PhD, Stanford University,
2009.

6. C. Gentry and S. Halevi. Implementing Gentry’s fully-homomorphic encryption
scheme. Advances in Cryptology – Eurocrypt 2011, Springer LNCS 6632, 129–148,
2011.

7. I.J. Good. The interaction algorithm and practical Fourier analysis. J.R. Stat.
Soc., 20, 361–372, 1958.

8. N. Ogura, G. Yamamoto, T. Kobayashi and S. Uchiyama. An improvement of key
generation algorithm for Gentry’s homomorphic encryption scheme. Advances in
Information and Computer Security – IWSEC 2010, Springer LNCS 6434, 70–83,
2010.

9. C.M. Rader. Discrete Fourier transforms when the number of data samples is
prime. Proc. IEEE, 56, 1107–1108, 1968.

10. N.P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. Public Key Cryptography – PKC 2010, Springer
LNCS 6056, 420–443, 2010

11. N.P. Smart and F. Vercauteren. Fully Homomorphic SIMD Operations. IACR
e-print 2011/133.

12. L.H. Thomas. Using a computer to solve problems in physics. Application of
Digital Computers, 1963.

13. W.F. Trench. An algorithm for the inversion of finite Toeplitz matrices. J. SIAM,
12, 515-522, 1964.

45

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

On CCA-Secure Somewhat Homomorphic Encryption

Jake Loftus1, Alexander May2, Nigel P. Smart1, and Frederik Vercauteren3

1 Dept. Computer Science,
University of Bristol,

Merchant Venturers Building, Woodland Road,
Bristol, BS8 1UB, United Kingdom.
{loftus,nigel}@cs.bris.ac.uk
2 Horst Görtz Institute for IT-Security,

Faculty of Mathematics,
Ruhr-University Bochum, Germany

alex.may@rub.de
3 COSIC - Electrical Engineering,

Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10,

B-3001 Heverlee, Belgium.
fvercaut@esat.kuleuven.ac.be

Abstract. It is well known that any encryption scheme which supports any form
of homomorphic operation cannot be secure against adaptive chosen ciphertext
attacks. The question then arises as to what is the most stringent security defini-
tion which is achievable by homomorphic encryption schemes. Prior work has
shown that various schemes which support a single homomorphic encryption
scheme can be shown to be IND-CCA1, i.e. secure against lunchtime attacks.
In this paper we extend this analysis to the recent fully homomorphic encryp-
tion scheme proposed by Gentry, as refined by Gentry, Halevi, Smart and Ver-
cauteren. We show that the basic Gentry scheme is not IND-CCA1; indeed a
trivial lunchtime attack allows one to recover the secret key. We then show that
a minor modification to the variant of the somewhat homomorphic encryption
scheme of Smart and Vercauteren will allow one to achieve IND-CCA1, indeed
PA-1, in the standard model assuming a lattice based knowledge assumption. We
also examine the security of the scheme against another security notion, namely
security in the presence of ciphertext validity checking oracles; and show why
CCA-like notions are important in applications in which multiple parties submit
encrypted data to the “cloud” for secure processing.

1 Introduction

That some encryption schemes allow homomorphic operations, or exhibit so called pri-
vacy homomorphisms in the language of Rivest et. al [24], has often been considered
a weakness. This is because any scheme which supports homomorphic operations is
malleable, and hence is unable to achieve the de-facto security definition for encryption
namely IND-CCA2. However, homomorphic encryption schemes do present a number
of functional benefits. For example schemes which support a single additive homo-
morphic operation have been used to construct secure electronic voting schemes, e.g.
[9,12].

46

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The usefulness of schemes supporting a single homomorphic operation has led some
authors to consider what security definition existing homomorphic encryption schemes
meet. A natural notion to try to achieve is that of IND-CCA1, i.e. security in the pres-
ence of a lunch-time attack. Lipmaa [20] shows that the ElGamal encryption scheme is
IND-CCA1 secure with respect to a hard problem which is essentially the same as the
IND-CCA1 security of the ElGamal scheme; a path of work recently extended in [2] to
other schemes.

A different line of work has been to examine security in the context of Plaintext
Awareness, introduced by Bellare and Rogaway [5] in the random oracle model and
later refined into a hierarchy of security notions (PA-0, -1 and -2) by Bellare and Palacio
[4]. Intuitively a scheme is said to be PA if the only way an adversary can create a valid
ciphertext is by applying encryption to a public key and a valid message. Bellare and
Palacio prove that a scheme which possesses both PA-1 (resp. PA-2) and is IND-CPA,
is in fact secure against IND-CCA1 (resp. IND-CCA2) attacks.

The advantage of Bellare and Palacio’s work is that one works in the standard model
to prove security of a scheme; the disadvantage appears to be that one needs to make
a strong assumption to prove a scheme is PA-1 or PA-2. The assumption required is a
so-called knowledge assumption. That such a strong assumption is needed should not
be surprising as the PA security notions are themselves very strong. In the context of
encryption schemes supporting a single homomorphic operation Bellare and Pallacio
show that the Cramer-Shoup Lite scheme [10] and an ElGamal variant introduced by
Damgård [11] are both PA-1, and hence IND-CCA1, assuming the standard DDH (to
obtain IND-CPA security) and a Diffie–Hellman knowledge assumption (to obtain PA-
1 security). Informally, the Diffie–Hellman knowledge assumption is the assumption
that an algorithm can only output a Diffie–Hellman tuple if the algorithm “knows” the
discrete logarithm of one-tuple member with respect to another.

Rivest et. al originally proposed homomorphic encryption schemes so as to enable
arbitrary computation on encrypted data. To perform such operations one would require
an encryption scheme which supports two homomorphic operations, which are “com-
plete” in the sense of allowing arbitrary computations. Such schemes are called fully
homomorphic encryption (FHE) schemes, and it was not until Gentry’s breakthrough
construction in 2009 [15,16] that such schemes could be constructed. Since Gentry’s
construction appeared a number of variants have been proposed, such as [14], as well
as various simplifications [27] and improvements thereof [17]. All such schemes have
been proved to be IND-CPA, i.e. secure under chosen plaintext attack.

At a high level all these constructions work in three stages: an initial somewhat ho-
momorphic encryption (SHE) scheme which supports homomorphic evaluation of low
degree polynomials, a process of squashing the decryption circuit and finally a boot-
strapping procedure which will give fully homomorphic encryption and the evaluation
of arbitrary functions on ciphertexts. In this paper we focus solely on the basic some-
what homomorphic scheme, but our attacks and analysis apply also to the extension
using the bootstrapping process. Our construction of an IND-CCA1 scheme however
only applies to the SHE constructions as all existing FHE constructions require public
keys which already contain ciphertexts; thus with existing FHE constructions the notion

47

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

of IND-CCA1 security is redundant; although in Section 7 we present a notion of CCA
embeddability which can be extended to FHE.

In this paper we consider the Smart–Vercauteren variant [27] of Gentry’s scheme.
In this variant there are two possible message spaces; one can either use the scheme
to encrypt bits, and hence perform homomorphic operations in F2; or one can encrypt
polynomials of degree N over F2. When one encrypts bits one achieves a scheme that
is a specialisation of the original Gentry scheme, and it is this variant that has recently
been realised by Gentry and Halevi [17]. We call this the Gentry–Halevi variant, to
avoid confusion with other variants of Gentry’s scheme, and we show that this scheme
is not IND-CCA1 secure.

In particular in Section 4 we present a trivial complete break of the Gentry–Halevi
variant scheme, in which the secret key can be recovered via a polynomial number of
queries to a decryption oracle. The attack we propose works in a similar fashion to
the attack of Bleichenbacher on RSA [8], in that on each successive oracle call we
reduce the possible interval containing the secret key, based on the output of the oracle.
Eventually the interval contains a single element, namely the secret key. Interesting all
the Bleichenbacher style attacks on RSA, [8,21,26], recover a target message, and are
hence strictly CCA2 attacks, whereas our attack takes no target ciphertext and recovers
the key itself.

In Section 5 we go on to show that a modification of the Smart–Vercauteren SHE
variant which encrypts polynomials can be shown to be PA-1, and hence is IND-CCA1.
Informally we use the full Smart–Vercauteren variant to recover the random polyno-
mial used to encrypt the plaintext polynomial in the decryption phase, and then we
re-encrypt the result to check against the ciphertext. This forms a ciphertext validity
check which then allows us to show PA-1 security based on a new lattice knowledge
assumption. Our lattice knowledge assumption is a natural lattice based variant of the
Diffie–Hellman knowledge assumption mentioned previously. In particular we assume
that if an algorithm is able to output a non-lattice vector which is sufficiently close to
a lattice vector then it must “know” the corresponding close lattice vector. We hope
that this problem may be of independent interest in analysing other lattice based cryp-
tographic schemes; indeed the notion is closely linked to a key “quantum” step in the
results of Regev [23].

In Section 6 we examine possible extensions of the security notion for homomor-
phic encryption. We have remarked that a homomorphic encryption scheme (either
one which supports single homomorphic operations, or a SHE/FHE scheme) cannot
be IND-CCA2, but we have examples of singlely homomorphic and SHE IND-CCA1
schemes. The question then arises as to whether IND-CCA1 is the “correct” security
definition, i.e. whether this is the strongest definition one can obtain for SHE schemes.
In other contexts authors have considered attacks involving partial information oracles.
In [13] Dent introduces the notion of a CPA+ attack, where the adversary is given access
to an oracle which on input of a ciphertext outputs a single bit indicating whether the
ciphertext is valid or not. Such a notion was originally introduced by Joye, Quisquater
and Yung [19] in the context of attacking a variant of the EPOC-2 cipher which had
been “proved” IND-CCA2. This notion was recently re-introduced under the name of
a CVA (ciphertext verification) attack by Hu et al [18], in the context of symmetric en-

48

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

cryption schemes. We use the term CVA rather than CPA+ as it conveys more easily the
meaning of the security notion.

Such ciphertext validity oracles are actually the key component behind the tradi-
tional application of Bleichenbacher style attacks against RSA, in that one uses the
oracle to recover information about the target plaintext. We show that our SHE scheme
which is IND-CCA1 is not IND-CVA, by presenting an IND-CVA attack. In particu-
lar this shows that CVA security is not implied by PA-1 security. Given PA-1 is such a
strong notion this is itself interesting since it shows that CVA attacks are relatively pow-
erful. The attack is not of the Bleichenbacher type, but is now more akin to the security
reduction between search and decision LWE [25]. This attack opens up the possibil-
ity of a new SHE scheme which is also IND-CVA, a topic which we leave as an open
problem; or indeed the construction of standard additive or multiplicative homomorphic
schemes which are IND-CVA.

Finally, in Section 7 we consider an application area of cloud computing in which
multiple players submit encrypted data to a cloud computer; which in turn will per-
form computations on the encrypted data. We show that such a scenario does indeed
seem to require a form of IND-CCA2 protection of ciphertexts, yet still maintaining ho-
momorphic properties. To deal with this we introduce the notion of CCA-embeddable
homomorphic encryption.

2 Notation and Standard Definitions

For integers z, d reduction of z modulo d in the interval [−d/2, d/2) will be denoted by
[z]d. For a rational number q, bqe will denote the rounding of q to the nearest integer,
and [q] denotes the (signed) distance between q and the nearest integer, i.e. bqe = q−[q].
The notation a ← b means assign the object b to a, whereas a ← B for a set B means
assign a uniformly at random from the set B. If B is an algorithm this means assign a
with the output of B where the probability distribution is over the random coins of B.

For a polynomial F (X) ∈ Q[X] we let ‖F (X)‖∞ denote the∞-norm of the co-
efficient vector, i.e. the maximum coefficient in absolute value. If F (X) ∈ Q[X] then
we let bF (X)e denote the polynomial in Z[X] obtained by rounding the coefficients of
F (X) to the nearest integer.

FULLY HOMOMORPHIC ENCRYPTION: A fully homomorphic encryption scheme is a
tuple of three algorithms E = (KeyGen,Encrypt,Decrypt) in which the message space
is a ring (R,+, ·) and the ciphertext space is also a ring (R,⊕,⊗) such that for all
messages m1,m2 ∈ R, and all outputs (pk, sk)← KeyGen(1λ), we have

m1 +m2 = Decrypt(Encrypt(m1, pk)⊕ Encrypt(m2, pk), sk)
m1 ·m2 = Decrypt(Encrypt(m1, pk)⊗ Encrypt(m2, pk), sk).

A scheme is said to be somewhat homomorphic if it can deal with only a limited number
of addition and multiplications before decryption fails.

SECURITY NOTIONS FOR PUBLIC KEY ENCRYPTION: Semantic security of a public
key encryption scheme, whether standard, homomorphic, or fully homomorphic, is cap-

49

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

tured by the following game between a challenger and an adversary A, running in two
stages;

– (pk, sk)← KeyGen(1λ).
– (m0,m1,St)← A(·)

1 (pk). /* Stage 1 */
– b← {0, 1}.
– c∗ ← Encrypt(mb, pk; r).
– b′ ← A(·)

2 (c∗,St). /* Stage 2 */

The adversary is said to win the game if b = b′, with the advantage of the adversary
winning the game being defined by

AdvIND−atkA,E,λ = |Pr(b = b′)− 1/2| .

A scheme is said to be IND-atk secure if no polynomial time adversary A can win
the above game with non-negligible advantage in the security parameter λ. The precise
security notion one obtains depends on the oracle access one gives the adversary in its
different stages.

– If A has access to no oracles in either stage then atk=CPA.
– If A has access to a decryption oracle in stage one then atk=CCA1.
– If A has access to a decryption oracle in both stages then atk=CCA2, often now

denoted simply CCA.
– IfA has access to a ciphertext validity oracle in both stages, which on input of a ci-

phertext determines whether it would output⊥ or not on decryption, then atk=CVA.

LATTICES: A (full-rank) lattice is simply a discrete subgroup of Rn generated by n
linear independent vectors, B = {b1, . . . ,bn}, called a basis. Every lattice has an
infinite number of bases, with each set of basis vectors being related by a unimodular
transformation matrix. If B is such a set of vectors, we write

L = L(B) = {v ·B|v ∈ Zn}

to be the resulting lattice. An integer lattice is a lattice in which all the bases vectors
have integer coordinates.

For any basis there is an associated fundamental parallelepiped which can be taken
as P(B) = {

∑n
i=1 xi · bi|xi ∈ [−1/2, 1/2)}. The volume of this fundamental par-

allelepiped is given by the absolute value of the determinant of the basis matrix ∆ =
|det(B)|. We denote by λ∞(L) the∞-norm of a shortest vector (for the∞-norm) in
L.

3 The Smart-Vercauteren Variant of Gentry’s Scheme

We will be examining variants of Gentry’s SHE scheme [15], in particular three variants
based on the simplification of Smart and Vercauteren [27], as optimized by Gentry and
Halevi [17]. All variants make use of the same key generation procedure, parametrized

50

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

by a tuple of integers (N, t, µ); we assume there is a function mapping security param-
eters λ into tuples (N, t, µ). In practice N will be a power of two, t will be greater than
2
√
N and µ will be a small integer, perhaps one.

KeyGen(1λ)
– Pick an irreducible polynomial F ∈ Z[X] of degree N .
– Pick a polynomial G(X) ∈ Z[X] of degree at most N − 1, with coefficients

bounded by t.
– d← resultant(F,G).
– G is chosen such thatG(X) has a single unique root in common withF (X) modulo
d. Let α denote this root.

– Z(X)← d/G(X) (mod F (X)).
– pk← (α, d, µ, F (X)), sk← (Z(X), G(X), d, F (X)).

In [17] Gentry and Halevi show how to compute, for the polynomial F (X) = X2n

+1,
the root α and the polynomial Z(X) using a method based on the Fast Fourier Trans-
form. In particular they show how this can be done for non-prime values of d (removing
one of the main restrictions in the key generation method proposed in [27]).

By construction, the principal ideal g generated by G(X) in the number field K =
Z[X]/(F (X)) is equal to the ideal with OK basis (d,X − α). In particular, the ideal
g precisely consists of all elements in Z[X]/(F (X)) that are zero when evaluated at
α modulo d. The Hermite-Normal-Form of a basis matrix of the lattice defined by the
coefficient vectors of g is given by

B =

d 0
−α 1
−α2 1

...
. . .

−αN−1 0 1

 , (1)

where the elements in the first column are reduced modulo d.
To aid what follows we write Z(X) = z0 + z1 ·X + . . .+ zN−1 ·XN−1 and define

δ∞ = sup
{
‖g(X) · h(X) (mod F (X))‖∞

‖g(X)‖∞ · ‖h(X)‖∞
: g, h ∈ Z[X],deg(g),deg(h) < N

}
.

For the choice f = XN + 1, we have δ∞ = N . The key result to understand how
the simplification of Smart and Vercauteren to Gentry’s scheme works is the following
lemma adapted from [27].

Lemma 1. Let Z(X), G(X), α and d be as defined in the above key generation proce-
dure. IfC(X) ∈ Z[X]/(F (X)) is a polynomial with ‖C(X)‖∞ < U and set c = C(α)
(mod d), then

C(X) = c−
⌊
c · Z(X)

d

⌉
·G(X) (mod F (X))

for

U =
d

2 · δ∞ · ‖Z(X)‖∞
.

51

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Proof. By definition of c, we have that c − C(X) is contained in the principal ideal
generated byG(X) and thus there exists a q(X) ∈ Z[X]/(F (X)) such that c−C(X) =
q(X)G(X). Using Z(X) = d/G(X) (mod F (X)), we can write

q(X) =
cZ(X)
d

− C(X)Z(X)
d

.

Since q(X) has integer coefficients, we can recover it by rounding the coefficients of
the first term if the coefficients of the second term are strictly bounded by 1/2. This
shows that C(X) can be recovered from c for ‖C(X)‖∞ < d/(2 · δ∞ · ‖Z(X)‖∞).

Note that the above lemma essentially states that if ‖C(X)‖∞ < U , then C(X) is
determined uniquely by its evaluation in αmodulo d. Recall that any polynomialH(X)
of degree less than N , whose coefficient vector is in the lattice defined in equation (1),
satisfies H(α) = 0 (mod d). Therefore, if H(X) 6= 0, the lemma implies, for such an
H , that ‖H(X)‖∞ ≥ U , and thus we conclude that U ≤ λ∞(L). Since the coefficient
vector of G(X) is clearly in the lattice L, we conclude that

U ≤ λ∞(L) ≤ ‖G(X)‖∞ .

Although Lemma 1 provides the maximum value of U for which ciphertexts are de-
cryptable, we will only allow a quarter of this maximum value, i.e. T = U/4. As such
we are guaranteed that T ≤ λ∞(L)/4. We note that T defines the size of the circuit
that the somewhat homomorphic encryption scheme can deal with. Our choice of T will
become clear in Section 5.

Using the above key generation method we can define three variants of the Smart–
Vercauteren variant of Gentry’s scheme. The first variant is the one used in the Gen-
try/Halevi implementation of [17], the second is the general variant proposed by Smart
and Vercauteren, whereas the third divides the decryption procedure into two steps and
provides a ciphertext validity check. In later sections we shall show that the first variant
is not IND-CCA1 secure, and by extension neither is the second variant. However, we
will show that the third variant is indeed IND-CCA1. We will then show that the third
variant is not IND-CVA secure.

Each of the following variants is only a somewhat homomorphic scheme, extending
it to a fully homomorphic scheme can be performed using methods of [15,16,17].

GENTRY–HALEVI VARIANT: The plaintext space is the field F2. The above KeyGen
algorithm is modified to only output keys for which d ≡ 1 (mod 2). This implies that
at least one coefficient of Z(X), say zi0 will be odd. We replace Z(X) in the private
key with zi0 , and can drop the values G(X) and F (X) entirely from the private key.
Encryption and decryption can now be defined via the functions:

Encrypt(m, pk; r)
– R(X)← Z[X] s.t. ‖R(X)‖∞ ≤ µ.
– C(X)← m+ 2 ·R(X).
– c← [C(α)]d.
– Return c.

Decrypt(c, sk)
– m← [c · zi0]d (mod 2)
– Return m.

52

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

FULL-SPACE SMART–VERCAUTEREN: In this variant the plaintext space is the algebra
F2[X]/(F (X)), where messages are given by binary polynomials of degree less than
N . As such we call this the Full-Space Smart–Vercauteren system as the plaintext space
is the full set of binary polynomials, with multiplication and addition defined modulo
F (X). We modify the above key generation algorithm so that it only outputs keys for
which the polynomial G(X) satisifies G(X) ≡ 1 (mod 2). This results in algorithms
defined by:

Encrypt(M(X), pk; r)
– R(X)← Z[X] s.t. ‖R(X)‖∞ ≤ µ.
– C(X)←M(X) + 2 ·R(X).
– c← [C(α)]d.
– Return c.

Decrypt(c, sk)
– C(X)← c− bc ·Z(X)/de.
– M(X)← C(X) (mod 2).
– Return M(X).

That decryption works, assuming the input ciphertext corresponds to the evaluation of
a polynomial with coefficients bounded by T , follows from Lemma 1 and the fact that
G(X) ≡ 1 (mod 2).

CCSHE: This is our ciphertext-checking SHE scheme (or ccSHE scheme for short).
This is exactly like the above Full-Space Smart–Vercauteren variant in terms of key
generation, but we now check the ciphertext before we output the message. Thus en-
cryption/decryption become;

Encrypt(M(X), pk; r)
– R(X)← Z[X] s.t. ‖R(X)‖∞ ≤ µ.
– C(X)←M(X) + 2 ·R(X).
– c← [C(α)]d.
– Return c.

Decrypt(c, sk)
– C(X)← c− bc · Z(X)/de ·G(X).
– C(X)← C(X) (mod F (X))
– c′ ← [C(α)]d.
– If c′ 6= c or ‖C(X)‖∞ > T return⊥.
– M(X)← C(X) (mod 2).
– Return M(X).

4 CCA1 attack on the Gentry–Halevi Variant

We construct an IND-CCA1 attacker against the above Gentry–Halevi variant. Let z be
the secret key, i.e. the specific odd coefficient of Z(X) chosen by the decryptor. Note
that we can assume z ∈ [0, d), since decryption in the Gentry–Halevi variant works for
any secret key z + k · d with k ∈ Z. We assume the attacker has access to a decryption
oracle to which it can make polynomially many queries, OD(c). On each query the
oracle returns the value of [c · z]d (mod 2).

In Algorithm 1 we present pseudo-code to describe how the attack proceeds. We
start with an interval [L, . . . , U] which is known to contain the secret key z and in each
iteration we split the interval into two halves determined by a specific ciphertext c.
The choice of which sub-interval to take next depends on whether k multiples of d are
sufficient to reduce c · z into the range [−d/2, . . . , d/2) or whether k + 1 multiples are
required.

ANALYSIS: The core idea of the algorithm is simple: in each step we choose a “cipher-
text” c such that the length of the interval for the quantity c · z is bounded by d. Since in

53

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Algorithm 1: CCA1 attack on the Gentry–Halevi Variant
L← 0, U ← d− 1
while U − L > 1 do

c← bd/(U − L)c
b← OD(c)
q ← (c+ b) mod 2
k ← bLc/d+ 1/2c
B ← (k + 1/2)d/c
if (k mod 2 = q) then

U ← bBc
else

L← dBe
return L

each step, z ∈ [L,U], we need to take c = bd/(U − L)c. As such it is easy to see that
c(U − L) ≤ d.

To reduce cL, we need to subtract kd such that −d/2 ≤ cL − kd < d/2, which
shows that k = bLc/d + 1/2c. Furthermore, since the length of the interval for c · z
is bounded by d, there will be exactly one number of the form d/2 + id in [cL, cU],
namely d/2 + kd. This means that there is exactly one boundary B = (k + 1/2)d/c in
the interval for z.

Define q as the unique integer such that −d/2 ≤ cz − qd < d/2, then since the
length of the interval for c · z is bounded by d, we either have q = k or q = k + 1.
To distinguish between the two cases, we simply look at the output of the decryption
oracle: recall that the oracle outputs [c · z]d (mod 2), i.e. the bit output by the oracle is

b = c · z − q · d (mod 2) = (c+ q) (mod 2) .

Therefore, q = (b + c) (mod 2) which allows us to choose between the cases k and
k+1. If q = k (mod 2), then z lies in the first part [L, bBc], whereas in the other case,
z lies in the second part [dBe, U].

Having proved correctness we now estimate the running time. The behaviour of the
algorithm is easily seen to be as follows: in each step, we obtain a boundary B in the
interval [L,U] and the next interval becomes either [L, bBc] or [dBe, U]. Since B can
be considered random in [L,U] as well as the choice of the interval, this shows that in
each step, the size of the interval decreases by a factor 2 on average. In conclusion we
deduce that recovering the secret key will require O(log d) calls to the oracle.

The above attack is highly efficient in practice and recovers keys in a matter of
seconds for all parameter sizes in [17].

5 ccSHE is PA-1

In this section we prove that the ccSHE encryption scheme given earlier is PA-1, as-
suming a lattice knowledge assumption holds. We first recap on the definition of PA-1
in the standard model, and then we introduce our lattice knowledge assumption. Once
this is done we present the proof.

54

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

PLAINTEXT AWARENESS – PA-1: The original intuition for the introduction of plain-
text awareness was as follows - if an adversary knows the plaintext corresponding to
every ciphertext it produces, then the adversary has no need for a decryption oracle and
hence, PA+IND-CPA must imply IND-CCA. Unfortunately, there are subtleties in the
definition for plaintext awareness, leading to three definitions, PA-0, PA-1 and PA-2.
However, after suitably formalizing the definitions, PA-x plus IND-CPA implies IND-
CCAx, for x = 1 and 2. In our context we are only interested in IND-CCA1 security, so
we will only discuss the notion of PA-1 in this paper.

Before formalizing PA-1 it is worth outlining some of the terminology. We have a
polynomial time adversaryA called a ciphertext creator, that takes as input a public key
and can query ciphertexts to an oracle. An algorithmA∗ is called a successful extractor
forA if it can provide responses toAwhich are computationally indistinguishable from
those provided by a decryption oracle. In particular a scheme is said to be PA-1 if there
exists a successful extractor for any ciphertext creator that makes a polynomial number
of queries. The extractor gets the same public key as A and also has access to the
random coins used by algorithm A. Following [4] we define PA-1 formally as follows:

Definition 1 (PA1). Let E be a public key encryption scheme and A be an algorithm
with access to an oracleO taking input pk and returning a string. LetD be an algorithm
that takes as input a string and returns a single bit and let A∗ be an algorithm which
takes as input a string and some state information and returns either a string or the
symbol ⊥, plus a new state. We callA a ciphertext creator,A∗ a PA-1-extractor, and D
a distinguisher. For security parameter λ we define the (distinguishing and extracting)
experiments in Figure 1, and then define the PA-1 advantage to be

AdvPA-1
E,A,D,A∗(λ) =

∣∣∣Pr(ExpPA-1-d
E,A,D (λ) = 1)− Pr(ExpPA-1-x

E,A,D,A∗(λ) = 1)
∣∣∣ .

We say A∗ is a successful PA-1-extractor for A, if for every polynomial time distin-
guisher the above advantage is negligible.

ExpPA-1-d
E,A,D (λ):

– (pk, sk)← KeyGen(1λ).
– x← ADecrypt(·,sk)(pk).
– d← D(x).
– Return d.

ExpPA-1-x
E,A,A∗(λ):

– (pk, sk)← KeyGen(1λ).
– Choose coins coins[A] (resp. coins[A∗]) for A (resp.
A∗).

– St← (pk, coins[A]).
– x ← AO(pk; coins[A]), replying to the oracle queries
O(c) as follows:
• (m,St)← A∗(c, St; coins[A∗]).
• Return m to A

– d← D(x).
– Return d.

Fig. 1. Experiments ExpPA-1-d
E,A,D and ExpPA-1-x

E,A,A∗

Note, in experiment ExpPA-1-d
E,A,D (λ) the algorithm A’s oracle queries are responded

to by the genuine decryption algorithm, whereas in ExpPA-1-x
E,A,A∗(λ) the queries are re-

55

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

sponded to by the PA-1-extractor. If A∗ did not receive the coins coins[A] from A then
it would be functionally equivalent to the real decryption oracle, thus the fact that A∗
gets access to the coins in the second experiment is crucial. Also note that the distin-
guisher acts independently ofA∗, and thus this is strictly stronger than havingA decide
as to whether it is interacting with an extractor or a real decryption oracle.

The intuition is that A∗ acts as the unknowing subconscious of A, and is able to
extract knowledge about A’s queries to its oracle. That A∗ can obtain the underlying
message captures the notion that A needs to know the message before it can output a
valid ciphertext.

The following lemma is taken from [4] and will be used in the proof of the main
theorem.

Lemma 2. Let E be a public key encryption scheme. Let A be a polynomial-time ci-
phertext creator attacking E , D a polynomial-time distinguisher, and A∗ a polynomial-
time PA-1-extractor. Let DecOK denote the event that all A∗’s answers to A’s queries
are correct in experiment ExpPA-1-x

E,A,D,A∗(λ). Then,

Pr(ExpPA-1-x
E,A,D,A∗(λ) = 1) ≥ Pr(ExpPA-1-d

E,A,D (λ) = 1)− Pr(DecOK)

LATTICE KNOWLEDGE ASSUMPTION: Our knowledge assumption can be stated in-
formally as follows: suppose there is a (probabilistic) algorithm C which takes as input
a lattice basis of a lattice L and outputs a vector c suitably close to a lattice point p, i.e.
closer than ε ·λ∞(L) in the∞-norm for a fixed ε ∈ (0, 1/2). Then there is an algorithm
C∗ which on input of c and the random coins of C outputs a close lattice vector p, i.e.
one for which ‖c−p‖∞ < ε ·λ∞(L). Note that the algorithm C∗ can therefore act as a
ε-CVP-solver for c in the∞-norm, given the coins coins[C]. Again as in the PA-1 defi-
nition it is perhaps useful to think of C∗ as the “subconscious” of C, since C is capable
of outputting a vector close to the lattice it must have known the close lattice vector in
the first place. Formally we have:

Definition 2 (LK-ε). Let ε be a fixed constant in the interval (0, 1/2). Let G denote an
algorithm which on input of a security parameter 1λ outputs a lattice L given by a basis
B of dimension n = n(λ) and volume ∆ = ∆(λ). Let C be an algorithm that takes
a lattice basis B as input, and has access to an oracle O, and returns nothing. Let C∗
denote an algorithm which takes as input a vector c ∈ Rn and some state information,
and returns another vector p ∈ Rn plus a new state. Consider the experiment in Figure
2. The LK-ε advantage of C relative to C∗ is defined by

AdvLK-ε
G,C,C∗(λ) = Pr[ExpLK-ε

G,C,C∗(λ) = 1].

We say G satisfies the LK-ε assumption, for a fixed ε, if for every polynomial time C
there exists a polynomial time C∗ such that AdvLK-ε

G,C,C∗(λ) is a negligible function of λ.

The algorithm C is called an LK-ε adversary and C∗ a LK-ε extractor. We now
discuss this assumption in more detail. Notice, that for all lattices, if ε < 1/4 then the
probability of a random vector being within ε · λ∞(L) of the lattice is bounded from
above by 1/2n, and for lattices which are not highly orthogonal this is likely to hold for

56

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ExpLK-ε
G,C,C∗(λ):

– B ← G(1λ).
– Choose coins coins[C] (resp. coins[C∗]) for C (resp. C∗).
– St← (B, coins[C]).
– Run CO(B; coins[C]) until it halts, replying to the oracle queriesO(c) as follows:
• (p, St)← C∗(c, St; coins[C∗]).
• If p 6∈ L(B), return 1.
• If ‖p− c‖∞ > ε · λ∞(L), return 1.
• Return p to C.

– Return 0.

Fig. 2. Experiment ExpLK-ε
G,C,C∗(λ)

all ε up to 1/2. Our choice of T in the ccSHE scheme as U/4 is to guarantee that our
lattice knowledge assumption is applied with ε = 1/4, and hence is more likely to hold.

If the query c which C asks of its oracle is within ε · λ∞(L) of a lattice point then
we require that C∗ finds such a close lattice point. If it does not then the experiment will
output 1; and the assumption is that this happens with negligible probability.

Notice that if C asks its oracle a query of a vector which is not within ε ·λ∞(L) of a
lattice point then the algorithm C∗ may do whatever it wants. However, to determine this
condition within the experiment we require that the environment running the experiment
is all powerful, in particular, that it can compute λ∞(L) and decide whether a vector
is close enough to the lattice. Thus our experiment, but not algorithms C and C∗, is
assumed to be information theoretic. This might seem strange at first sight but is akin
to a similarly powerful game experiment in the strong security model for certificateless
encryption [1], or the definition of insider unforgeable signcryption in [3].

For certain input bases, e.g. reduced ones or ones of small dimension, an algorithm
C∗ can be constructed by standard algorithms to solve the CVP problem. This does not
contradict our assumption, since C would also be able to apply such an algorithm and
hence “know” the close lattice point. Our assumption is that when this is not true, the
only way C could generate a close lattice point (for small enough values of ε) is by
computing x ∈ Zn and perturbing the vector x ·B.

MAIN THEOREM:

Theorem 1. Let G denote the lattice basis generator induced from the KeyGen algo-
rithm of the ccSHE scheme, i.e. for a given security parameter 1λ, run KeyGen(1λ)
to obtain pk = (α, d, µ, F (X)) and sk = (Z(X), G(X), d, F (X)), and generate the
lattice basis B as in equation (1). Then, if G satisfies the LK-ε assumption for ε = 1/4
then the ccSHE scheme is PA-1.

Proof. Let A be a polynomial-time ciphertext creator attacking the ccSHE scheme,
then we show how to construct a polynomial time PA1-extractor A∗. The creator A
takes as input the public key pk = (α, d, µ, F (X)) and random coins coins[A] and
returns an integer as the candidate ciphertext. To defineA∗, we will exploitA to build a
polynomial-time LK-ε adversary C attacking the generator G. By the LK-ε assumption
there exists a polynomial-time LK-ε extractor C∗, that will serve as the main building

57

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

block for the PA1-extractor A∗. The description of the LK-ε adversary C is given in
Figure 3 and the description of the PA-1-extractor A∗ is given in Figure 4.

LK-ε adversary CO(B; coins[C])
– Let d = B[0][0] and α = −B[1][0]
– Parse coins[C] as µ||F (X)||coins[A]
– Run A on input (α, d, µ, F (X)) and coins coins[A] until it halts, replying to its oracle

queries as follows:
• If A makes a query with input c, then
• Submit (c, 0, 0, . . . , 0) to O and let p denote the response
• Let c = (c, 0, . . . , 0)− p, and C(X) =

PN−1
i=0 ciX

i

• Let c′ = [C(α)]d
• If c′ 6= c or ‖C(X)‖∞ ≥ T , then M(X)←⊥, else M(X)← C(X) (mod 2)
• Return M(X) to A as the oracle response.

– Halt

Fig. 3. LK-ε adversary

PA-1-extractor A∗(c, St[A∗]; coins[A∗])
– If St[A∗] is initial state then
• parse coins[A∗] as (α, d, µ, F (X))||coins[A]
• St[C∗]← (α, d, µ, F (X))||coins[A]
• else parse coins[A∗] as (α, d, µ, F (X))||St[C∗]

– (p, St[C∗])← C∗((c, 0, . . . , 0),St[C∗]; coins[A∗])
– Let c = (c, 0, . . . , 0)− p, and C(X) =

PN−1
i=0 ciX

i

– Let c′ = [C(α)]d
– If c′ 6= c or ‖C(X)‖∞ ≥ T , then M(X)←⊥, else M(X)← C(X) (mod 2)
– St[A∗]← (α, d, µ, F (X))||St[C∗]
– Return (M(X),St[A∗]).

Fig. 4. PA-1-extractor

We first show thatA∗ is a successful PA-1-extractor forA. In particular, let DecOK
denote the event that allA∗’s answers toA’s queries are correct in ExpPA-1-x

ccSHE,A,D,A∗(λ),
then we have that Pr(DecOK) ≤ AdvLK-ε

G,C,C∗(λ).
We first consider the case that c is a valid ciphertext, i.e. a ciphertext such that

Decrypt(c, sk) 6=⊥, then by definition of Decrypt in the ccSHE scheme there exists
a C(x) such that c = [C(α)]d and ‖C(X)‖∞ ≤ T . Let p′ be the coefficient vector
of c − C(X), then by definition of c, we have that p′ is a lattice vector that is within
distance T of the vector (c, 0, . . . , 0). Furthermore, since T ≤ λ∞(L)/4, the vector p′

is the unique vector with this property. Let p be the vector returned by C∗ and assume
that p passes the test ‖(c, 0, . . . , 0) − p‖∞ ≤ T , then we conclude that p = p′. This
shows that if c is a valid ciphertext, it will be decrypted correctly by A∗.

58

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

When c is an invalid ciphertext then the real decryption oracle will always output
⊥, and it can be easily seen that our PA-1 extractor A∗ will also output ⊥. Thus in
the case of an invalid ciphertext the adversary A cannot tell the two oracles apart. The
theorem now follows from combining the inequality Pr(DecOK) ≤ AdvLK-ε

G,C,C∗(λ) with
Lemma 2 as follows:

AdvPA-1
E,A,D,A∗(λ) = Pr(ExpPA-1-d

E,A,D (λ) = 1)− Pr(ExpPA-1-x
E,A,D,A∗(λ) = 1)

≤ Pr(ExpPA-1-d
E,A,D (λ) = 1)− Pr(ExpPA-1-d

E,A,D (λ) = 1) + Pr(DecOK)

≤ AdvLK-ε
G,C,C∗(λ) .

6 ccSHE is not secure in the presence of a CVA attack

We now show that our ccSHE scheme is not secure when the attacker, after being given
the target ciphertext c∗, is given access to an oracle OCVA(c) which returns 1 if c is
a valid ciphertext (i.e. the decryption algorithm would output a message), and which
returns 0 if it is invalid (i.e. the decryption algorithm would output⊥). Such an “oracle”
can often be obtained in the real world by the attacker observing the behaviour of a party
who is fed ciphertexts of the attackers choosing. Since a CVA attack is strictly weaker
than a IND-CCA2 attack it is an interesting open (and practical) question as to whether
an FHE scheme can be CVA secure.

We now show that the ccSHE scheme is not CVA secure, by presenting a relatively
trivial attack: Suppose the adversary is given a target ciphertext c∗ associated with a
hidden message m∗. Using the method in Algorithm 2 it is easy to determine the mes-
sage using access to OCVA(c). Basically, we add on multiples of αi to the ciphertext
until it does not decrypt; this allows us to perform a binary search on the i-th coefficient
of C(X), since we know the bound T on the coefficients of C(X).

Algorithm 2: CVA attack on ccSHE
C(X)← 0
for i from 0 upto N − 1 do

L← −T + 1, U ← T − 1
while U 6= L do

M ← d(U + L)/2e.
c← [−c∗ + (M + T − 1) · αi]d.
if OCVA(c) = 1 then

L←M .
else

U ←M − 1.
C(X)← C(X) + U ·Xi.

m∗ ← C(X) (mod 2)
return m∗

If ci is the ith coefficient of the actual C(X) underlying the target ciphertext c∗,
then the ith coefficient of the polynomial underlying ciphertext c being passed to the

59

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

OCVA oracle is given by M + T − 1− ci. When M ≤ ci this coefficient is less than T
and so the oracle will return 1, however when M > ci the coefficient is greater than or
equal T and hence the oracle will return 0. Thus we can divide the interval for ci in two
depending on the outcome of the test.

It is obvious that the complexity of the attack is O(N · log2 T). Since, for the rec-
ommended parameters in the key generation method, N and log2 T are polynomial
functions of the security parameter, we obtain a polynomial time attack.

7 CCA2 Somewhat Homomorphic Encryption?

In this section we deal with an additional issue related to CCA security of somewhat
homomorphic encryption schemes. Consider the following scenario: three parties wish
to use SHE to compute some information about some data they posses. Suppose the
three pieces of data are m1, m2 and m3. The parties encrypt these messages with the
SHE scheme to obtain ciphertexts c1, c2 and c3. These are then passed to a third party
who computes, via the SHE properties, the required function. The resulting ciphertext
is passed to an “Opener” who then decrypts the output and passes the computed value
back to the three parties. As such we are using SHE to perform a form of multi-party
computation, using SHE to perform the computation and a special third party, called an
Opener, to produce the final result.

Consider the above scenario in which the messages lie in {0, 1} and the function to
be computed is the majority function. Now assume that the third party and the protocol
are not synchronous. In such a situation the third party may be able to make a copy
of the first party’s ciphertext and submit it as his own. In such a situation the third
party forces the above protocol to produce an output equal to the first party’s input; thus
security of the first party’s input is lost. This example may seem a little contrived but
it is, in essence, the basis of the recent attack by Smyth and Cortier [28] on the Helios
voting system; recall Helios is a voting system based on homomorphic (but not fully
homomorphic) encryption.

An obvious defence against the above attack would be to disallow input ciphertexts
from one party, which are identical to another party’s. However, this does not preclude a
party from using malleability of the underlying SHE scheme to produce a ciphertext c3,
such that c3 6= c1, but Decrypt(c1, sk) = Decrypt(c3, sk). Hence, we need to preclude
(at least) forms of benign malleability, but to do so would contradict the fact that we
require a fully homomorphic encryption scheme.

To get around this problem we introduce the notion of CCA-embeddable homomor-
phic encryption. Informally this is an IND-CCA2 public key encryption scheme E , for
which given a ciphertext c one can publicly extract an equivalent ciphertext c′ for an
IND-CPA homomorphic encryption scheme E ′. More formally

Definition 3. An IND-CPA homomorphic (possibly fully homomorphic) public key en-
cryption scheme E ′ = (KeyGen′,Encrypt′,Decrypt′) is said to be CCA-embeddable
if there is an IND-CCA encryption scheme E = (KeyGen,Encrypt,Decrypt) and an
algorithm Extract such that

– KeyGen produces two secret keys sk′, sk′′, where sk′ is in the keyspace of E ′.

60

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

– Decrypt′(Extract(Encrypt(m, pk), sk′′), sk′) = m.
– The ciphertext validity check for E is computable using only the secret key sk′′.
– CCA1 security of E ′ is not compromised by leakage of sk′′.

As a simple example, for standard homomorphic encryption, is that ElGamal is CCA-
embeddable into the Cramer–Shoup encryption scheme [10]. We note that this notion of
CCA-embeddable encryption was independently arrived at by [7] for standard (singu-
larly) homomorphic encryption in the context of providing a defence against the earlier
mentioned attack on Helios. See [7] for a more complete discussion of the concept.

As a proof of concept for somewhat homomorphic encryption schemes we show
that, in the random oracle model, the somewhat homomorphic encryption schemes
considered in this paper are CCA-embeddable. We do this by utilizing the Naor–Yung
paradigm [22] for constructing IND-CCA encryption schemes, and the zero-knowledge
proofs of knowledge for semi-homomorphic schemes considered in [6]. Note that our
construction is inefficient; we leave it as an open problem as to whether more specific
constructions can be provided for the specific SHE schemes considered in this paper.

CONSTRUCTION: Given an SHE scheme E ′ = (KeyGen′,Encrypt′,Decrypt′) we con-
struct the scheme E = (KeyGen,Encrypt,Decrypt) into which E ′ embeds as follows,
where NIZKPoK = (Prove,Verify) is a suitable non-malleable non-interactive zero-
knowledge proof of knowledge of equality of two plaintexts:

KeyGen(1λ)
– (pk′1, sk

′
1)← KeyGen′(1λ).

– (pk′2, sk
′
2)← KeyGen′(1λ).

– pk← (pk′1, pk′2), sk← (sk′1, sk
′
2).

– Return (pk, sk).

Extract(c)
– Parse c as (c′1, c

′
2, Σ).

– Return c′1.

Encrypt(m, pk; r)
– c′1 ← Encrypt′(m, pk′1; r

′
1).

– c′2 ← Encrypt′(m, pk′2; r
′
2).

– Σ ← Prove(c1, c2;m, r′1, r
′
2).

– c← (c′1, c
′
2, Σ).

– Return c.

Decrypt(c, sk)
– Parse c as (c′1, c

′
2, Σ).

– If Verify(Σ, c′1, c
′
2) = 0 return ⊥.

– m← Decrypt′(c′1, sk
′
1).

– Return m.

All that remains is to describe how to instantiate the NIZKPoK. We do this using
the Fiat–Shamir heuristic applied to the Sigma-protocol in Figure 5. The protocol is
derived from the same principles as those in [6], and security (completeness, soundness
and zero-knowledge) can be proved in an almost identical way to that in [6]. The main
difference being that we need an adjustment to be made to the response part of the
protocol to deal with the message space being defined modulo two. We give the Sigma
protocol in the simplified case of application to the Gentry–Halevi variant, where the
message space is equal to {0, 1}. Generalising the protocol to the Full Space Smart–
Vercauteren variant requires a more complex “adjustment” to the values of t1 and t2 in
the protocol. Notice that the soundness error in the following protocol is only 1/2, thus
we need to repeat the protocol a number of times to obtain negligible soundness error
which leads to a loss of efficiency.

61

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prover Verifier
c1 = Encrypt′(m, pk′1; r

′
1)

c2 = Encrypt′(m, pk′2; r
′
2) c1, c2

y ← {0, 1}
a1 ← Encrypt′(y, pk′1; s

′
1)

a2 ← Encrypt′(y, pk′2; s
′
2)

a1, a2-
e� e← {0, 1}

z ← y ⊕ e ·m
t1 ← s1 + e · r1 + e · y ·m
t2 ← s2 + e · r2 + e · y ·m z, t1, t2- Accept if and only if

Encrypt′(z, pk1; t1) = a1 + e · c1
Encrypt′(z, pk2; t2) = a2 + e · c2.

Fig. 5. ZKPoK of equality of two plaintexts

8 Acknowledgements

All authors were partially supported by the European Commission through the ICT
Programme under Contract ICT-2007-216676 ECRYPT II. The first author was also
partially funded by EPSRC and Trend Micro. The third author was supported by the
Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL) under agreement number FA8750-11-2-0079, and by a Royal Soci-
ety Wolfson Merit Award. The US Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements, either expressed
or implied, of DARPA), AFRL, the U.S. Government, the European Commission or EP-
SRC.

References

1. S.S. Al-Riyami and K.G. Patterson. Certificateless public key cryptography. In Advances in
Cryptology – ASIACRYPT 2003, Springer LNCS 2894, 452–473, 2003.

2. F. Armknecht, A. Peter and S. Katzenbeisser. A cleaner view on IND-CCA1 secure homo-
morphic encryption using SOAP. IACR e-print 2010/501, http://eprint.iacr.org/
2010/501, 2010.

3. J. Baek, R. Steinfeld and Y. Zheng. Formal proofs for the security of signcryption. Journal
of Cryptology, 20(2), 203–235, 2007.

4. M. Bellare and A. Palacio. Towards Plaintext-Aware Public-Key Encryption without Ran-
dom Oracles. In Advances in Cryptology – ASIACRYPT 2004, Springer LNCS 3329, 37-52,
2004.

5. M. Bellare and P. Rogaway. Optimal Asymmetric Encryption. In Advances in Cryptology –
EUROCRYPT’94, Springer LNCS 950, 92-111, 1994.

6. R. Bendlin, I. Damgård, C. Orlandi and S. Zakarias. Semi-homomorphic encryption and
multiparty computation. In Advances in Cryptology – EUROCRYPT 2011, Springer LNCS
6632, 169–188, 2011.

62

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

7. D. Bernhard, V. Cortier, O. Pereira, B. Smyth and B. Warinschi. Adapting Helios for provable
ballot privacy. To appear ESORICS 2011.

8. D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA encryption
standard PKCS #1 In Advances in Cryptology – CRYPTO ’98, Springer LNCS 1462, 1–
12,1998.

9. R. Cramer, R. Gennaro and B. Schoenmakers. A secure and optimally efficient multi-
authority election scheme. In Advances in Cryptology – EUROCRYPT ’97, Springer LNCS
1233, 103–118, 1997.

10. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adap-
tive chosen ciphertext attack. In Advances in Cryptology – CRYPTO ’98, Springer LNCS
1462, 13–25, 1998.

11. I. Damgård Towards practical public-key schemes secure against chosen ciphertext attacks.
In Advances in Cryptology – CRYPTO ’91, Springer LNCS 576, 1991.

12. I. Damgård, J. Groth and G. Salomonsen. The theory and implementation of an electronic
voting system. In Secure Electronic Voting, Kluwer Academic Publishers, 77–99, 2002.

13. A. Dent. A designer’s guide to KEMs. In Coding and Cryptography 2003, Springer LNCS
2898, 133–151, 2003.

14. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption
over the integers. In Advances in Cryptology – EUROCRYPT 2010, Springer LNCS 6110,
24–43, 2010.

15. C. Gentry. Fully homomorphic encryption using ideal lattices. In Symposium on Theory of
Computing – STOC 2009, ACM, 169–178, 2009.

16. C. Gentry. A fully homomorphic encryption scheme. PhD, Stanford University, 2009.
17. C. Gentry and S. Halevi. Implementing Gentry’s fully-homomorphic encryption scheme. In

Advances in Cryptology – EUROCRYPT 2011, Springer LNCS, 2011.
18. Z.-Y. Hu, F.-C. Sun and J.-C. Jiang. Ciphertext verification security of symmetric encryption

schemes. Science in China Series F, 52(9), 1617–1631, 2009.
19. M. Joye, J. Quisquater, and M. Yung. On the power of misbehaving adversaries and security

analysis of the original EPOC. In Topics in Cryptography – CT-RSA 2001, Springer LNCS
2020, 208–222, 2001.

20. H. Lipmaa. On the CCA1-security of ElGamal and Damgård’s ElGamal. In Information
Security and Cryptology – INSCRYPT 2010, Springer LNCS 6584, 18–35, 2010.

21. J. Manger. A chosen ciphertext attack on RSA Optimal Asymmetric Encryption Padding
(OAEP) as standardized in PKCS # 1 v2.0 In Advances in Cryptology – CRYPTO ’01,
Springer LNCS 2139, 230–238, 2001.

22. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In Symposium on Theory of Computing – STOC 1990, ACM, 427–437, 1990.

23. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Symposium on Theory of Computing – STOC 2005, ACM, 84–93, 2005.

24. R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy homomorphisms.
In Foundations of Secure Computation, 169–177, 1978.

25. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal
ACM, 56(6), 1–40, 2009.

26. N.P. Smart. Breaking RSA-based PIN encryption with thirty ciphertext validity queries. In
Topics in Cryptology – CT-RSA 2010, Springer LNCS 5985, 15-25, 2010.

27. N.P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In Public Key Cryptography – PKC 2010, Springer LNCS 6056, 420–443,
2010

28. B. Smyth and V. Cortier. Attacking and fixing Helios: An analysis of ballot secrecy. To
appear IEEE Computer Security Foundations Symposium – CSF 2011.

63

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Fully Homomorphic Encryption with Polylog Overhead

C. Gentry1, S. Halevi1, and N.P. Smart2

1 IBM T.J. Watson Research Center,
Yorktown Heights, New York, U.S.A.

2 Dept. Computer Science, University of Bristol,
Bristol, United Kingdom.

Abstract. We show that homomorphic evaluation of (wide enough) arithmetic circuits can be accomplished with only
polylogarithmic overhead. Namely, we present a construction of fully homomorphic encryption (FHE) schemes that for
security parameter λ can evaluate any width-Ω(λ) circuit with t gates in time t · polylog(λ).
To get low overhead, we use the recent batch homomorphic evaluation techniques of Smart-Vercauteren and Brakerski-
Gentry-Vaikuntanathan, who showed that homomorphic operations can be applied to “packed” ciphertexts that encrypt
vectors of plaintext elements. In this work, we introduce permuting/routing techniques to move plaintext elements across
these vectors efficiently. Hence, we are able to implement general arithmetic circuit in a batched fashion without ever
needing to “unpack” the plaintext vectors.
We also introduce some other optimizations that can speed up homomorphic evaluation in certain cases. For example, we
show how to use the Frobenius map to raise plaintext elements to powers of p at the “cost” of a linear operation.

Keywords. Homomorphic encryption, Bootstrapping, Batching, Automorphism, Galois group, Permutation net-
work.

Acknowledgments. The first and second authors are sponsored by DARPA and ONR under agreement number
N00014-11C-0390. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA, or the U.S. Government. Distribution Statement “A” (Approved for Public
Release, Distribution Unlimited).

The third author is sponsored by DARPA and AFRL under agreement number FA8750-11-2-0079. The same
disclaimers as above apply. He is also supported by the European Commission through the ICT Programme under
Contract ICT-2007-216676 ECRYPT II and via an ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO, by
EPSRC via grant COED–EP/I03126X, and by a Royal Society Wolfson Merit Award. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the European Commission or EPSRC.

64

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Table of Contents

Fully Homomorphic Encryption with Polylog Overhead . 64
C. Gentry, S. Halevi, and N.P. Smart

1 Introduction . 67

1.1 Packing Plaintexts and Batched Homomorphic Computation . 67

1.2 Permuting Plaintexts Within the Plaintext Slots . 68

1.3 FHE with Polylog Overhead . 69

2 Computing on (Encrypted) Arrays . 69

2.1 Computing with `-Fold Gates . 70

2.2 Permutations over Hyper-Rectangles . 71

2.3 Batch Selections, Swaps, and Permutation Networks . 71

2.4 Cloning: Handling High Fan-out in the Circuit . 72

3 Permutation Networks from Abelian Group Actions . 73

3.1 Permutation Networks from Cyclic Rotations and Swaps . 74

3.2 Generalizing to Sharply-Transitive Abelian Groups . 74

4 FHE With Polylog Overhead . 76

4.1 The Basic Setting of FHE Schemes Based on Ideal Lattices and Ring LWE . 76

4.2 Implementing Group Actions on FHE Plaintext Slots . 76

4.3 Parameter Setting for Low-Overhead FHE . 78

Plaintext-Space Terminology and Notations . 78

Step 1. Lower-Bounding the Dimension . 79

Step 2. Choosing the parameter m . 80

4.4 Achieving Depth-Independent Overhead . 81

References . 81

A Additional Optimizations . 82

A.1 Faster Cloning . 82

A.2 Faster Routing . 83

A.3 Powering (Almost) for Free . 83

B Proofs . 84

C Basic Algebra . 87

C.1 Reductions of Cyclotomic Fields . 87

C.2 Underlying Plaintext Algebra . 87

C.3 Galois Theory of Cyclotomic Fields . 88

WhenH is cyclic . 89

D Using mod-Φm Polynomial Arithmetic . 91

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

D.1 Canonical Embeddings and Norms . 92
Modular Reduction in Canonical Embedding. 92

D.2 Our Cryptosystem . 93
Decryption. 93
Key Generation. 94
Encryption. 95
Addition. 95
“Raw Multiplication”. 95
Key Switching. 95
Galois Group Actions. 96
Modulus Switching. 97
Variants. 98

E A Delayed-Reduction Technique . 99
E.1 Key generation . 99
E.2 Encryption . 100
E.3 Addition . 100
E.4 “Raw multiplication” . 100
E.5 Key switching . 101
E.6 Modulus switching . 102
E.7 Galois group actions . 102

66

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

1 Introduction

Fully homomorphic encryption (FHE) [16, 9, 8] allows a worker to perform arbitrarily-complex dynamically-
chosen computations on encrypted data, despite not having the secret decryption key. Processing encrypted data
homomorphically requires more computation than processing the data unencrypted. But how much more? What
is the overhead, the ratio of encrypted computation complexity to unencrypted computation complexity (using a
circuit model of computation)? Here, under the ring-LWE assumption, we show that the overhead can be made as
low as polylogarithmic in the security parameter.

We accomplish this by packing many plaintexts into each ciphertext; each ciphertext has Ω̃(λ) “plaintext slots”.
Then, we describe a complete set of operations – Add,Mult and Permute – that allows us to evaluate arbitrary
circuits while keeping the ciphertexts packed. Batch Add and Mult have been done before [18], and follow easily
from the Chinese Remainder Theorem within our underlying polynomial ring. Here we introduce the operation
Permute, that allows us to homomorphically move data between the plaintext slots, show how to realize it from
our underlying algebra, and how to use it to evaluate arbitrary circuits.

Our approach begins with the observation [3, 18] that we can use an automorphism group H associated to our
underlying ring to “rotate” or “re-align” the contents of the plaintext slots. (These automorphisms were used in a
somewhat similar manner by Lyubashevsky et al. [15] in their proof of the pseudorandomness of RLWE.) While
H alone enables only a few permutations (e.g., “rotations”), we show that any permutation can be constructed as
a log-depth permutation network, where each level consists of a constant number of “rotations”, batch-additions
and batch-multiplications. Our method works when the underlying ring has an associated automorphism group H
which is abelian and sharply transitive, a condition that we prove always holds for our scheme’s parameters.

Ultimately, the Add,Mult and Permute operations can all be accomplished with Õ(λ) computation by building
on the recent Brakerski-Gentry-Vaikuntanathan (BGV) “FHE without bootstrapping” scheme [3], which builds on
prior work by Brakerski and Vaikuntanathan and others [5, 4, 12]. Thus, we obtain an FHE scheme that can evaluate
any circuit that has Ω(λ) average width with only polylog(λ) overhead. For comparison, the smallest overhead for
FHE was Õ(λ3.5) [19] until BGV recently reduced it to Õ(λ) [3].3

In addition to their essential role in letting us move data across plaintext slots, ring automorphisms turn out to
have interesting secondary consequences: they also enable more nimble manipulation of data within plaintext slots.
Specifically, in some cases we can use them to raise the packed plaintext elements to a high power with hardly any
increase in the noise magnitude of the ciphertext! In practice, this could permit evaluation of high-degree circuits
without resorting to bootstrapping, in applications such as computing AES. See Appendix A.3.

1.1 Packing Plaintexts and Batched Homomorphic Computation

Smart and Vercauteren [17, 18] were the first to observe that, by an application the Chinese Remainder Theorem
to number fields, the plaintext space of some previous FHE schemes can be partitioned into a vector of “plain-
text slots”, and that a single homomorphic Add or Mult of a pair of ciphertexts implicitly adds or multiplies
(component-wise) the entire plaintext vectors. Each plaintext slot is defined to hold an element in some finite
field Kn = Fpn , and, abstractly, if one has two ciphertexts that hold (encrypt) messages m0, . . . ,m`−1 ∈ K`n
and m′0, . . . ,m

′
`−1 ∈ K`n respectively in plaintext slots 0, . . . , ` − 1, applying `-Add to the two ciphertexts gives

a new ciphertext that holds m0 + m′0, . . . ,m`−1 + m′`−1 and applying `-Mult gives a new ciphertext that holds
m0 ·m′0, . . . ,m`−1 ·m′`−1. Smart and Vercauteren used this observation for batch (or SIMD [11]) homomorphic

3 However, the polylog factors in our new scheme are rather large. It remains to be seen how much of an improvement this approach yields
in practice, as compared to the Õ(λ3.5) approach implemented in [10, 19].

67

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

operations. That is, they show how to evaluate a function f homomorphically ` times in parallel on ` different
inputs, with approximately the same cost that it takes to evaluate the function once without batching.

Here is a taste of how these separate plaintext slots are constructed algebraically. As an example, for the ring-
LWE-based scheme, suppose we use the polynomial ring A = Z[x]/(x` + 1) where ` is a power of 2. Ciphertexts
are elements of A2

q where (as in in [3]) q has only polylog(λ) bits. The “aggregate” plaintext space is Ap (that
is, ring elements taken modulo p) for some small prime p = 1 mod 2`. Any prime p = 1 mod 2` splits over the
field associated to this ring – that is, in A, the ideal generated by p is the product of ` ideals {pi} each of norm
p – and therefore Ap ≡ Ap0 × · · · × Ap`−1

. Consequently, using the Chinese remainder theorem, we can encode
` independent mod-p plaintexts m0, . . . ,m`−1 ∈ {0, . . . , p − 1} as the unique element in Ap that is in all of the
cosets mi + pi. Thus, in a single ciphertext, we may have ` independent plaintext “slots”.

In this work, we often use `-Add and `-Mult to efficiently implement a Select operation: Given an index set I
we can construct a vector vI of “select bits” (v0, . . . , v`−1), such that vi = 1 if i ∈ I and vi = 0 otherwise.
Then element-wise multiplication of a packed ciphertext c with the select vector v results in a new ciphertext that
contains only the plaintext element in the slots corresponding to I , and zero elsewhere. Moreover, by generating
two complementing select vectors vI and vĪ we can mix-and-match the slots from two packed ciphertexts c1 and
c2: Setting c = (vI × c1) + (vĪ × c2), we pack into c the slots from c1 at indexes from I and the slots from c2

elsewhere.
While batching is useful in many setting, it does not, by itself, yield low-overhead homomorphic computation

in general, as it does not help us to reduce the overhead of computing a complicated function just once. Just as in
normal program execution of SIMD instructions (e.g., the SSE instructions on x86), one needs a method of moving
data between slots in each SIMD word.

1.2 Permuting Plaintexts Within the Plaintext Slots

To reduce the overhead of homomorphic computation in general, we need a complete set of operations over packed
vectors of plaintexts. The approach above allows us to add or multiply messages that are in the same plaintext slot,
but what if we want to add the content of the i-th slot in one ciphertext to the content of the j-th slot of another
ciphertext, for i 6= j? We can “unpack” the slots into separate ciphertexts (say, using homomorphic decryption4 [8,
9]), but there is little hope that this approach could yield very efficient FHE. Instead, we complement `-Add and
`-Mult with an operation `-Permute to move data efficiently across slots within a a given ciphertext, and efficient
procedures to clone slots from a packed ciphertext and move them around to other packed ciphertexts.

Brakerski, Gentry, and Vaikuntanathan [3] observed that for certain parameter settings, one can use automor-
phisms associated with the algebraic ring A to “rotate” all of plaintext spaces simultaneously, sort of like turning
a dial on a safe. That is, one can transform a ciphertext that holds m0,m1, . . . ,m`−1 in its ` slots into another
ciphertext that holds mi,mi+1, . . . ,mi+`−1 (for an arbitrary given i, index arithmetic mod `), and this rotation
operation takes time quasi-linear in the ciphertext size, which is quasi-linear in the security parameter. They used
this tool to construct Pack and Unpack algorithms whereby separate ciphertexts could be aggregated (packed) into
a single ciphertext with packed plaintexts before applying bootstrapping (and then the refreshed ciphertext would
be unpacked), thereby lowering the amortized cost of bootstrapping.

We exploit these automorphisms more fully, using the basic rotations that the automorphisms give us to con-
struct permutation networks that can permute data in the plaintext slots arbitrarily. We also extend the application
of the automorphisms to more general underlying rings, beyond the specific parameter settings considered in prior
work [5, 4, 3]. This lets us devise low-overhead homomorphic schemes for arithmetic circuits over essentially any
small finite field Fpn .

4 This is the approach suggested in [18] for Gentry’s original FHE scheme.

68

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Our efficient implementation of Permute, described in Section 3, uses the Beneš/Waksman permutation net-
work [2, 20]. This network consists of two back-to-back butterfly network of width 2k, where each level in the
network has 2k−1 “switch gates” and each switch gate swaps (or not) its two inputs, depending on a control bit.
It is possible to realize any permutation of ` = 2k items by appropriately setting the control bits of all the switch
gates. Viewing this network as acting on k-bit addresses, the i-th level of the network partitions the 2k addresses
into 2k−1 pairs, where each pair of addresses differs only in the |i−k|-th bit, and then it swaps (or not) those pairs.
The fact that the pairs in the i-th level always consist of addresses that differ by exactly 2|i−k|, makes it easy to
implement each level using rotations: All we need is one rotation by 2|i−k| and another by −2|i−k|, followed by
two batched Select operations.

For general rings A, the automorphisms do not always exactly “rotate” the plaintext slots. Instead, they act on
the slots in a way that depends on a quotient group H of the appropriate Galois group. Nonetheless, we use basic
theorems from Galois theory, in conjunction with appropriate generalizations of the Beneš/Waksman procedure,
to construct a permutation network of depth O(log `) that can realize any permutation over the ` plaintext slots,
where each level of the network consists of a constant number of permutations from H and Select operations. As
with the rotations considered in [3], applying permutations from H can be done in time quasi-linear in ciphertext
size, which is only quasi-linear in the security parameter. Overall, we find that permutation networks and Galois
theory are a surprisingly fruitful combination.

We note that Damgård, Ishai and Krøigaard [7] used permutation networks in a somewhat analogous fashion
to perform secure multiparty computation with packed secret shares. In their setting, which permits interaction
between the parties, the permutations can be evaluated using much simpler mathematical machinery.

1.3 FHE with Polylog Overhead

In our discussion above, we glossed over the fact that ciphertext sizes in a BGV-like cryptosystem [3] depend
polynomially on the depth of the circuit being evaluated, because the modulus size must grow with the depth of the
circuit (unless bootstrapping [8, 9] is used). So, without bootstrapping, the “polylog overhead” result only applies
to circuits of polylog depth. However, decryption itself can be accomplished in log-depth [3], and moreover the
parameters can be set so that a ciphertext with Ω̃(λ) slots can be decrypted using a circuit of size Õ(λ). Therefore,
“recryption” can be accomplished with polylog overhead, and we obtain FHE with polylog overhead for arbitrary
(wide enough) circuits.

2 Computing on (Encrypted) Arrays

As we explained above, our main tool for low-overhead homomorphic computation is to compute on “packed
ciphertexts”, namely make each ciphertext hold a vector of plaintext values rather than a single value. Throughout
this section we let ` be a parameter specifying the number of plaintext values that are packed inside each ciphertext,
namely we always work with `-vectors of plaintext values. LetKn = Fpn denote the plaintext space (e.g.,Kn = F2

if we are dealing with binary circuits directly). It was shown in [3, 18] how to homomorphically evaluate batch
addition and multiplication operations on `-vectors:

`-Add
(
〈u0, . . . , u`−1〉 , 〈v0, . . . , v`−1〉

) def= 〈u0 + v0, . . . , u`−1 + v`−1〉

`-Mult
(
〈u0, . . . , u`−1〉 , 〈v0, . . . , v`−1〉

) def= 〈u0 × v0, . . . , u`−1 × v`−1〉

69

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

on packed ciphertexts in time Õ((` + λ)(log |Kn|) where λ is the security parameter (with addition and multipli-
cation in Kn).5 Specifically, if the size of our plaintext space is polynomially bounded and we set ` = Θ(λ), then
we can evaluate the above operations homomorphically in time Õ(λ).

Unfortunately, component-wise `-Add and `-Mult are not sufficient to perform arbitrary computations on en-
crypted arrays, since data at different indexes within the arrays can never interact. To get a complete set of opera-
tions for arrays, we introduce the `-Permute operation that can arbitrarily permute the data within the `-element
arrays. Namely, for any permutation π over the indexes I` = {0, 1, . . . , ` − 1}, we want to homomorphically
evaluate the function

`-Permuteπ
(
〈u0, . . . , u`−1〉

)
=
〈
uπ(0), . . . , uπ(`−1)

〉
.

on a packed ciphertext, with complexity similar to the above. We will show how to implement `-Permute homo-
morphically in Sections 3 and 4 below. For now, we just assume that such an implementation is available and show
how to use it to obtain low-overhead implementation of general circuits.

2.1 Computing with `-Fold Gates

We are interested in computing arbitrary functions using “`-fold gates” that operate on `-element arrays as above.
We assume that the function f(·) to be computed is specified using a fan-in-2 arithmetic circuit with t “normal”
arithmetic gates (that operate on singletons). Our goal is to implement f using as few `-fold gates as possible,
hopefully not much more than t/` of them.

We assume that the input to f is presented in a packed form, namely when computing an r-variate function
f(x1, . . . , xr) we get as input dr/`e arrays (indexed A0, . . . , Adr/`e) with the j’th array containing the input ele-
ments xj` through xj`+`−1. The last array may contain less than ` elements, and the unused entries contain “don’t
care” elements. In fact, throughout the computation we allow all of the arrays to contain “don’t care” entries.
We say that an array is sparse if it contains `/2 or more “don’t care” entries. We maintain the invariant that our
collection of arrays is always at least half full, i.e., we hold r values using at most d2r/`e `-element arrays.

The gates that we use in the computation are the `-Add, `-Mult, and `-Permute gates from above. The rest of
this section is devoted to establishing the following theorem:

Theorem 1. Let `, t, w and W be parameters. Then any t-gate fan-in-2 arithmetic circuit C with average width w
and maximum width W , can be evaluated using a network of O

(
dt/`e · d`/we · logW · polylog(`)

)
`-fold gates

of types `-Add, `-Mult, and `-Permute. The depth of this network of `-fold gates is at most O(logW) times that of
the original circuit C, and the description of the network can be computed in time Õ(t) given the description of C.

Before turning to proving Theorem 1, we point out that Theorem 1 implies that if the original circuit C has
size t = poly(λ), depth L, and average width w = Ω(λ), and if we set the packing parameter as ` = Θ(λ), then
we get an O(L · log λ)-depth implementation of C using O(t/λ · polylog(λ)) `-fold gates. If implementing each
`-fold gate takes Õ(Lλ) time, then the total time to evaluate C is no more than

O
(t
λ

polylog(λ) · L · λ · polylog(λ)
)

= O(t · L · polylog(λ)).

Therefore, with this choice of parameter (and for “wide enough” circuits of average width Ω(λ)), our overhead
for evaluating depth-L circuits is only O(L · polylog(λ)). And if L is also polylogarithmic, as in BGV with
bootstrapping [3], then the total overhead is polylogarithmic in the security parameter.

5 To compute L levels of such operations, the complexity expression becomes Õ((`+ λ)(L+ log |Kn|)).

70

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The high-level idea of the proof of Theorem 1 is what one would expect. Consider an arbitrary fan-in two
arithmetic circuit C. Suppose that we have ≈ w output wire values of level i− 1 packed into roughly w/` arrays.
We need to route these output values to their correct input positions at level i. It should be obvious that the
`-Permute gates facilitate this routing, except for two complications:

1. The mapping from outputs of level i − 1 to inputs of level i is not a permutation. Specifically, level-(i − 1)
gates may have high fan-out, and so some of the output values may need to be cloned.

2. Once the output values are cloned sufficiently (for a total of, say, w′ values), routing to level i apparently calls
for a big permutation over w′ elements, not just a small permutation within arrays of ` elements.

Below we show that these complications can be handled efficiently.

2.2 Permutations over Hyper-Rectangles

First, consider the second complication from above – namely, that we need to perform a permutation over some
w elements (possibly w � `) using `-Add, `-Mult, and `-Permute operations that only work on `-element arrays.
We use the following basic fact (cf. [14]), for completeness we provide a proof in Appendix B.

Lemma 1. Let S = {0, . . . , a− 1} × {0, . . . , b− 1} be a set of ab positions, arranged as a matrix of a rows and
b columns. For any permutation π over S, there are permutations π1, π2, π3 such that π = π3 ◦ π2 ◦ π1 (that is, π
is the composition of the three permutations) and such that π1 and π3 only permute positions within each column
(these permutations only change the row, not the column, of each element) and π2 only permutes positions within
each row. Moreover, there is a polynomial-time algorithm that given π outputs the decomposition permutations
π1, π2, π3.

In our context, Lemma 1 says that if we have w elements packed into k = dw/`e `-element arrays, we can express
any permutation π of these elements as π = π3 ◦ π2 ◦ π1 where π2 invokes `-Permute (k times in parallel) to
permute data within the respective arrays, and π1, π3 only permute (` times in parallel) elements that share the
same index within their respective arrays. In Section 2.3, we describe how to implement π1, π3 using `-Add and
`-Mult, and analyze the overall efficiency of implementing π. The following generalization of Lemma 1 to higher
dimensions will be used later in this work. It is proved by invoking Lemma 1 recursively.

Lemma 2. Let S = In1 × · · · × Ink
where Ini = {0, . . . , ni − 1}. (Each element in S has k coordinates.) For

any permutation π over S, there are permutations π1, . . . , π2k−1 such that π = π2k−1 ◦ · · · ◦ π1 and such that πi
affects only the i-th coordinate for i ≤ k and only the (2k − i)-th coordinate for i ≥ k.

2.3 Batch Selections, Swaps, and Permutation Networks

We now describe how to use `-Add and `-Mult to realize the outer permutations π1, π3, which permute (` times in
parallel) elements that share the same index within their respective arrays. To perform these permutations, we can
apply a permutation network à la Beneš/Waksman [2, 20]. Recall that a r-dimensional Beneš network consists of
two back-to-back butterfly networks. Namely it is a (2r − 1)-level network with 2r nodes in each level, where for
i = 1, 2, . . . , 2r − 1, we have an edge connecting node j in level i− 1 to node j′ in level i if the indexes j, j′ are
either equal (a “straight edge”) or they differ in only in the |r − i|’th bit (a “cross edge”). The following lemma is
an easy corollary of Lemma 2.

71

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Lemma 3. [13, Thm 3.11] Given any one-to-one mapping π of 2r inputs to 2r outputs in an r-dimensional Beneš
network (one input per level-0 node and one output per level-(2r − 1) node), there is a set of node-disjoint paths
from the inputs to the outputs connecting input i to output π(i) for all i.

In our setting, to implement our π1 and π3 from Lemma 1 we need to evaluate ` of these permutation networks
in parallel, one for each index in our `-fold arrays. Assume for simplicity that the number of `-fold arrays is a
power of two, say 2r, and denote these arrays by A0, . . . , A2r−1, we would have a (2r − 1)-level network, where
the i’th level in the network consists of operating on pairs of arrays (Aj , Aj′), such that the indexes j, j′ differ only
in the |r − i|’th bit.

The operation applied to two such arrays Aj , Aj′ works separately on the different indexes of these arrays. For
each k = 0, 1, . . . , `− 1 the operation will either swap Aj [k]↔ Aj′ [k] or will leave these two entries unchanged,
depending on whether the paths in the k’th permutation network uses the cross edges or the straight edges between
nodes j and j′ in levels i− 1, i of the permutation network.

Thus, evaluating ` such permutation networks in parallel reduces to the following Select function: Given two
arrays A = [m0, . . . ,m`−1] and A′ = [m′0, . . . ,m

′
`−1] and a string S = s0 · · · s`−1 ∈ {0, 1}`, the operation

SelectS(A,A′) outputs an array A′′ = [m′′0, . . . ,m
′′
`−1] where, for each k, m′′k = mk if sk = 1 and m′′k = m′k

otherwise. It is easy to implement SelectS(A,A′) using just the `-Add and `-Mult operations – in particular

SelectS(A,A′) = `-Add
(
`-Mult(A,S), `-Mult(A′, S̄)

)
where S̄ is the bitwise complement of S. Note that SelectS̄(A,A′) outputs precisely the elements that are discarded
by SelectS(A,A′). So, SelectS(A,A′) and SelectS̄(A,A′) are exactly like the arrays A′ and A′, except that some
pairs of elements with identical indexes have been swapped – namely, those pairs at index k where Sk = 0. Hence
we obtain the following, again the proof is deferred to Appendix B.

Lemma 4. Evaluating ` permutation networks in parallel, each permuting k items, can be accomplished using
O(k · log k) gates of `-Add and `-Mult, and depth O(log k). Also, evaluating a permutation π over k · ` elements
that are packed into k `-element arrays, can be accomplished using k `-Permute gates and O(k log k) gates of
`-Add and `-Mult, in depth O(log k). Moreover, there is an efficient algorithm that given π computes the circuit of
`-Permute, `-Add, and `-Mult gates that evaluates it, specifically we can do it in time O(k · ` · log(k · `)).

2.4 Cloning: Handling High Fan-out in the Circuit

We have described how to efficiently realize a permutation over w > ` items using `-Add, `-Mult and `-Permute
gates that operate on `-element arrays. However, the wiring between adjacent levels of a fan-in-two circuit are
typically not permutations, since we typically have gates with high fan-out. We therefore need to clone the output
values of these high-fan-out gates before performing a permutation that maps them to their input positions at the
next level. We describe an efficient procedure for this “cloning” step.

A cloning procedure. The input to the cloning procedure consists of a collection of k arrays, each with ` slots,
where each slot is either “full” (i.e., contains a value that we want to use) or “empty” (i.e., contains a don’t-care
value). We assume that initially more than k ·`/2 of the available slots are full, and will maintain a similar invariant
throughout the procedure. Denote the number of full slots in the input arrays by w (with k · `/2 < w ≤ k · `), and
denote the i’th input value by vi. The ordering of input values is arbitrary – e.g., we concatenate all the arrays and
order input values by their index in the concatenated multi-array.

We are also given a set of positive integers m1, . . . ,mw ≥ 1, such that v1 should be duplicated m1 times, v2

should be duplicated m2 times, etc. We say that mi is the intended multiplicity of vi. The total number of full slots

72

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

in the output arrays will therefore be w′ def= m1 + m2 + · · · + mw ≥ w. In more detail, the output of the cloning
procedure must consist of some number k′ of `-slot arrays, where k′`/2 < w′ ≤ k′`, such that v1 appears in at
least m1 of the output slots, v2 appears in at least m2 of the output slots, etc.

Denote the largest intended multiplicity of any value by M = maxi{mi}. The cloning procedure works in
dlogMe phases, such that after the j’th phase each value vi is duplicated min(mi, 2j) times. Each phase consists
of making a copy of all the arrays, then for values that occur too many times marking the excess slots as empty
(i.e., marking the extra occurrences as don’t-care values), and finally merging arrays that are “sparse” until the
remaining arrays are at least half full. A simple way to merge two sparse arrays is to permute them so that the full
slots appear in the left half in one array and the right half in the other, and then apply Select in the obvious way.
A pseudo-code description of this procedure is given in Figure 1, whilst the proof of the following lemma is in
Appendix B.

Input: k `-slot arrays, A1, . . . , Ak, each of the k · ` slots containing either a value or the special symbol ‘⊥’,
w positive integers m1, . . . ,mw ≥ 1, where w is the number of full slots in the input arrays.

Output: k′ `-slot arrays, A′1, . . . , A′k′ , with each slot containing either a value or the special symbol ‘⊥’,
where k′/2 ≤ (

P
i mi)/` ≤ k′ and each input value vi is replicated mi times in the output arrays

0. Set M ← maxi{mi}
1. For j = 1 to dlogMe // The j’th phase
2. Make another copy of all the arrays // Duplicate everything
3. While there are values vi with multiplicity more than mi:
4. Replace the excess occurrences of vi by ⊥ // Remove redundant entries
5. While there exist pairs of arrays that have between them ` or more slots with ⊥:
6. Pick one such pair and merge the two arrays //Merge sparse arrays
7. Output the remaining arrays

Fig. 1. The cloning procedure

Lemma 5. (i) The cloning procedure from Figure 1 is correct.

(ii) Assuming that at least half the slots in the input arrays are full, this procedure can be implemented by a network
of O(w′/` · log(w′)) `-fold gates of type `-Add, `-Mult and `-Permute, where w′ is the total number of full slots
in the output, w′ =

∑
mi. The depth of the network is bounded by O(logw′).

(iii) This network can be constructed in time Õ(w′), given the input arrays and the mi’s.

We also describe some more optimizations in Appendix A, including a different cloning procedure that im-
proves on the complexity bound in Lemma 5. Putting all the above together we can efficiently evaluate a circuit
using `-Permute, `-Add and `-Mult, yielding a proof of Theorem 1, see Appendix B.

3 Permutation Networks from Abelian Group Actions

As we will show in Section 4, the algebra underlying our FHE scheme makes it possible to perform inexpensive
operations on packed ciphertexts, that have the effect of permuting the ` plaintext slots inside this packed cipher-
text. However, not every permutation can be realized this way; the algebra only gives us a small set of “simple”
permutations. For example, in some cases, the given automorphisms “rotate” the plaintext slots, transforming a
ciphertext that encrypts the vector 〈v0, . . . , v`−1〉 into one that encrypts 〈vk, . . . , v`−1, v0, . . . , vk−1〉, for any value
of k of our choosing. (See Section 3.2 for the general case.)

73

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Our goal in this section is therefore to efficiently implement an `-Permuteπ operation for an arbitrary permuta-
tion π using only the simple permutations that the algebra gives us (and also the `-Add and `-Mult operations that
we have available). We begin in Section 3.1 by showing how to efficiently realize arbitrary permutations when the
small set of “simple permutations” is the set of rotations. In Section 3.2 we generalize this construction to a more
general set of simple permutations.

3.1 Permutation Networks from Cyclic Rotations and Swaps

Consider the Beneš permutation network discussed in Lemma 3. It has the interesting property that when the 2r

items being permuted are labeled with r-bit strings, then the i-th level only swaps (or not) pairs whose index differs
in the |r − i|-th bit. In other words, the i-th level swaps only disjoint pairs that have offset 2|r−i| from each other.
We call this operation an “offset-swap”, since all pairs of elements that might be swapped have the same mutual
offset.

Definition 1 (Offset Swap). Let I` = {0, . . . , ` − 1}. We say that a permutation π over I` is an i-offset swap
if it consists only of 1-cycles and 2-cycles (i.e., π = π−1), and moreover all the 2-cycles in π are of the form
(k, k + i mod `) for different values k ∈ I`.

Offset swaps modulo ` are easy to implement by combining two rotations with the Select operation defined in
Section 2.3. Specifically, for an i-offset swap, we need rotations by i and −i mod ` and two Select operations. By
Lemma 3, a Beneš network can realize any permutation over 2r elements using 2r − 1 levels where the i-th level
is a 2|k−i|-offset swap modulo 2r. An i-offset modulo 2r, ` < 2r < 2` can be cobbled together using a constant
number of offset swaps modulo ` and Select operations, with offsets i and 2`− i. Therefore, given a cyclic group
of “simple” permutationsH and Select operations, we can implement any permutation using a Beneš network with
low overhead. Specifically, we prove the following lemma in Appendix B.

Lemma 6. Fix an integer ` and let k = dlog `e. Any permutation π over I` = {0, . . . , `− 1} can be implemented
by a (2k− 1)-level network, with each level consisting of a constant number of rotations and Select operations on
`-arrays.

Moreover, regardless of the permutation π, the rotations that are used in level i (i = 1, . . . , 2k−1) are always
exactly 2|k−i| and ` − 2|k−i| positions, and the network depends on π only via the bits that control the Select
operations. Finally, this network can be constructed in time Õ(`) given the description of π.

3.2 Generalizing to Sharply-Transitive Abelian Groups

Below, we extend our techniques above to deal with a more general set of “simple permutations” that we get from
our ring automorphisms. (See Sections 4 and C.3.)

Definition 2 (Sharply Transitive Permutation Groups). Denote the `-element symmetric group by S` (i.e., the
group of all permutations over I` = {0, . . . , ` − 1}), and let H be a subgroup of S`. The subgroup H is sharply
transitive if for every two indexes i, j ∈ I` there exists a unique permutation h ∈ H such that h(i) = j.

Of course, the group of rotations is an example of an abelian and sharply transitive permutation group. It is
abelian: rotating by k1 positions and then by k2 positions is the same as rotating by k2 positions and then by k1

positions. It is also sharply transitive: for all i, j there is a single rotation amount that maps index i to index j,

74

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

namely rotation by j− i. However, rotations are certainly not the only example. We now explain how to efficiently
realize arbitrary permutations using as building blocks the permutations from any sharply-transitive abelian group.

Recall that any abelian group is isomorphic to a direct product of cyclic groups, hence H ∼= C`1 × · · · × C`k
(where C`i is a cyclic group with `i elements for some integers `i ≥ 2 where `i divides `i+1 for all i). As any
cyclic group with `i elements is isomorphic to I`i = {0, 1, . . . , `i − 1} with the operation of addition mod `i, we
will identify elements in H with vectors in the box B = I`1 × · · · × I`k , where composing two group elements
corresponds to adding their associated vectors (modulo the box). The group H is generated by the k unit vectors
{er}kr=1 (where er = 〈0, . . . , 0, 1, 0, . . . , 0〉with 1 in the r-th position). We stress that our groupH has polynomial
size, so we can efficiently compute the representation of elements inH as vectors in B.

Since H is a sharply transitive group of permutations over the indexes I` = {0, . . . , ` − 1}, we can similarly
label the indexes in I` by vectors in B: Pick an arbitrary index i0 ∈ I`, then for all h ∈ H label the index h(i0) ∈ I`
with the vector associated with h. This procedure labels every element in I` with exactly one vector from B, since
for every i ∈ I` there is a unique h ∈ H such that h(i0) = i. Also, since H ∼= B, we use all the vectors in B
for this labeling (|H| = |B| = `). Note that with this labeling, applying the generator er to an index labeled with
vector v ∈ B, yields an index labeled with v′ = v + er mod B. Namely we increment by one the r’th entry in v
(mod `r), leaving the other entries unchanged.

In other words, rather than a one-dimensional array, we view I` as a k-dimensional matrix (by identifying it
with B). The action of the generator er on this matrix is to rotate it by one along the r-th dimension, and similarly
applying the permutation ekr ∈ H to this matrix rotates it by k positions along the r-th dimension. For example,
when k = 2, we view I` as an `1 × `2 matrix, and the group H includes permutations of the form ek1 that rotate
all the columns of this matrix by k positions and also permutations of the form ek2 that rotate all the rows of this
matrix by k positions.

Using Lemma 6, we can now implement arbitrary permutations along the r’th dimension using a permutation
network built from offset-swaps along the r’th dimension. Moreover, since the offset amounts used in the network
do not depend on the specific permutation that we want to implement, we can use just one such network to im-
plement in parallel different arbitrary permutations on different r’th-dimension sub-matrices. For example, in the
2-dimensional case, we can effect a different permutation on every column, yet realize all these different permuta-
tions using just one network of rotations and Selects, by using the same offset amounts but different Select bits for
the different columns. More generally we can realize arbitrary (different) `/`r permutations along all the different
“generalized columns” in dimension-r, using a network of depth O(log `r) consisting of permutations h ∈ H and
`-fold Select operations (and we can construct that network in time `/`r · Õ(`r) = Õ(`)).

Once we are able to realize different arbitrary permutations along the different “generalized columns” in all
the dimensions, we can apply Lemma 2. That lemma allows us to decompose any permutation π on I` into 2k− 1
permutations π = πi ◦ · · · ◦π2k−1 where each πi consists only of permuting the generalized columns in dimension
r = |k − i|. Hence we can realize an arbitrary permutation on I` as a network of permutations h ∈ H and
`-fold Select operations, of total depth bounded by 2

∑k−1
i=0 O(log `i) = O(log `) (the last bound follows since

` =
∏k−1
i=0 `i). Also we can construct that network in time bounded by 2

∑k−1
i=0 Õ(`i) = Õ(`) (the bound follows

since k ≤ log `). Concluding this discussion, we have:

Lemma 7. Fix any integer ` and any abelian sharply-transitive group of permutations over I`, H ⊂ S`. Then for
every permutation π ∈ S`, there is a permutation network of depth O(log `) that realizes π, where each level of
the network consists of a constant number of permutations fromH and Select operations on `-arrays.

Moreover, the permutations used in each level do not depend on the particular permutation π, the network
depends on π only via the bits that control the Select operations. Finally, this network can be constructed in time
Õ(`) given the description of π and the labeling of elements inH, I` as vectors in B. ut

75

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Lemma 7 tells us that we can implement an arbitrary `-Permute operation using a log-depth network of per-
mutations h ∈ H (in conjunction with `-Add and `-Mult). Plugging this into Theorem 1 we therefore obtain:

Theorem 2. Let `, t, w and W be parameters, and let H be an abelian, sharply-transitive group of permutations
over I`.

Then any t-gate fan-in-2 arithmetic circuit C with average width w and maximum width W , can be evaluated
using a network ofO

(
dt/`e·d`/we· logW ·polylog(`)

)
`-fold gates of types `-Add, `-Mult, and h ∈ H. The depth

of this network of `-fold gates is at most O(logW · log `) times that of the original circuit C, and the description
of the network can be computed in time Õ(t · log `) given the description of C. ut

4 FHE With Polylog Overhead

Theorem 2 implies that if we could efficiently realize `-Add, `-Mult, and H-actions on packed ciphertexts (where
H is a sharply transitive abelian group of permutations on `-slot arrays), then we can evaluate arbitrary (wide
enough) circuits with low overhead. Specifically, if we could set ` = Θ(λ) and realize `-Add, `-Mult, and H-
actions in time Õ(λ), then we can realize any circuit of average width Ω(λ) with just polylog(λ) overhead. It
remains only to describe an FHE system that has the required complexity for these basic homomorphic operations.

4.1 The Basic Setting of FHE Schemes Based on Ideal Lattices and Ring LWE

Many of the known FHE schemes work over a polynomial ring A = Z[X]/F (X), where F (X) is irreducible
monic polynomial, typically a cyclotomic polynomial. Ciphertexts are typically vectors (consisting of one or two
elements) over Aq = A/qA where q is an integer modulus, and the plaintext space of the scheme is Ap = A/pA
for some integer modulus p � q with gcd(p, q) = 1, for example p = 2. (Namely, the plaintext is represented
as an integer polynomial with coefficients mod p.) Secret keys are also vectors over Aq, and decryption works by
taking the inner product b ← 〈c, s〉 in Aq (so b is an integer polynomial with coefficients in (−q/2, q/2]) then
recovering the message as b mod p. Namely, the decryption formula is [[〈c, s〉 mod F (X)]q]p where [·]q denotes
modular reduction into the range (−q/2, q/2]. Below we consider ciphertext vectors and secret-key vectors with
two entries, since this is indeed the case for the variant of the BGV scheme [3] that we use.

Smart and Vercauteren [18] observed that the underlying ring structure of these schemes makes it possible to
realize homomorphic (batch) Add and Mult operations, i.e. our `-Add and `-Mult. Specifically, though F (X) is
typically irreducible over Q, it may nonetheless factor modulo p; F (X) =

∏`−1
i=0 Fi(X) mod p. In this case, the

plaintext space of the scheme also factors: Ap = ⊗`−1
j=0Apj where pi is the ideal in A generated by p and Fi(X).

In particular, the Chinese Remainder Theorem applies, and the plaintext space is partitioned into ` independent
non-interacting “plaintext slots”, which is precisely what we need for component-wise `-Add and `-Mult. The
decryption formula recovers the “aggregate plaintext” a← [[〈c, s〉 mod F (X)]q]p, and this aggregate plaintext is
decoded to get the individual plaintext elements, roughly via zj ← a mod (Fi(x), p) ∈ Apj .

4.2 Implementing Group Actions on FHE Plaintext Slots

While component-wise Add and Mult are straightforward, getting different plaintext slots to interact is more
challenging. For ease of exposition, suppose at first that F (X) is the degree-(m − 1) polynomial Φm(X) =
(Xm − 1)/(X − 1) for m prime, and that p ≡ 1 (mod m). Thus our ring A above is the mth cyclotomic number
field. In this case F (X) factors to linear terms modulo p, F (X) =

∏`−1
i=0(X − ρi) (mod p) with ρi ∈ Fp. Hence

76

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

we obtain ` = m− 1 plaintext slots, each slot holding an element of the finite field Fp (i.e. in this case Api above
is equal to Fp).

To get Φm to factor modulo p into linear terms we must have p ≡ 1 (mod m), so p > m. Also we need
m = Ω(λ) to get security (since m is roughly the dimension of the underlying lattice). This means that to get Φm
to factor into linear terms we must use plaintext spaces that are somewhat large (in particular we cannot directly
use F2). Later in this section we sketch the more elaborate algebra needed to handle the general (and practical)
case of non-prime m and p � m, where Φm may not factor into linear terms. This is covered in more detail in
Appendix C. For now, however, we concentrate on the simple case where Φm factors into linear terms modulo p.

Recall that ciphertexts are vectors over Zq[X]/Φm(X), so each entry in these vectors corresponds to an integer
polynomial. Consider now what happens if we simply replace X with Xi inside all these polynomials, for some
exponent i ∈ Z∗m, i > 1. Namely, for each polynomial f(X), we consider f (i)(X) = f(Xi) mod Φm(X). Notice
that if we were using polynomial arithmetic moduloXm−1 (rather then modulo Φm(X)) then this transformation
would just permutes the coefficients of the polynomials. Namely f (i) has the same coefficients as f but in a different
order, which means that if the coefficient vector of f has small norm then the same holds for the coefficient vector
of f (i). In Appendix D we show that using a different notion of “size” of a polynomial (namely, the norm of the
canonical embedding of a polynomial rather than the norm of its coefficient vector), we can conclude the same
also for mod-Φm polynomial arithmetic. Namely, the mapping f(X) 7→ f(Xi) mod Φm(X) does not change the
“size” of the polynomial. To simplify presentation, below we describe everything in terms of coefficient vectors
and arithmetic modulo Xm − 1. The actual mod-Φm implementation that we use is described in Appendix D (and
a slightly different implementation is described in Appendix E).

Let us now consider the effect of the transformation X 7→ Xi on decryption. Let c = (c0(X), c1(X)) and s =
(s0(X), s1(X)) be ciphertext and secret-key vectors, and let b = 〈c, s〉 mod (Xm−1, q) and a = b mod p. Denote
c(i) = (c0(Xi), c1(Xi)) mod (Xm−1), and define s(i), b(i) and a(i) similarly. Since 〈c, s〉 = b (mod Xm−1, q),
we have that

c0(X)s0(X) + c1(X)s1(X) = b(X) + q · r(X) + (Xm − 1)s(X) (over Z[X])

for some integer polynomials r(X), s(X), and therefore also

c0(Xi)s0(Xi) + c1(Xi)s1(Xi) = b(Xi) + q · r(Xi) + (Xmi − 1)s(Xi) (over Z[X]).

Since Xm − 1 divides Xmi − 1, then we also have〈
c(i), s(i)

〉
= b(i) + q · r(Xi) + (Xm − 1)S(X) (over Z[X])

for some r(X), S(X). That is, b(i) =
〈
c(i), s(i)

〉
mod (Xm − 1, q). Clearly, we also have a(i) = b(i) (mod p).

This means that if c decrypts to the aggregate plaintext a under s, then c(i) decrypts to a(i) under s(i)!
The cryptosystem from [3, 4] have a mechanism for “key switching” (which is also applicable to the scheme

from [5]), transforming a ciphertext c that decrypts to a under s to a new ciphertext c′ that decrypts to the same a
under some other secret key s′. Using the same mechanism, we can translate the transformed ciphertext c(i) into
one that decrypts to a(i) under another s′ of our choice. We can even translate it back to a ciphertext decryptable
under the original s is we are willing to assume circular security. Using the BGV cryptosystem [5, 4, 3] with
appropriate parameters, key switching can be accomplished in time Õ(λ). (See Appendices D and E for details on
our variants of the BGV scheme [5].)

But how does this new aggregate plaintext a(i) relate to the original a? Here we apply to Galois theory, which
tells us that decoding the aggregate a(i) (which we do roughly by setting zj ← a(i) mod (Fj , p)), the set of zj’s

77

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

that we get is exactly the same as when decoding the original aggregate a, albeit in different order. Roughly, this is
because each of our plaintext slots corresponds to a root of the polynomial F (X), and the transformations X 7→
Xi, which are precisely the elements of the Galois group, permute these roots. In other words by transforming
c → c(i) (followed by key switching), we can permute the plaintext slots inside the packed ciphertext. Moreover,
in our simplified case, the permutations have a single cycle – i.e., they are rotations of the slots. Arranging the slots
appropriately we can get that the transformation c → c(i) rotates the slots by exactly i positions, thus we get the
group of rotations that we were using in Section 3.1. In general the situation is a little more complicated, but the
above intuition still can be made to hold; for more details see Appendix C.

The general case. In the general case, whenm is not a prime, the polynomial Φm(X) has degree φ(m) (where φ(·)
is Euler’s totient function), and it factors mod p into a number of same-degree irreducible factors. Specifically, the
degree of the factors is the smallest integer d such that pd = 1 (mod m), and the number of factors is ` = φ(m)/d
(which is of course an integer), Φm(X) =

∏`−1
j=0 Fj(X). For us, it means that we have ` plaintext slots, each

isomorphic to the finite field Fpd , and an aggregate plaintext is a degree-(φ(m)− 1) polynomial over Fp.
Suppose that we want to evaluate homomorphically a circuit over some underlying field Kn = Fpn , then we

need to find an integerm such that Φm(X) factors mod p into degree-d factors, where d is divisible by n. This way
we could directly embed elements of the underlying plaintext spaceKn inside our plaintext slots that hold elements
of Fpd , and addition and multiplication of plaintext slots will directly correspond to additions and multiplications
of elements in Kn. (This follows since Kn = Fpn is a subfield of Fpd when n divides d.)

Note that each plaintext slot will only have n log p bits of relevant information, i.e., the underlying element of
Fpn , but it takes d log p bits to specify. We thus get an “embedding overhead” factor of d/n even before we encrypt
anything. We therefore need to choose our parameter m so as to keep this overhead to a minimum.

Even for a non-prime m, the Galois group Gal(Q[X]/Φm(X)) consists of all the transformations X 7→ Xi

for i ∈ Z∗m, hence there are exactly φ(m) of them. As in the simplified case above, if we have a ciphertext c
that decrypts to an aggregate plaintext a under s, then c(i) decrypts to a(i) under s(i). Differently from the simple
case, however, not all members of the Galois group induce permutations on the plaintext slots, i.e., decoding the
aggregate plaintext a(i) does not necessarily give us the same set of (permuted) plaintext elements as decoding
the original a. Instead Gal(Q[X]/Φm(X)) contains a subgroup G = {(X 7→ Xpj

) : j = 0, 1, . . . , d − 1}
corresponding to the Frobenius automorphisms6 modulo p. This subgroup does not permute the slots at all, but the
quotient group H = Gal/G does. Clearly, G has order d and H has order φ(m)/d = `. In Appendix C we show
that the quotient group H acts as a transitive permutation group on our ` plaintext slots, and since it has order `
then it must be sharply transitive. In the general case we therefore use this group H as our permutation group for
the purpose of Lemma 7. Another complication is that the automorphism that we can compute are elements of Gal
and not elements in the quotient groupH. In Appendix C we also show how to emulate the permutations inH, via
use of coset representatives in Gal.

4.3 Parameter Setting for Low-Overhead FHE

Given the background from above (and the modification of the BGV cryptosystem [5] in Appendices D or E), we
explain how to set the parameters for our variant of the BGV scheme so as to get low-overhead FHE scheme. Below
we first show how to evaluate depth-L circuits with average-width Ω(λ) with overhead of only Õ(L)·polylog(λ),
and then use bootstrapping to get overhead of polylog(λ) regardless of depth.

Plaintext-Space Terminology and Notations The discussion below refers to three different “plaintext spaces”:
6 The group G is called the decomposition group at p in the literature.

78

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

– The “underlying plaintext space”: The circuit that we want to evaluate homomorphically is an arithmetic
circuit over some (finite) ring, and that finite ring is the “underlying plaintext space”. We typically think of the
underlying plaintext space as being just F2, but it is sometimes convenient to use other spaces (e.g., F28 when
computing AES, or perhaps Fp for some 32-bit prime p in other applications).
In this work we always assume that the underlying plaintext space is small, either of constant size or at most of
size polynomial in λ. Moreover, we assume that it is a field, namely Kn = Fpn for some prime p and integer
n ≥ 1.

– The “embedded plaintext space”. This is what is held in each of our plaintext slots. For example, we could
have underlying space F2, but embed our bits in elements of Fp for some larger integer p, or maybe in elements
of F2d for some d > 1. (In the former case we need to emulate binary XOR using a degree-2 polynomial mod p,
in the latter case multiplication and addition work as expected.)

– The “aggregate plaintext space”. This is the plaintext space that is natively encrypted in the cryptosystem: An
element in the aggregate plaintext space is a polynomial in some Fp[X], and as explained above it encodes (via
CRT) an `-vector over the embedded plaintext space.

When choosing parameters for our FHE construction, we are given the depth and width of the circuits that we
need to evaluate homomorphically, as well as the underlying plaintext space and the security parameter. We then
want to choose the “embedded” and “aggregate” plaintext spaces and all the other parameters so as to minimize
the overhead. Namely, minimize the ratio between the number of gates in the underlying circuits and the time that
it takes to evaluate them homomorphically. We describe two methods for choosing the parameters: One is likely to
be more efficient in practice, but we can only prove that it yields low overhead for either small underlying plaintext
spaces (of size polylog(λ)) or very wide circuits (of width Ω(λ ·pn)). The other (simpler) method can be shown to
work for any poly-size underlying plaintext space and circuits of width Ω(λ), but is almost certain to yield worst
performance in practice.

In either approach, we begin by lower-bounding the dimension of the lattice that we need (in order to get
security), thus getting a lower-bound on our parameter m (recall that we will eventually get a dimension-φ(m)
lattice). Once we have this lower-bound M , we either pick m = pns−1 ≥M for some integer s, or just choose m
as p′ − 1 for some prime number p′ sufficiently larger than M . In the former case we have “embedded plaintext
space” Fpns into which we can directly embed the underlying space Fpn , and in the latter case we need to emulate
Fpn arithmetic using polynomials over Fp′ .

Once we set the parameter m and get the corresponding “embedded plaintext space”, we can easily compute
the packing parameter ` and all the other parameters.

Step 1. Lower-Bounding the Dimension Suppose that we want to evaluate homomorphically circuits of depth L
over some small finite field Fpn , with average depth w and maximum depth W = poly(λ), where λ is the security
parameter. Clearly, for security parameter λ we need ciphertexts of size at least Ω(λ), so we cannot hope to
evaluate any homomorphic operation faster than Õ(λ). To get low overhead, we therefore must be able to pack
at least ` = Ω̃(λ) plaintext slots (from our “embedded” space) into one ciphertext. This means that we only get
low-overhead implementation when the width of the underlying circuits is at least Ω̃(λ).

From Theorem 2 we know that for any packing parameter ` we can evaluate depth-L circuits using a network
of `-fold gates of depth L′ = O(L · logW · log `). (If we use the second approach below for choosing the
parameter m then we need another additive term of L · log(pn) = O(L · log λ) to emulate Fpn arithmetic using
mod-m polynomials.) We will show below that it is sufficient to choose either ` = Θ(λ) or ` = Θ(pn ·λ) ≤poly(λ)
(depending on which of the two approaches we use), but in either case we have L′ ≤ c ·L · logW · log λ for some
constant c that we can compute from the given parameters.

79

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Recall that the BGV cryptosystem needs L′ different moduli qi when evaluating a depth-L′ network. When
implementing arithmetic operations over a characteristic-p field and working with dimension-M lattices, the largest
modulus needs to be q0 = (M ·p)c′·L′ (for some constant c′ < 2) to get the homomorphic evaluation functionality,
and M ≥ λ · log q0 to get security. Plugging in all these constraints, we get a lower-bound on the dimension of the
lattice M ≥ c′′ · L · λ log λ · logW · log p for some constant c′′ that we can compute from the given parameters
(note that M = Θ̃(L · λ)).

Step 2. Choosing the parameterm Below we will choose our parameter m so as to get φ(m) ≥M . We use the
following lemma, whose proof is in Appendix B.

Lemma 8. For all positive integers m we have m/φ(m) = O(log logm).

We will then choose our parameter m larger than c∗M for some c∗ = O(log logM), to ensure that φ(m) ≥M .

Approach 1: Using Extension Fields. Setting s = dlogpn(c∗M + 1)e, we see that the integer m = pns−1 satisfies
all our requirements. On one hand it is large enough, m ≥ c∗M by construction. On the other hand for d = n · s
we clearly have that pd = 1 (mod m), which is what we need in order to use the “embedded plaintext space” Fpd

with the “aggregate plaintext space” Fp[X]/Φm(X).
Moreover, the “embedding overhead” d/n = s is small: since M = Õ(L · λ) and s ≤ log2(c∗M + 1) then

clearly s = O(log(L · λ)). Thus the number of bits that it takes to specify an “aggregate plaintext” is only a factor
of O(log(L · λ)) larger than what you need to specify all the elements of the “underlying plaintext space” that are
embedded in this aggregate plaintext.

However, in some cases the parameter m itself (and therefore the lattice dimension) could be large: Note that
we have M = Õ(L · λ) and since s = dlogpn(c∗M + 1)e then pns < (c∗M + 1) · pn. If the size of the underlying
plaintext space (i.e., pn) is polylogarithmic, then we have m = Õ(L · λ) which is what we need. However, if the
underlying plaintext size is larger, say pn ≈ λ, then we could have m = Θ̃(L · λ2). In this case we can no longer
hope to evaluate homomorphic operations in time Õ(L · λ) (since the ciphertext size is too large).

If the circuits that we want to evaluate are very wide (i.e., of width Ω̃(λ ·pn)) then we can just pack sufficiently
many plaintext slots inside each ciphertext to get the overhead down. We can do this since the “embedding over-
head” is logarithmic. But for narrower circuits, say of width Θ(λ+ pn), we just don’t have enough plaintext to put
in all these slots, hence our overhead increases.

We point out that we may be able to do better than m = pns − 1, for example we can use any m′ such that
φ(m′) > M and m′ divides pns − 1. But it is not clear that such m′ < m exists (for example when p = 2
then pns − 1 could be a prime number). It is also permissible to choose some s′ > s and then choose m′ that
divides pns

′ − 1 with φ(m′) ≥ M . As long as s′ ≤polylog(L · λ) then we still have only a polylog “embedding
overhead”, and m′ may be much smaller than m = pns − 1. Unfortunately we were not able to prove that such
s′ ≤polylog(L · λ) and m′ ≤ Õ(L · λ) always exist, we consider this an interesting open problem.

Approach 2: Using Prime Fields. An alternative, simpler, approach is to just pick m = p′ − 1 for a prime number
p′ sufficiently larger thanM , (so as to get φ(m) ≥M), and set our “embedded plaintext space” to be Fp′ . This will
give us the “simple case” that we discussed earlier in this section, where Φm factors into linear terms mod p′. Note
that in this case we clearly havem = Õ(M), so (a) the “embedding overhead” is at mostO(logM) = Õ(log(Lλ)),
and (b) as long as we work with circuits of width Ω̃(λ) we can pack enough plaintext elements into each ciphertext
to get low overhead.

80

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This solutions has a few drawbacks, however. One relatively minor drawback is that the native operations of
the scheme are now over a characteristic-p′ field, and if p′ > p then the bound M on the dimension will be slightly
larger than before (since the noise in fresh ciphertexts is now of the form p′ · e rather that p · e). A more serious
problem is that each gate of the underlying circuit must now be emulated using a polynomial mod p′. We note,
however, that this only results in a logarithmic slowdown: It is not hard to see that arithmetic over Fpn can be
emulated by mod-p′ circuits of depth and size O(n · log p) (e.g., express these operations as binary circuits and
emulate that binary circuit mod-p′).

Once we determined the parameter m and the “embedded plaintext space”, all the other parameters of the
scheme easily follow, and we obtain the following theorem:

Theorem 3. For security parameter λ, any t-gate, depth-L arithmetic circuit of average width Ω(λ) over under-
lying plaintext space Fpn (with pn ≤poly(λ)) can be evaluated homomorphically in time t · Õ(L)·polylog(λ).

4.4 Achieving Depth-Independent Overhead

Theorem 3 implies that we can implement shallow arithmetic circuit with low overhead, but when the circuit
gets deeper the dependence of the overhead on L causes the overhead to increase. Recall that the reason for this
dependence on the depth is that in the BGV cryptosystem [3], the moduli get smaller as we go up the circuit, which
means that for the first layers of the circuit we must choose moduli of bitsize Ω(L).

As explained in [3], the dependence on the depth can be circumvented by using bootstrapping. Namely, we can
start with a modulus which is not too large, then reduce it as we go up the circuit, and once the modulus become
too small to do further computation we can bootstrap back into the larger-modulus ciphertexts, then continue with
the computation.

For our purposes, we need to ensure that we bootstrap often enough to keep the moduli small, and yet that the
time we spend on bootstrapping does not significantly impact the overhead. Here we apply to the analysis from
[3], that shows that a packed ciphertext with Ω̃(λ) slots can be decrypted using a circuit of size Õ(λ) and depth
polylog(λ). Hence we can even bootstrap after every layer of the circuit and still keep the overhead polylogarith-
mic, and the moduli never grow beyond polylogarithmic bitsize. We thus get:

Theorem 4. For security parameter λ, any t-gate arithmetic circuit of average widthΩ(λ) over underlying plain-
text space Fpn (with pn ≤poly(λ)) can be evaluated homomorphically in time t·polylog(λ).

References

1. Paul T. Bateman, Carl Pomerance, and Robert C. Vaughan. On the size of the coefficients of the cyclotomic polynomial. In Topics in
Classical Number Theory, Vol. I, pages 171–202, 1984.

2. Václav E. Beneš. Optimal rearrangeable multistage connecting networks. Bell System Technical Journal, 43:1641–1656, 1964.
3. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption without bootstrapping. Manuscript at

http://eprint.iacr.org/2011/277, 2011.
4. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE, 2011.
5. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security for key dependent messages.

In Advances in Cryptology - CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 505–524. Springer, 2011.
6. I. Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarais. Multiparty computation from somewhat homomorphic encryption.

Manuscript at http://eprint.iacr.org/2011/535, 2011.
7. Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation and the computational overhead of

cryptography. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 445–465. Springer, 2010.

81

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

8. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009. http://crypto.stanford.
edu/craig.

9. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor, STOC, pages 169–178. ACM,
2009.

10. Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption scheme. In EUROCRYPT, volume 6632 of
Lecture Notes in Computer Science, pages 129–148. Springer, 2011.

11. John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach, 4th Edition. Morgan Kaufmann, 2006.
12. Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic encryption be practical? Manuscript at

http://www.codeproject.com/News/15443/Can-Homomorphic-Encryption-be-Practical.aspx, 2011.
13. Frank Thomson Leighton. Introduction to parallel algorithms and architectures: arrays, trees, hypercubes. M. Kaufmann Publishers,

2 edition, 1992.
14. G. Lev, N. Pippenger, and L. Valiant. A fast parallel algorithm for routing in permutation networks. IEEE Transactions on Computers,

C-30:93–100, 1981.
15. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings. In EUROCRYPT, volume

6110 of Lecture Notes in Computer Science, pages 1–23, 2010.
16. Ron Rivest, Leonard Adleman, and Michael L. Dertouzos. On data banks and privacy homomorphisms. In Foundations of Secure

Computation, pages 169–180, 1978.
17. Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small key and ciphertext sizes. In Public Key

Cryptography - PKC’10, volume 6056 of Lecture Notes in Computer Science, pages 420–443. Springer, 2010.
18. Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Manuscript at http://eprint.iacr.org/2011/133, 2011.
19. Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In ASIACRYPT, volume 6477 of Lecture Notes in Computer

Science, pages 377–394. Springer, 2010.
20. Abraham Waksman. A permutation network. J. ACM, 15(1):159–163, 1968.
21. Lawrence C. Washington. Introduction to Cyclotomic Fields, volume 83 of Graduate Texts in Mathematics. Springer, 1996.

A Additional Optimizations

A.1 Faster Cloning

In Lemma 5 we establish that we can clone w′ values using `-fold operations in time O((w′ logw′)/`). Below we
show how to remove the logw′ term, which would allow us to clone values between levels in the circuit using
asymptotically optimal O(w′/`) time.

Recall that for the cloning procedure we are given a “multi-array” A′ consisting of several `-element arrays,
and also the intended multiplicities of the values in these arrays m1, . . . ,mw. As before, denote the maximum
intended multiplicity by M = maxi{mi}. The new procedure consists of two main parts:

Decomposition: For i = 0, 1 . . . ,M , construct a “multi-array” A′i that contains the elements whose intended
multiplicity is at least 2i, as follows:

Set A′0 = A′. Then for i > 0 we compute A′i from A′i−1 by marking the slots of all the elements with
intended multiplicity smaller than 2i as empty, and then merging sparse arrays until the multi-array is at least half-
full (or contains only one array). Note that when computing A′i from A′i−1, we also keep a copy of A′i−1 for use
in the aggregation part below.

Aggregation: For i = M, . . . , 1, 0, construct a multi-array Ai as follows. Set AM = A′M , then for all i < M
concatenate two copies of Ai+1 with one copy of A′i, and if the result is not half full them merge sparse arrays
until it is half full again. The result is Ai.

Note since each of Ai+1,A′i is either half full or contains a single array, then at most two merge operations
are needed in each aggregation step. The output of the cloning procedure is A0.

82

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Lemma 9. The procedure above is correct, and it uses only O(w
′

` + logw′) copy and merge operations on `-
element arrays, where w′ =

∑
imi

Proof. Consider an arbitrary element of the input multi-array A′, with intended multiplicitymi ∈ [2j , 2j+1−1] for
some j. The decomposition part will output multi-arrays such that this element is in each of A′0, . . . ,A′j . Then,
during the aggregation part, Aj will include one copy of this element, Aj−1 three copies, Aj−2 seven copies,
and in general Aj−k contains 2k+1 − 1 copies. Hence at the end of the aggregation part, A0 includes 2j+1 − 1
occurrences of this element (which is at least as much as mi but less than 2mi).

To analyze complexity, notice that the number of arrays in every multi-array A′j equals the number of arrays
in A′j−1 minus the number of merge operations that were used when computing A′j . Since A′M cannot have less
than zero arrays, it follows that the total number of merge operations throughout the decomposition part cannot
be more than the initial number of arrays, namely d2w/`e ≤ d2w′/`e. We observed above that the aggregation
part does at most two merges for each Aj , so the total number of merges during this part is at most 2dlogMe ≤
2dlogw′e. Thus the total number of merge operations is bounded by N = d2w′/`e+2dlogMe = O(w

′

` +logw′).
Finally, the output multi-array A′ contains at most twice as many occurrences of each element as needed, and

it is at least half full. Hence it contains at most d4w′

` e arrays, which means that the entire procedure duplicated
arrays at most d4w′

` e+N = O(w
′

` + logw′) times. ut

The procedure above can be made particularly efficient in our case, when used in conjunction with the fol-
lowing optimization: When considering a circuit, we sort the gates in each level according to their fan-out, thus
making the input to the cloning procedure sorted by the intended multiplicity. Note that the decomposition part
now becomes unnecessary, we just define A′j to be the collection of the first few arrays, all the ones that contain
elements of intended multiplicity at least 2j .

Also important is that once the inputs are sorted, merging arrays do not need the full power of the Permute
operation. As long as we keep the full slots in the arrays continuous, we can use the simple rotation operation
to align the two arrays before we merge them. (The same can be done with the “higher-dimensional rotations”
that we get in the general case in Section 4.) Hence the entire cloning network can be implemented using only
O(w

′

` + logw′) basic operations of `-Add, `-Mult, andH-actions.

A.2 Faster Routing

Tracing through the proofs in Section 2, in conjunction with the more efficient cloning technique from above, one
can verify that the logW term in the statement of Theorem 1 can be made to multiply only the number of `-Add
and `-Mult gates, not `-Permute, which can make a big difference in practice. Roughly, the logW term arises from
the fact that we seem to needΩ(W ·logW) computation (in the worst-case) to route the inter-level wires. Note that
such a logW term does not appear in the overhead of non-batched FHE schemes that operate on singletons rather
than arrays. It seems plausible that this term could be eliminated somehow, and we consider this an interesting
open problem.

A.3 Powering (Almost) for Free

In some applications, plaintext elements are not bits or integers, but rather elements in a finite extension field.
For example, when implementing homomorphic AES, it may be convenient to use F28 as the underlying plaintext
space [12, 18]. In these cases, the corresponding Galois group (whose automorphisms we use to permute the slots)
includes also the Frobenius automorphism. (This is x → x2j

in the AES example, and more generally x → xp
j

83

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

when using a characteristic-p field.) We show in Section 4 that applying the Galois group transformations to packed
ciphertexts results in almost no additional noise. Thus we get a new function, `-Frobenius, that raises the ` slots in
parallel to a power of p, while adding almost no additional noise. This may not be surprising, since the Frobenius
map is a linear operation on Fpn .

In practice this turns out to be a useful optimization for particular functions of interest: For the case of AES,
the only non-linear part of AES is inversion in F28 , which is equivalent to exponentiation to the 254-th power.
While this may seem to be high-degree, the Frobenius automorphism allows us to evaluate this power relatively
cheaply on ` elements in parallel. For an a ∈ F28 sitting in a plaintext slot, we use the Frobenius map to compute
aj = a2j

for j = 1, 2, . . . , 7 (these are the ’1’s in the binary representation of 254), then multiply all the aj to
get a254 = a−1. Thus, we can evaluate a254 at a price of only seven products (in terms of noise), and this 7-fold
product can be computed by a depth-3 circuit. The binary affine transformation of the AES S-box is not linear over
F28 , but it is linear over the outputs of the Frobenius automorphisms, and so it is linear in terms of its effect on
ciphertext noise (although to extract and pack the bits uses up two more levels in the circuit). The ShiftRows and
MixColumns operation take four more levels using our permutation networks, and the matrix multiplication in the
MixColumns uses another level. An AES round can therefore be accomplished using only a depth-10 circuit (in
terms of noise), so homomorphic implementation of the full AES-128 will take a circuit of depth less than 100. It
is therefore plausible that we could implement AES-128 homomorphically without resorting to bootstrapping at
all!!! (We note, however, that many other optimizations are possible, and it is not clear if the approach sketched
above is really the most efficient one for implementing AES-128.)

B Proofs

Lemma 1. Let S = {0, . . . , a− 1} × {0, . . . , b− 1} be a set of ab positions, arranged as a matrix of a rows and
b columns. For any permutation π over S, there are permutations π1, π2, π3 such that π = π3 ◦ π2 ◦ π1 (that is, π
is the composition of the three permutations) and such that π1 and π3 only permute positions within each column
(these permutations only change the row, not the column, of each element) and π2 only permutes positions within
each row. Moreover, there is a polynomial-time algorithm that given π outputs the decomposition permutations
π1, π2, π3.

Proof. The basic strategy of the decomposition is that π2 will send each element to some address with the same
y-coordinate as its target destination, and similarly π3 will correct all of the x-coordinates. The permutation π1, on
the other hand, serves as a strategic indirection. The reason this indirection is needed – i.e., the reason we cannot
decompose π just as π3 ◦ π2 with the properties above – is that several elements in the same row could have the
same target y-coordinate (and thus π2 cannot achieve its goal). Thus, π1 is used to ensure that, when π2 receives
its input, no two elements in the same row have the same target column. The only nontrivial part of the proof is
showing that a suitable π1 always exists.

For s ∈ S, let sx and sy denote its x and y coordinates, namely s = (sx, sy). Consider a bipartite graph
G = (V1, V2, E) where V1 and V2 each have b vertexes with labels {0, . . . , b − 1}. For every s ∈ S, we draw an
edge from the V1-vertex labeled sy to the V2-vertex labeled π(s)y, and we label the edge ‘s’. (We may have more
than one edge between the same pair of vertices’s.) Clearly, this is a bipartite, a-regular graph. ThereforeG’s edges
can be partitioned into a perfect matches, and this partition can be computed efficiently (e.g., using network-flow
algorithms). In other words, one can compute in polynomial time a coloring of the edges of G using the colors
{0, . . . , a− 1}, such that for all i the i-colored subgraph Gi of G is a perfect matching.

Let ρ(s) denote the color of the edge labeled ‘s’. Now, define π1, π2, π3 as follows: for all s = (sx, sy) ∈ S:

π1(s) = (ρ(s), sy), π2 ◦ π1(s) = (ρ(s), π(s)y), π3 ◦ π2 ◦ π1(s) = (π(s)x, π(s)y)

84

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Clearly, π1, π3 have the claimed property of only permuting within columns and π2 only permutes within rows.
All that remains is to establish that they are all well-defined permutations – i.e., that no “collisions” occur. π1

is a permutation because no two edges emanating from the V1-vertex labeled ‘sy’ have the same color. π2 is a
permutation, in particular it permutes elements in row i, because the subgraph Gi is a perfect matching. Finally,
π3 is a permutation since both π2 ◦ π1 and π are permutations and since π = π3 ◦ π2 ◦ π1. ut

Lemma 4. Evaluating ` permutation networks in parallel, each permuting k items, can be accomplished using
O(k · log k) gates of `-Add and `-Mult, and depth O(log k). Also, evaluating a permutation π over k · ` elements
that are packed into k `-element arrays, can be accomplished using k `-Permute gates and O(k log k) gates of
`-Add and `-Mult, in depth O(log k). Moreover, there is an efficient algorithm that given π computes the circuit of
`-Permute, `-Add, and `-Mult gates that evaluates it, specifically we can do it in time O(k · ` · log(k · `)).

Proof. The first statement follows directly from Lemma 3 and the discussion above. The second statement follows
from Lemma 1, which says that the permutation π can be decomposed as π = π3 ◦ π2 ◦ π1 where π1 and π3 each
involve evaluating n permutation networks in parallel across the ` indexes, and π2 only permutes elements within
each `-element array, and therefore can be done using k gates of `-Permute and just one level.

The efficiency of computing the circuit that realizes π follows from the fact that the decomposition π1, π2, π3

can be computed efficiently, as per Lemma 1. In fact, it was shown by Lev et al. [14] that this decomposition can
be computed in time O(k · ` · log(k · `)). ut

Lemma 5. (i) The cloning procedure from Figure 1 is correct.

(ii) Assuming that at least half the slots in the input arrays are full, this procedure can be implemented by a network
of O(w′/` · log(w′)) `-fold gates of type `-Add, `-Mult and `-Permute, where w′ is the total number of full slots
in the output, w′ =

∑
mi. The depth of the network is bounded by O(logw′).

(iii) This network can be constructed in time Õ(w′), given the input arrays and the mi’s.

Proof. In each phase j, first the number of occurrences of every value is doubled, and next if a value vi occurs more
than mi times then the excess occurrences are removed. Therefore after the j’th phase each value vi is duplicated
min(mi, 2j) times. Denoting the number of full slots after the j’th phase by wj

def=
∑

i min(mi, 2j), we have at
the end of phase j some number kj of `-slot arrays, where (kj − 1)`/2 < wj ≤ kj · `, since once the merging part
is over we must have at least half the slots full. Correctness now follows easily just by looking at j = dlogMe.

Regarding complexity (part (ii)), we note that if the input arrays are at least half full then at the beginning of
every iteration we have kj−1 ≤ 2wj−1/` =< 2w′/` = O(w′/`) arrays (clearly wj < w′ for all j by definition.)
After the duplication step (Line 2) we have 2kj−1 arrays, and then each merging step (Line 6) removes one array,
so we can have at most 2kj−1 = O(w′/`) such steps. Observing that every merge takes a constant number of gates
(two `-Permute gates and one Select operation), we conclude that each phase takes at most O(w′/`) `-fold gates.7

The number of phases is dlogMe ≤ dlogw′e, and the claimed complexity follows.
Part (iii) follows easily by noting that the network implementing each phase can be constructed in time quasi-

linear in the number of slots that are available at the beginning of that phase, just by using greedy algorithms
to make all the decisions. (The most time-consuming operation is marking entries as “don’t-care”s in Line 4,
everything else can be done in time Õ(w′/`).) ut

Theorem 1. Let `, t, w and W be parameters. Then any t-gate fan-in-2 arithmetic circuit C with average width w
and maximum width W , can be evaluated using a network of O

(
dt/`e · d`/we · logW · polylog(`)

)
`-fold gates

7 Note that removing redundant values (Line 4) does not take any gates, we leave the arrays unchanged and just mark the redundant values
as “don’t-care”s.

85

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

of types `-Add, `-Mult, and `-Permute. The depth of this network of `-fold gates is at most O(logW) times that of
the original circuit C, and the description of the network can be computed in time Õ(t) given the description of C.

Proof. Consider one level of the circuit with w′ gates, where in the previous level we computed w ≤ 2w′ input
values, packed into O(dw/`e) `-element arrays. Our approach is to first clone and then permute these values so
that the 2w′ input slots of the w′ gates are filled correctly. More precisely, these 2w′ input slots will be arranged in
two sets of `-slot array, one set for the left inputs and the other for the right inputs to all the gates. Concatenating
these two sets of arrays into two multi-arrays, we arrange the slots such that the left and right inputs to each gate
are aligned in the same index in the two multi-arrays. Once all the values are routed to their correct locations in the
multi-arrays, the actual computation of the gates in this layer can obviously be evaluated only O(dw′/`e) `-fold
gates of `-Adds or `-Mults.

By Lemma 5, we can compute the multi-arrays of O(w′/`) `-element arrays that contains the inputs with
sufficient multiplicity using O(dw′/`e · log(w′)) `-fold gates. The resulting multi-arrays have O(w) slots (more
than either the source or target multi-arrays), at least half of which contain “real values” while the other slots
contain “don’t-care”s. Let π be a permutation over these O(w) slots that maps the slots that contain the real
values to the appropriate positions in the target multi-arrays. By Lemma 4 we can evaluate π with a network of
O(w′/`polylogdw′/`e) n-fold gates, and can compute the structure of that network in time Õ(w′).

The result for the whole circuit follows easily, using as our inductive hypothesis that the w′ outputs are indeed
packed into O(dw′/`e) `-element arrays for input to the next level. ut

Lemma 6. Fix an integer ` and let k = dlog `e. Any permutation π over I` = {0, . . . , `− 1} can be implemented
by a (2k− 1)-level network, with each level consisting of a constant number of rotations and Select operations on
`-arrays.

Moreover, regardless of the permutation π, the rotations that are used in level i (i = 1, . . . , 2k−1) are always
exactly 2|k−i| and ` − 2|k−i| positions, and the network depends on π only via the bits that control the Select
operations. Finally, this network can be constructed in time Õ(`) given the description of π.

Proof. If ` is a power of two then the network is just a Beneš network. Otherwise (i.e., 2k−1 < ` < 2k for some k)
the basic strategy is to realize a permutation over I` by using two k-element arrays to realize a Beneš permutation
network over the first 2k of the 2` positions. We realize each level of the Beneš network using a constant number of
rotations and Select operations. Since 2k > ` then clearly any permutation on I` can be expressed as a permutation
over the first 2k positions (e.g., where the last 2k − ` elements remain fixed).

It remains only to show how to realize an i-offset-swap over the first 2k elements using just a constant number
of operations on the two `-slot arrays. Clearly, we can handle all the pairs (v, v + j) where both indexes are in the
same array using the rotations j and `−j and two Select operations, applied to the each of the arrays. To handle the
pairs where v is in the first array and v+ j is in the second (at index v+ j− `), we shift the first array by `− j and
the second array by j, then again use two Select operations (one Select on the first array and the shifted version of
the second, the other Select on the second array and the shifted version of the first). All in all we have four rotation
operations (two for each array) and six Select’s. The “Finally” part follows directly from Lemma 3. ut

Lemma 8. For all positive integers m we have m/φ(m) = O(log logm).

Proof. The “worst-case” that maximizes m/φ(m) is when m is a product of distinct primes m = p1 · · · pt, in
which case we have m/φ(m) = p1/(p1 − 1) · · · pt/(pt − 1). Clearly, the worst-case is when the pi’s are the first
t primes. In this case, we can use the prime number theorem to argue that pt = polylog(m) (actually, something
like logm). By Merten’s theorem the product over primes

∏
p<polylogm p/(p− 1) is θ(log logm).

86

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

C Basic Algebra

To understand our techniques it is first necessary to recap on the underlying algebra of cyclotomic fields. We have
tried to cover as much detail as needed, but the reader should be aware a self contained treatment will be hard to
come by in such a short space. We therefore refer the interested reader to [21] for details on cyclotomic fields.

C.1 Reductions of Cyclotomic Fields

We let Φm(X) be the m-th cyclotomic polynomial, and let K = Q(ζm) denote the associated number field. The
degree of Φm is φ(m), where φ(·) is Euler’s phi-function. Note that asymptotically m is of the same size as φ(m),
but for the small values of m that we will use in practice, φ(m) is roughly 10%-50% smaller than m. We associate
K with the set of rational polynomials inX of degree less thanN , with multiplication and addition defined modulo
Φm. We let the ring of integers of K be denoted by OK = Z[ζm].

We now fix a prime p, which is neither ramified in K, nor an index divisor (i.e. p does not divide m). Consider
the reduction of K at p; we define

Ap := Zp[X]/Φm(X)

to be the ring of polynomials over Zp where multiplication and addition are defined modulo Φm and p. Note, we
assume that the representation of Ap is such that the coefficients are given in the range (−p/2, p/2]. In general Ap
is not a field but is an algebra, since Φm is generally not irreducible mod p.

Since p is neither an index divisor nor ramified, and because K/Q is Galois, we have that the polynomial Φm
splits mod p into ` distinct factors Fi(X), each of degree d, where ` · d = φ(m). We then have that

Ap ∼= Zp[X]/F0(X)× . . .× Zp[X]/F`−1(X)
= L0 × . . .× L`−1 =: Ap.

i.e. the reduction of K modulo p is isomorphic to ` copies Li = Zp[X]/Fi(X) of Fpd . Since all finite fields of a
given degree are isomorphic, each of these copies of Fpd is isomorphic to each other. Note we let Ap denote the
representation of the algebra by polynomials modulo Φm and Ap denote the algebra by a set of l copies of the
fields defined by the polynomials Fi(X).

We note there is a natural homomorphic inclusion maps Ap −→ OK defined by mapping Ap to the coset
representative with coefficients in (−p/2, p/2]. If α ∈ OK then we let α mod p denote the inverse in Ap under
this inclusion. If q is a prime greater than p then we can also consider elements of Ap as elements in Aq but
this inclusion is not a homomorphism (since it only preserve the arithmetic operations “as long as there is no
wraparound”).

We will use Ap (resp. Ap) in two distinct ways. In the first way we use Ap and Ap to describe the message
space of our scheme; in this case we take p to be small (think p = 2, or a 32-bit prime). In the second way, we use
Aq (for a large prime q) as an approximation of the global object A. Looking ahead the basic construction is that
we take an element α ∈ Ap, then form the element in Aq given by α + pt · τ , where τ is referred to as the noise.
Public operations are then performed, and these will correspond to valid operations in Ap only if the noise term
does not become too large (in the sense of the∞-norm of the noise becoming bigger than q/2). If the operation is
does not result in wrap-around then we can (upon decrypting) obtain the plaintext in Ap.

C.2 Underlying Plaintext Algebra

Each message inAp actually corresponds to `messages in Fpd
∼= Zp[X]/Fi(X). We call each of these components

a “slot”. By the Chinese Remainder Theorem, additive and multiplicative operations in Ap correspond to SIMD

87

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

operations on the slots. However, in many applications we will be interested in plaintexts where each slot lies in
Fpn , for some n dividing d. (In particular this includes the important case of n = 1.) In addition an application
may have a preferred representation (i.e. preferred polynomial basis) for the underlying field, Fpn .

We therefore fix (or are given) an irreducible polynomial G(X) ∈ Zp[X], of degree n, which defines the
specific polynomial basis we are interested in; we take G(X) = X − 1 when n = 1. To fix notation we define
Kn = Zp[X]/G(X) to denote one copy of this degree n field, with the given polynomial representation.

Note, in applications one is given p and n, and then one needs to find values of m which enable the above
representation. Basic algebra shows us that Φm(X) will have a degree d factor if and only if m divides pd − 1.
Thus, given p and n, we need to select m such that for some value d = s · n, we have m divides pd − 1. The value
` is given by φ(m)/d.

For each of our fieldsLi = Zp[X]/Fi(X) there will be a distinct homomorphic embedding ofKn intoLi which
we will denote by Ψn,i, which will be an isomorphism in the case when n = d. Our basic plaintext space will now
be defined as ` copies of Kn, i.e.M = (Kn)`, where addition and multiplication will be defined component-wise.
We therefore can define a map

Ψn :
{

M −→ Ap
(m0, . . . ,m`−1) 7−→ (Ψn,0(m0), . . . , Ψn,`−1(m`−1)).

By applying the Chinese Remainder Theorem given an element a ∈ Ap we can obtain a value α ∈ Ap; we
write α = CRTp(a). Note, our use of notations: Elements in Ap and Bp will be represented by lower case Greek
letters; elements inAp andM will be represented by bold face roman letters (since they are vectors); and elements
in Kn and Li will be represented by standard lower case roman letters.

We end this discussion of the plaintext space by noting that there is a simple operation that produces the
projection map. If we consider the element πi ∈ Ap which is defined by the element in Ap given by the i unit
vector ei. Then if m = (m0, . . . ,m`−1) ∈ Ap that πi · CRTp(m) = CRTp(0, . . . , 0,mi, 0, . . . , 0). From πi we
can also define a projection on an arbitrary subset I ⊂ {0, . . . , `− 1} in the obvious way; by defining πI to be the
element

∑
i∈I CRTp(ei).

C.3 Galois Theory of Cyclotomic Fields

The field K = Q(ζm) is abelian (i.e. has abelian Galois group) and has Galois group given by Gal(K/Q) ∼=
(Z/mZ)∗. If we think of X in the representation of K as denoting a generic mth root of unity ζm, then given an
element i ∈ (Z/mZ)∗ the associated element of the Galois group is given by the mapping κi : X 7→ Xi.

We now need to consider how the Galois group Gal(K/Q) works when we consider K modulo p, to Ap and
Ap. Notice, that since Ap is not a field the usual theorems of Galois Theory do not apply (an obvious fact but worth
stating). The maps defined by the Galois group commute with our functions Ψn, and CRTp etc. Thus, to fix ideas,
consider an element m = (m0, . . . ,m`−1) ∈ M = K`. We obtain the corresponding element in Ap by applying
α = CRTp(Ψn(m)) ∈ Ap. Now if we apply the element κi from Gal(K/Q) to the element α we obtain an element
β such that β = CRTp(Ψn(κi(m1), . . . , κi(m`))), where κi(mj(X)) = mj(Xi) (mod G(X)).

Considering how automorphisms work on Ap, it is well known that any field Fpk has Galois group over Zp
given by the cyclic group Ck of order k. Now since Ap contains the subfield Fpd we have that Gal(K/Q) contains
the cyclic subgroup Cd C (Z/mZ)∗. The group Cd is called the decomposition group of a prime ideal lying
above p in K. The group Cd is generated by the element p ∈ (Z/mZ)∗, which corresponds to the Frobenius map
κp : X 7→ Xp. In what follows we let G denote this subgroup Cd of (Z/mZ)∗

Considering how Gal(K/Q) acts on Kn, we notice that the Galois group of Kn over Zp is given by Cn ∼=
Cd/Cd/n and generated by the Frobenius map. The key difference, between Kn and Kd, being that the map κpn

88

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

is the identity on the subfields Kn. If we want to restrict to the Galois group of Kn we let Ĝ denote the subset
{1, p, p2, . . . , pn−1} consisting of a set of representatives for the Galois group of Kn.

Since (Z/mZ)∗ is abelian all subgroups are normal, and hence we can define quotient groups, and so we define
H to be the quotient group (Z/mZ)∗/G, noteH has order `. We writeH as a product of cyclic groups Cn1 × Cnt

with ni dividing ni+1. As a set of coset representatives for H we first pick a coset representative hi for Cni , and
then as the coset representatives of all other elements we take those elements in (Z/mZ)∗ given by

t∏
i=1

hei
i for 0 ≤ ei < ni.

Thus we can identifyH with a subset of (Z/mZ)∗.

If we label the roots of Φm in K by ζ(0)
m to ζ(φ(m)−1)

m then it is a standard fact that the Galois group acts
transitively on these roots. The subgroup G acts on these roots, and we can partition the set of roots into disjoint
sets with respect to the group action of G. That is we create ` = φ(m)/d subsets each of d elements, we label
these subsets X0, . . . , X`−1. Since Gal(K/Q) acts transitively on the set {ζ(0)

m , . . . , ζ
(φ(m)−1)
m }, the quotient group

H = Gal(K/Q)/G acts transitively on the set X0, . . . , X`−1.
Since G was the decomposition group of p the setsXi, each containing d complex roots, when reduced modulo

p can be placed in correspondence with the roots of Fi(X), i.e. one of the factors of Φm modulo p. We need to fix a
representative for for each setXi mod p. Fixing a representative forXi mod pmeans essentially fixing a root of
Fi(X) modulo p; and one can think of the symbolic root X being such a root with all other roots being given by a
polynomial inX modulo p of degree less than d−1 (when reduced arithmetic is considered modulo Fi(X)). Since
H has order ` and acts transitively on {X0, . . . , X`−1}, for each i ∈ {0, . . . , ` − 1} there is exactly one element
σi in H which sends 0 to i. If we fix the representative of the set X0 to be ζ(0)

m then to define the representative of
the set Xi we take σi ∈ H and set the representative of Xi to be σi(ζ

(0)
m). Since, defining a representative of Xi

essentially means fixing a representation of the field Zp[X]/Fi(X) this then means that our set of representatives
for H act “transitively on the plaintext slots” in the following sense: For each pair i, j ∈ {0, . . . , ` − 1} we have
that

σj(σ−1
i (CRTp(Ψn(0, . . . , 0,mi, 0, . . . , 0)))) = CRTp(Ψn(0, . . . , 0,mpt

j , 0, . . . , 0)).

for some integer t. In the case n = 1 we have mpt

j = mj and so our set of representatives for H act directly as
permutations on the slots.

Our main technical contribution in both practical and theoretical terms to FHE is based on the properties of the
groupH and how it acts on the plain text slots. It is clear, sinceH acts transitively as above and we have projection
maps, that we can, given a vector of slots (m0, . . . ,m`−1) ∈ K`n map it to an arbitrary permutation of the slots.
The naive algorithm for this, consisting of projecting each element, mapping viaH as above, making sure we cope
with the possibility of powering by Frobenius, and then recombining via addition, has complexity O(`). In Section
3 we showed that an arbitrary permutation on the slots can be realized in O(t · log `) operations, where t is the
number of cyclic components of the group H, note t = O(log `). That this algorithm can be applied in our case
should be immediate, but to fix ideas, we examine howH acts on the slots whenH is cyclic; and how to construct
our offset swaps in this case.

When H is cyclic If H = 〈h〉 is cyclic we can, by fixing on a given value of F0(X), reorder the factors Fi(X)
so that the factors are precisely those factors corresponding to σih(1). Thus we can consider H as defining permu-
tations on the factors of Φm modulo p. Although H is rarely cyclic this case is illustrative of what is occurring,

89

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

and in practice we can often restrict the number of slots to correspond to the largest cyclic subgroup of H. 8 We
consider three examples of increasing complexity:

Example 1: The simplest case to understand is when the decomposition group is trivial, i.e. d = 1. Consider the
case of m = 11 and p = 23, we have that the polynomial Φm(X) factors into ten linear factors modulo 23, and
the Galois group (Z/mZ)∗ is cyclic of order 10 and generated by the element 2. Since G = 〈1〉 we take using the
procedure aboveH ∼= (Z/mZ)∗ = 〈2〉. Thus we have ten slots and we order them such that we have

κ2(CRTp(Ψn(m0,m2, . . . ,m9))) = CRTp(Ψn(m9,m0,m2, . . . ,m8)).

Hence κ2 produces a cyclic shift of the slots. If we wish to switch elements in positions i and j, for i < j, the we
only need to apply the following operation

swapi,j(α) = κ2j−i(πi · α) + κ2i−j (πj · α) + π{0,...,9}\{i,j} · α.

Example 2: To see what happens for non-trivial decomposition groups we consider the case of m = 31 and p = 2.
We have since 25 ≡ 1 (mod 31) that the decomposition group at p is cyclic of order 5, i.e. d = 5. In this example
we find that by Gal factors directly into the product of G = 〈2〉 and the cyclic subgroup 〈6〉. The set of coset
representatives for H we can take to be this subgroup 〈6〉, thus we can identify H with a subgroup of Gal. This
implies that the elements inH act as direct permutations on the slots, and we do not need to worry about the action
of Frobenius. In particular we can define the six slots so that we have, for a specific representation of Kn = F25 ,

κ6(CRT2(Ψn(m0,m1,m2,m3,m4,m5))) = CRT2(Ψn(m5,m0,m1,m2,m3,m4)).

If we wish to shift to the left we take the elements in Gal(K/Q) given by 1/6i (mod m), so for example since
1/6 = 26 (mod 31) we have

κ26(CRT2(Ψn(m0,m1,m2,m3,m4,m5))) = CRT2(Ψn(m1,m2,m3,m4,m5,m0)).

If we wish to switch elements, for an element α ∈ Ap, in positions i and j, with i < j, then we apply the following
operation

swapi,j(α) = κ6j−i(πi · α) + κ6i−j (πj · α) + π{0,...,5}\{i,j} · α.

Example 3: The above example, in which H could be identified with a subgroup of Gal is not typical. In the
general case we have the added complication of dealing with actions of Frobenius on applying automorphism
corresponding to elements in H. We examine this more general situation via means of an example. We make
m = 257 and p = 2. In this case we find that 2 has order 16 modulo m, and that the quotient group H = Gal/ 〈2〉
is cyclic of order 16. We also find that there is no cyclic subgroup of order 16 of Gal which is not equal to 〈2〉.
ThusH cannot be represented as a subgroup of Gal.

We instead represent H by the set of coset representatives given by 3i mod m, for i = 0, . . . , 15. Since
38 mod m = 136 6∈ 〈2〉, whilst 316 mod m = 249 = 211 mod m. We therefore have 16 slots, each consisting of
an element in Kn = F216 . We fix a specific representation of each slot so that

κ3(CRT2(Ψn(m0,m1, . . . ,m14,m15))) = CRT2(Ψn(m211

15 ,m0,m1, . . . ,m13,m14)).

8 For implementation purposes restricting the slots in this way is simpler, although for our asymptotic result on FHE with polylog overhead
we will require to consider the whole ofH.

90

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

However, we also have

κ86(CRT2(Ψn(m0,m1, . . . ,m14,m15))) = CRT2(Ψn(m1, . . . ,m13,m14,m15,m
25

0)).

Note that (1/3) mod m = 86, but that 86 is not one of our coset representatives forH.
In other words to move elements to the right (without wrap around) by i places we apply the map κ3i mod m,

but to move elements to the left (without wrap around) by i places we need to apply the map κ3−i mod m. Hence if
we wish to switch elements, for an element α ∈ Ap, in positions i and j, with i < j, then we apply the following
operation

swapi,j(α) = κ3j−i(πi · α) + κ(1/3)j−i mod m(πj · α) + π{0,...,5}\{i,j} · α.

Hence, although the underlying algebra is different whenH cannot be identified with a subgroup of Gal, the method
to obtain a swap is exactly the same.

These examples show that for cyclic groups we can realize any transposition via the use of scalar multiplication
by the πI and application of maps κi. The above technique also allows us to realize the offset swaps from Definition
1 for any subset T ⊂ S = {0, . . . , `− 1} and any i. The following technique works for when H = 〈h〉 is a cyclic
group generated by h, generalizing to other groups follows from our methods but leads to more complex formulas.
Recall that a permutation π over S is an i-offset swap over S if there exists a subset T ⊂ S such that the pairs
{(t, t+ i mod `) : t ∈ T} are disjoint and π simply swaps each pair (leaving the other elements fixed).

For a set A we let A + i = {j + i mod ` : j ∈ A} and A = S \ A. We also split T into two sets TL and TR
such that t ∈ TL if and only if t ∈ T and t + i < `, i.e. TL is the set of elements in T which can be shifted to
the left by i, without wrap around. Algebraically an offset swap on an element α is then defined in terms of our
isomorphisms κi etc as

π
T∪(T+i)

· α+ κhi(πTL
· α) + κ(1/h)i(πTL+i · α) + κ(1/h)`−i(πTR

· α) + κh`−i(πTR+i · α)

The first term corresponds to those elements which are kept fixed by the offset swap, i.e. those elements neither in
T nor T + i. The second term corresponds to those elements shifted to the left by i without wrap around, the third
corresponds to elements shifted to the right by i without wrap around by i without wraparound, the final two terms
deal with the case of wraparound.

D Using mod-Φm Polynomial Arithmetic

Part of our goal in this paper is to allow implementations of BGV-type cryptosystems over rings of the form
Z[X]/Φm(X) for arbitrary integers m, not only when m is a prime. Although most of the underlying algebra
works the same way regardless of what m is, we do not have a good bound on the increase in the size of coefficient
vectors when using mod-Φm arithmetic.

Recall that for every ring R = Z[X]/F (X) there is a “ring-constant” γR, such that for all a, b ∈ R it holds
that ‖ab‖ ≤ γR · ‖a‖ · ‖b‖, where ‖x‖ is the norm of the coefficient-vector of x (say, the l∞ norm). However, we
do not have a good bound on the “ring-constant” for rings of the for Rm = Z[X]/Φm(X), and in particular γRm

can be super-polynomial in m. In particular γRm is related to the sizes of the coefficients of Φm(X) which are
known to get rather large [1]. In our context, this means that when multiplying two “short” ciphertexts, the result
can be “longer” than the product of the two by this factor γRm for which we do not have a good bound.

91

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

D.1 Canonical Embeddings and Norms

To analyze a cryptosystem that works mod-Φm, we therefore use a different measure of “size” of polynomials:
Rather than considering the norm of the coefficient vector of a polynomial, we consider the norm of the “canonical
embedding” of that polynomial: For an integerm, let Pm be the set of complex primitivem-th roots of unity. Then
for a polynomial a ∈ Q[X]/Φm(X), the “canonical embedding” of a is the vector of values that a assumes in all
the roots in Pm,

E(a) def=
〈
a(ρk) : k ∈ Z∗m

〉
, where ρ is a fixed complex primitive m-th root of unity (e.g., ρ = e−2πi/m).

More generally, the canonical embedding of an element a ∈ Q[X]/F (X) consists of the evaluations of a in
all the complex roots of F . Below we only use the canonical embeddings for the cases F (X) = Φm(X) and
F (X) = Xm − 1. Note that E(a) is in general a vector of complex numbers, and the size of each entry in that
vector is the norm (absolute value) of that complex number.

Below we refer to the norm of E(a) as the “canonical embedding norm” of a, and denote it by ‖a‖can. Although
it is possible to define the “canonical embedding lp norm” for any lp, below we always refer to the canonical
embedding l∞ norm. Namely,

‖a‖can def= ‖E(a)‖ = max
k∈Z∗m

|a(ρk)|.

(Note again that in this section we consistently use ‖ · ‖ to refer to the l∞ norm of a vector and not the l2
norm.) We extend the canonical embedding norm to vectors over Q[X]/Φm(X) in the natural way, namely if
a = (a0, a1, . . . , an−1) is an n-vector over Q[X]/Φm(X), then ‖a‖can = maxi<n ‖ai‖can.

It is easy to see that for any element a ∈ Q[X]/Φm(X), the canonical embedding norm is not much more than
the coefficient norm, namely ‖a‖can < φ(m) · ‖a‖ (where ‖a‖ is the norm of a’s coefficient vector). This follows
since each of the m-th roots of unity has norm one, and we are adding φ(m) of them with coefficients bounded
by ‖a‖. Clearly, for any two elements a, b ∈ Z[X]/Φm(X) we have ‖a + b‖can ≤ ‖a‖can + ‖b‖can, and since
the primitive m-th roots of unity are all roots of Φm(X) then ‖ab mod Φm(X)‖can = ‖ab‖can ≤ ‖a‖can · ‖b‖can.
Similarly for n-vectors a,b ∈ (Q[X]/Φm(X))n we get ‖ 〈a,b〉 mod Φm(X)‖can ≤ n · ‖a‖can · ‖b‖can.

Also, for everym there exists a “ring constant” cm (which is a real number) such that for all a ∈ Z[X]/Φm(X)
it holds that ‖a‖ ≤ cm · ‖a‖can; see [6] for a discussion of cm. Another property of the canonical embedding norm
that we use below, is that a nonzero integer polynomial must have norm at least one:

Lemma 10. Let a ∈ Z[X]/Φm(X) for some integer m, then ‖a‖can ≥ 1.

Proof. Since a is a nonzero integer polynomial, then the result of the complex product
∏
k∈Z∗m a(ρk) must be a

nonzero integer, and therefore it has magnitude at least 1. It follows that some of the terms in the product must
have magnitude 1 or more, hence the l∞ norm of E(a) is at least 1. ut

Modular Reduction in Canonical Embedding. To talk about the canonical norm of elements in Zq[X]/Φm(X)
(i.e., polynomials reduced both mod Φm(X) and mod q), we define the “canonical embedding norm reduced
mod q”, denoted |a|canq , as the smallest norm ‖b‖can among all the polynomials that are congruent to a modulo q.
Namely, for a ∈ Z[X]/Φm(X) we denote

|a|canq
def= min{ ‖b‖can : b ∈ Z[X]/Φm(X), b ≡ a (mod q) }.

(We note that the minimum exists, even though we take it over an infinite set, since the set {E(b) : b ≡ a (mod q)}
is a coset of a lattice.) Sometimes we may want to talk about the specific polynomial where the minimum is

92

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

obtained, namely the polynomial b satisfying b ≡ a (mod q) and ‖b‖can = |a|canq . If this polynomial is unique,
then we call it the “canonical reduction mod q of a” and denote it by

can

[a]q
def= argmin{ ‖b‖can : b ∈ Z[X]/Φm(X), b ≡ a (mod q) }.

We stress that our cryptosystem never needs to compute the canonical embedding (or the canonical reduction,
or the canonical norm) of polynomials, it is only in the analysis of this scheme that we use these terms.

Obviously, for any element a ∈ Z[X]/Φm(X) and any modulus q, the reduced canonical embedding norm
is not more than the canonical embedding norm, namely |a|canp ≤ ‖a‖can. Similarly, it is easy to check that if
c ≡ ab mod (Φm(X), q) then |c|canq ≤ |a|canq · |b|canq . A corollary of Lemma 10 (that we use in our analysis of
modulus switching) is that an element with small enough canonical embedding norm must be the unique canonical
reduction mod q of its coset:

Lemma 11. Letm, q be integers, and let a ∈ Z[X]/Φ(m) be such that ‖a‖can < q/2. Then for any b ∈ Z[X]/Φm
such that b 6= a but b ≡ a mod q, it holds that ‖b‖can ‖a‖can = |b|canq . Hence for all b ≡ a mod q we have

a =
can

[b]q.

Proof. Fix any b ∈ Z[X]/Φm such that b 6= a but b ≡ a mod q. Then b−a
q is a nonzero integer polynomial, and by

Lemma 10 its canonical embedding has an entry of magnitude ≥ 1. This implies that E(b) has an entry of distance
at least q from the corresponding entry in E(a). Since that entry in E(a) has magnitude < q/2, then the one in
E(b) must have magnitude > q/2, and therefore ‖b‖can > q/2 > ‖a‖can. It follows that a has the unique smallest
canonical embedding norm among all the polynomials in its coset mod q. ut

D.2 Our Cryptosystem

In terms of operations, our cryptosystem is almost identical to the BGV cryptosystem [3], where all the operations
are done modulo Φm(X). However, our analysis of (the functionality of) this cryptosystem is somewhat different,
in that we keep track of the canonical norm of “the noise” rather than the norm of its coefficient vector. Specifically,
we maintain the invariant that if c is a ciphertext encrypting the aggregate plaintext a ∈ Zp[X]/Φm(X) relative to
secret key s and modulus q, then in the ring Zq[X]/Φm(X) we have the equality

〈c, s〉 = p · u + a (mod Φm(X), q), (1)

where u ∈ Z[X]/Φm(X) has small canonical norm mod q, |u|canq � q.

Decryption. We claim that as long as this invariant holds, we can use s to decrypt c. This can be done in one of
two ways:

– If the “ring constant” cm happens to be small enough (i.e., much smaller than q), then from ‖u‖can � q and
p � q and cm � q we conclude that also ‖p · u‖ ≤ cm · p · ‖u‖can � q, which means that the coefficient
vector of the noise has small norm and decryption works just as in standard BGV cryptosystems. For example
for prime values of m the constant cm is equal to approximately 4/π, [6].

– Otherwise, we “lift” decryption to work modulo Xm − 1 rather than modulo Φm(X), and use the fact that the
“ring constant” of Z[X]/(Xm − 1) is small (namely, it is

√
m).

93

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Describing the second option in more detail, Lemma 12 below tells us that there exists an integer polynomial
G ∈ Z[X]/(Xm − 1) such that G(α) = m for every complex primitive m-th root of unity α, and G(β) = 0 for
every complex non-primitivem-th root of unity β. This means in particular thatG ≡ m (mod Φm(X)) (in words,
the polynomial G reduces to the constant m modulo Φm).

Computing b← G·〈c, s〉 mod (Xm−1, q), we get b = p·Gu+Ga (mod Xm−1, q), due to Equation (1). We
now observe that the evaluation of the polynomialGu in all them-th roots of unity must be small: For the primitive
roots this evaluation is only m times that of u (which is small by our invariant), and for the non-primitive roots this
evaluation is zero (sinceG evaluates to zero in these roots). Therefore the canonical norm ofGu in Z[X]/(Xm−1)
is small and therefore also the norm of its coefficient vector is small, so it can be decrypted as in standard BGV
cryptosystems. Namely, we have no wraparound so setting b′ ← b mod p we have b′ = Ga ∈ Z[X](Xm − 1). If
we now further reduce modulo Φm(X), b′′ ← b′ mod Φm, we get b = m · a ∈ Z[X]/Φm(X) (because G ≡ m
(mod Φm(X)). Finally we can multiply by (m−1 mod p) to get a = m−1 · b′′ mod p.

Lemma 12. For any integer m there is an integer polynomial Gm of degree ≤ m − 1, such that Gm(α) = m
for every complex primitive m-th root of unity α, and Gm(β) = 0 for every complex non-primitive m-th root of
unity β. Moreover the Euclidean norm of Gm’s coefficient vector is

√
m · φ(m).

Proof. Clearly there exists a complex polynomial of degree ≤ m − 1 which evaluates to m in the primitive m-th
roots of unity and to zero in the non-primitive m-th roots of unity. We only need to show that this polynomial has
integer coefficients, and that it has a low-norm coefficient vector.

To show that, let D be the m ×m DFT matrix (i.e., the Vandemonde matrix on complex m-th roots of unity,
Dij = ρij for some fixed primitive m-th root of unity ρ). Denote the coefficient vector of G by g, and the vector
of values that it assumes in all the m-th roots of unity by v (so v is a vector of m’s and 0’s), and we have v = Dg.
Recalling that the inverse of D is D−1 = D∗/m (with D∗ the conjugate transpose of D), and considering the 0-1
vector v′ = v/m, we have that g = D∗v′. Each coefficient inG is therefore a 0-1 combination of the entries in one
row of D∗, with the 1’s in the positions corresponding to the primitive roots of unity. Specifically, the coefficient
of xj in G is gj =

∑
i(ρ
−j)i, where the sum goes over all indexes i ∈ Z∗m. Since the sum is symmetric over the

primitive roots of unity, then it must sum to an integer. Hence G must be an integer polynomial.
Finally, recall that the matrix D∗ is orthogonal with rows of norm

√
m, hence the l2 norm of g is

√
m times

the l2-norm of v′. Since the number of 1’s in v′ is exactly φ(m), then the l2 norm of v′ is
√
φ(m), and therefore

the l2 norm of g is
√
mφ(m). ut

Having described decryption, we now proceed to describe all the other elements of our cryptosystem, namely
key-generation, encryption, addition, “raw multiplication”, key-switching, modulus switching, and Galois group
actions. All these components (bar the last) are very similar to their counterpart in the BGV cryptosystem [3], but
their analysis is slightly different.

Key Generation. The parameters of the scheme include the integer m (that defines the polynomial Φm), the
integer p (that defines the aggregate plaintext space Zp[X]/Φm), and the sequence of moduli q0 > q1 > · · · > qL.

Key generation is as in the ring-LWE-based version BGV [3] over the ring Z[x]/Φm. That is, for appropriate
N = polylog(q0,m), one chooses s0, ε0,1, . . . ε0,N ∈ Z[X]/Φm (with l∞ coefficient norm � q0) as well as
a random elements α0,1, . . . , α0,N ∈R Zq0 [X]/Φm, and computes β0,i ← α0,is0 + p · ε0,i mod (Φm(X), q0).
The level-0 secret key is s0 = [1, s0], and the corresponding public encryption key includes the vectors bi =
[β0,i,−α0,i].

In addition to these keys, the key-generation procedure chooses other secret key vectors for the other levels,
and generates the key-switching matrices between them, as described in Section D.2 below.

94

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Encryption. Encryption is as in BGV. An aggregate plaintext a ∈ Zp[X]/Φm(X) is encrypted by choosing
random short elements τ1, . . . τN ∈ Z[X]/Φm (with l∞ coefficient norm� q0) and setting

c = [c0, c1]← [a, 0] +
N∑
i=1

τi · bi mod (Φm(X), q0). (2)

(Actually, the τi’s can be chosen as elements of Z[x]/Φm with 0/1 coefficients, versus merely being short.)
It is easy to show that semantic security reduces to the hardness of the decision ring-LWE problem for the ring

Zq[X]/Φm and the distributions used to sample the short elements.
To see that our invariant holds with respect to the level-0 secret key s0 and freshly encrypted ciphertexts, note

that Equation (2) implies that c = [a, 0] +
∑N

i=1 τi · bi (mod Φm(X), q0), and therefore

〈c, s0〉 = a+
N∑
i=1

τi〈s0,bi〉 = a+ p ·
N∑
i=1

τi · εi

= a+ p ·
N∑
i=1

τi · εi (mod Φm(X), q0)

and the since all the τi’s and εi’s are small (and therefore also have small canonical embedding norm), then the
canonical embedding norm of the polynomial u =

∑N
i=1 τi · εi mod (Φm(X), q0) is small.

Addition. Adding two ciphertext vectors that are defined with respect to the same secret key and modulus is just
standard addition in Zq[X]/Φm(X). Clearly, if 〈c, s〉 = p · u+ a and 〈c′, s〉 = p · u′ + a′ then also 〈c + c′, s〉 =
p · (u+ u′) + (a+ a′), and the canonical embedding norm of u+ u′ is still small.

“Raw Multiplication”. As in the BV/BGV family of cryptosystems [5, 4, 3], “raw multiplication” of two cipher-
text vectors (defined with respect to the same modulus) is done using tensor product. Namely, if we have ciphertext
vector c which is decrypted to a under s and q, and another vector c′ which is decrypted to a′ under s′ and q, then
we set c̃ = vector(c⊗c′) mod (Φm(X), q) (where vector(·) opens the matrix into a vector using some appropriate
ordering). Denoting s̃ = vector(s⊗ s′) mod (Φm(X), q), we thus have

〈c̃, s̃〉 = st(c⊗ c′)s′ = 〈c, s〉 ·
〈
c′, s′

〉
= (p · u+ a) · (p · u′ + a′) = p · (puu′ + ua′ + au′) + aa′ (mod Φm(X), q).

Since the canonical embedding norm of ũ = puu′ + ua′ + au′ mod (Φm(X), q) is still small, it means that c̃ is a
valid ciphertext with respect to s̃ and q, which is decrypted to aa′.

Key Switching. A crucial component of the BV/BGV cryptosystems is the ability to translate a ciphertext with
respect to one secret key into a ciphertext that decrypts to the same thing under another secret key. This is used, for
example, to translate the “extended ciphertext” that we get from raw multiplication back to a normal ciphertext, or
to translate two ciphertext vectors with respect to different keys into ciphertexts with respect to the same key, so
that they can be added or raw-multiplied.

Let s be a secret-key vector over Zq[X]/Φm(X), and consider another 2-element secret-key vector t ∈
(Zq[X]/Φm(X))2 whose first entry is 1. To allow translation from s-ciphertexts to t-ciphertexts, we first en-
code s in a redundant manner by computing 2is mod q for i = 0, 1, . . . , l = dlog qe and concatenating all these

95

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

vectors to form
ŝ = Powersof2q(s) def= [s | 2s | 4s | . . . | 2ls] mod q.

Then we choose a random low coefficient norm vector v over Zq[X]/Φm(X) of the same dimension as ŝ (call
this dimension d), and a matrix R ∈ (Zq[X]/φm)2×d which is chosen at random from the orthogonal space to t,
namely tR = 0 (mod Φm(X), q). The key-switching matrix from s to t is then set as

W = W [s→ t] =
[
ŝ + pv
– 0 –

]
+ R mod (Φm(X), q)

Again it is easy to show that if decision ring-LWE is hard for the ring Zq[X]/Φm(X) and the distributions used to
sample t and v, then the matrix W above is pseudo-random, even for someone who knows s.

Given a ciphertext vector c (over Zq[X]/Φm(X)) that satisfies our invariant with respect to s and q, we use
W to translate it into another vector c′ that satisfies our invariant with respect to t and q, as follows: First, for
i = 0, 1, . . . , l = dlog qe we denote by ci the vector over Z2[X]/Φm(X) containing the i’th bits from all the
coefficients of all the entries of c. Namely:

c0 = c mod 2, and ci = 2−i ·
(
(c mod 2i+1)−

∑
j<i

2jcj
)

for i > 0.

Then the bit-decomposition of c is the concatenation of all these vectors,

ĉ = BitDecomp(c) def= [c0 | c1 | . . . | cl].

Clearly ĉ has low norm coefficient vectors, since they are all 0-1 vectors, and we have 〈ĉ, ŝ〉 = 〈c, s〉 over Zq[X]
(and therefore also over Zq[X]/Φm(X)). Switching keys from s to t is done simply by setting c′ ← W ĉ mod
(Φm(X), q). To see that this maintains our invariant, assume that for some a ∈ Zp[X]/Φm(X) we have 〈c, s〉 =
p · u+ a (mod Φm(X), q), where u has low canonical embedding norm. Then:〈

c′, t
〉

= tW ĉ = t
[
ŝ+ pv
– 0 –

]
ĉ

(a)
= 〈ĉ, ŝ〉+ p · 〈ĉ,v〉

(b)
= 〈c, s〉+ p · 〈ĉ,v〉 = p · (u+ 〈ĉ,v〉)︸ ︷︷ ︸

u′

+a (mod Φm(X), q),

where Equality (a) holds since the first entry of t is 1, and Equality (b) follows from 〈ĉ, ŝ〉 = 〈c, s〉. Finally, since
both v and ĉ have low canonical embedding norm (because they have low coefficient norm), then so has 〈ĉ,v〉
and therefore also u′ = 〈ĉ,v〉+ u mod (Φm(X), q).

Galois Group Actions. Recall that a Galois group action is obtained by applying the transformation f(X) 7→
f(Xi) mod (Φm(X), q) for some i ∈ Z∗m to all the polynomials in our ciphertext vectors, secret keys, etc. Assume
that we have 〈c, s〉 = p · u + a (mod Φm(X), q), and define c(i), s(i), u(i), a(i) as what you get by applying the
above Galois group action to c, s, u, a, respectively. Our invariant means that for some polynomial k ∈ Zq[X] we
have ∑

j

cj(X)sj(X) = p · u(X) + a(X) + k(X)Φm(X) (equality in Zq[X]), (3)

and therefore also for every i∑
j

cj(Xi)sj(Xi) = p · u(Xi) + a(Xi) + k(Xi)Φm(Xi) (equality in Zq[X]). (4)

96

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Equation (4) follows since the two sides of Equation (3) are identical as formal polynomials over Zq, and therefore
they must coincide also as functions over any characteristic-q field. It follows that the functions on both sides of
Equation (4) must also coincide over any characteristic-q field, and therefore the two sides must be identical as
formal polynomials over Zq.

Recalling that if i ∈ Z∗m then Φ(X) divides Φ(Xi), we obtain〈
c(i), s(i)

〉
=
∑
j

cj(Xi)sj(Xi) = p · u(Xi) + a(Xi) = p · u(i) + a(i) (mod Φm(X), q),

as needed. Observing that for i ∈ Z∗m the canonical embeddings of u and u(i) are just a permutation of each other
(and hence have the same norm) we deduce that our invariant in maintained under the transformation X 7→ Xi

whenever i ∈ Z∗m.

Modulus Switching. Our modulus switching procedure works exactly as in the BGV cryptosystem. Namely, to
switch a ciphertext c (in coefficient representation) from qi to qi+1, we just scale the coefficient vectors in c by a
qi+1/qi factor, and then round the result to get an integer polynomial vector c′ such that c′ ≡ c (mod p).

Definition 3 (Scale). For a vector c overZ[X]/Φm(X) and integers qi > qi+1 > p, define c′ ← Scale(c, qi, qi+1, p)
to be the vector over Z[X]/Φm(X) closest to (p/q) ·c (in coefficient representation) that satisfies c′ ≡ c (mod p).

Our analysis, however, is a little different than in [3]. The proof from [3, Lemma 4] relies on the fact that the
coefficient vector of [〈c, s〉]qi has low norm, whereas in out case we instead have that this polynomials has low
canonical embedding norm mod qi. We therefore re-prove this lemma under our new condition.

Lemma 13. Let qi > qi+1 > p be positive integers satisfying qi = qi+1 = 1 (mod p). Let c, s be two n-vectors
over Z[X]/Φm(X) such that | 〈c, s〉 |canqi < qi/2 − qi

qi+1
· pn · φ(m) · ‖s‖can, and let c′ = Scale(c, qi, qi+1, p).

Denoting e = 〈c, s〉 mod Φm(X) and e′ = 〈c′, s〉 mod Φm(X) (arithmetic in Z[X]/Φm(X)), it holds that

can[
e′
]
qi+1

≡
can

[e]qi (mod p) (in coefficient representation), and

|e′|canqi+1
<

qi+1

qi
· |e|canqi + pn · φ(m) · ‖s‖can

Proof. For some k ∈ Z[X]/Φm(X), we have
can

[e]qi= 〈c, s〉 − qik, where the equality is over Z[X]/Φm(X). For
the same k, let e′′ = e′ − qi+1k ∈ Z[X]/Φm(X). Since c′ ≡ c (mod p) and qi ≡ qi+1 (mod p), then also

e′′ =
〈
c′, s

〉
− qi+1k ≡ 〈c, s〉 − qik =

can

[e]qi (mod Φm(X), p).

It therefore suffices to prove that e′′ =
can

[e′]qi+1
(equality over Z[X]/Φm(X)) and that it has small enough norm.

Denote the distance between qi+1

qi
· c and its rounded version c′ by δ def= c′ − qi+1

qi
c. Then δ is a vector over

Q[X]/Φm(X), and the coefficient-vectors in δ all have entries in [−p/2, p/2). Moreover, we have

e′′ =
〈
c′, s

〉
− qi+1k =

qi+1

qi
〈c, s〉+ 〈δ, s〉 − qi+1k

=
qi+1

qi

(
〈c, s〉 − qik

)
+ 〈δ, s〉 =

qi+1

qi
·

can

[e]qi + 〈δ, s〉 . (5)

97

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Considering the polynomial 〈δ, s〉 ∈ Q[X]/Φm(X), we can bound its canonical embedding norm by:

‖ 〈δ, s〉 ‖can ≤ n · ‖δ‖can · ‖s‖can ≤ n · φ(m) · ‖δ‖ · ‖s‖can ≤ pn · φ(m) · ‖s‖can.

From Equation (5) we now get:

‖e′′‖can ≤ qi+1

qi
· |e|canqi + ‖ 〈δ, s〉 ‖can ≤ qi+1

qi
· |e|canqi + pn · φ(m) · ‖s‖can (6)

<
(qi+1

2
− pn · φ(m) · ‖s‖can

)
+ pn · φ(m) · ‖s‖can =

qi+1

2

Finally, Lemma 11 implies that e′′ =
can

[e′]qi+1
, completing the proof. ut

It follows immediately from Lemma 13 that if c satisfies our invariant with respect to s and qi, and if the
canonical embedding norm of s is small enough so that we have | 〈c, s〉 |canqi < qi/2 − qi

qi+1
· pn · φ(m) · ‖s‖can,

then the scaled vector c′ = Scale(c, qi, qi+1, p) satisfies our invariant with respect to the same s and the new
modulus qi+1.

Variants. We note that one can optimize BGV key generation and encryption using a cute trick by Brakerski and
Vaikuntanathan [5] (following [15]). This reduces the public key size and encryption time, without changing the
scheme in an any way that affects the applicability of our techniques; we still obtain FHE with polylog overhead
using BGV with BV’s optimizations. (We note that our techniques can be applied to the cryptosystem of BV [5]
as well, but one needs to use BGV’s noise management technique to reduce the overhead to polylog.)

In BV key generation [5], for level-0, one only needs to choose low-norm elements s0, ε0 ∈ Z[X]/Φm(X)
(with coefficient norm� qL) as well as a random element α0 ∈R Zq0 [X]/Φm(X), and computing β0 ← −α0s0 +
p · ε0 mod (Φm(X), q0). The level-0 secret key is s0 = [1, s0], and the corresponding public encryption key is
b = [β0, α0]. This approach reduces level-0 key size by factor of O(log q0). One generates keys for the other
levels similarly.

In BV encryption, an aggregate plaintext a ∈ Zp[X]/Φm(X) is encrypted by choosing three random short
elements τ, ε1, ε2 ∈ Zq0 [X]/Φm(X) and setting

c = [c0, c1]← [τβ0, τα0] + p · [ε1, ε2] + [a, 0] mod (Φm(X), q0). (7)

It is easy to show that semantic security reduces to the hardness of the decision ring-LWE problem for the ring
Zq[X]/Φm(X) and the distributions used to sample s0, τ , and ε, ε1, ε2.

To see that our invariant holds with respect to the level-0 secret key s0 and freshly encrypted ciphertexts, note
that Equation (7) implies that c = [τβ0, τα0] + p · [ε1, ε2] + [a, 0] (mod Φm(X), q0), and therefore

〈c, s0〉 = τβ0 + pε1 + a+ s(τα0 + pε2) = − τsα0 + pτε0 + pε1 + a+ s(τα0 + pε2)
= p · (τε0 + ε1 + sε2) + a (mod Φm(X), q0)

and the polynomial u = (τε0 + ε1 + sε2) mod (Xm − 1, q0) has low coefficient norm, and therefore also low
canonical embedding norm. When using BV encryption and key generation, the other aspects of the scheme remain
the same.

98

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

E A Delayed-Reduction Technique

We describe here another variant, where we work with polynomials modulo Xm − 1 rather than polynomials
modulo Φm, and reduce back mod Φm only upon decryption. Importantly, we still want to base our security on
the hardness of ring-LWE with respect to the ring Zq[X]/Φm(X) (recall that decision ring-LWE is easy modulo
Xm − 1, since it can be reduced to the one-dimensional problem modulo X − 1).

We can use Lemma 12 to “lift” the mod-Φm(x) polynomials in the cryptosystem into mod-(Xm − 1) poly-
nomials, simply by multiplying by the polynomial G(X) from that lemma. (This has the effect of introducing an
extra multiplicative factor of m, which we can correct upon decryption.) Note that since G = 0 (mod Xm−1

Φm(x)),

then we can write G(X) = Xm−1
Φm(x) · µ(X) (equality over Z[X]) for some integer polynomial µ. It follows that

if we have two polynomials satisfying u = v (mod Φm) then Gu = Gv (mod Xm − 1). This is because over
Z[X]/(Xm − 1) we have u = v + τΦm for some integer polynomial τ , and so

Gu = G(v + τΦm) = Gu+ (
Xm − 1
Φm

µ) · τΦm = Gu+ (Xm − 1) · µτ = Gu (mod Xm − 1)

In our variant of the BGV cryptosystem, ciphertexts are vectors over the ring Z[X]/(Xm − 1), secret keys
are vectors over the sub-ring Z[X]/Φm, and aggregate plaintexts are elements in Zp[X]/Φm. We maintain the
invariant that if c is a ciphertext encrypting the aggregate plaintext a relative to secret key s and modulus q, then
in the ring Zq[X]/(Xm − 1) we have the equality

G · 〈c, s〉 = p ·G · u + G · a (mod Xm − 1, q), (8)

where u ∈ Z[X]/(Xm − 1) has coefficient vector with small l2-norm, ‖u‖2 � q. Note that we can use s to
decrypt c by setting b← G · 〈c, s〉 mod (Xm− 1, q), then recovering a = m−1 · b mod (Φm, p). Since both b and
p ·Gu+Ga (mod Xm − 1) have coefficients smaller than q/2 in absolute value, then we have the equality b =
p ·Gu+Ga holding over Z[X]/(Xm− 1), without reduction modulo q. We thus have b = Ga (mod Xm− 1, p),
so also b = Ga = m · a (mod Φm, p), so indeed a = b ·m−1 (mod Φm, p).

Having described decryption, we now proceed to describe all the other elements of our cryptosystem, namely
key-generation, encryption, addition, “raw multiplication”, key-switching, modulus switching, and Galois group
actions. All these components (bar the last) are very similar to their counterpart in the BGV cryptosystem [3],
except that we use some mix of mod-Φm and mod-(Xm−1) arithmetic, using multiplication-by-G and Equation (8)
to move between them.

E.1 Key generation

The parameters of the scheme include the integer m (that defines the polynomials Φm and Xm − 1), the integer p
(that defines the aggregate plaintext space Zp[X]/Φm), and the sequence of moduli q0 > q1 > · · · > qL.

Key generation is as in the ring-LWE-based version BGV [3] over the ring Z[x]/Φm. That is, for appropriate
N = polylog(q0,m), one chooses low-norm elements s0, ε0,1, . . . ε0,N ∈ Z[X]/Φm (with l2 norm� q0) as well as
a random elements α0,1, . . . , α0,N ∈R Zq0 [X]/Φm, and computes β0,i ← α0,is0+p·ε0,i mod (Φm, q0). The level-
0 secret key is s0 = [1, s0], and the corresponding public encryption key includes the vectors bi = [β0,i,−α0,i].

In addition to these keys, the key-generation procedure chooses other secret key vectors for the other levels,
and generates the key-switching matrices between them, as described in Section E.5 below.

99

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

E.2 Encryption

Encryption is as in BGV. An aggregate plaintext a ∈ Zp[X]/Φm(X) is encrypted by choosing random short
elements τ1, . . . τN ∈ Z[X]/Φm and setting

c = [c0, c1]← [a, 0] +
N∑
i=1

τi · bi mod (Φm, q0). (9)

(Actually, the τi’s can be chosen as elements of Z[x]/Φm with 0/1 coefficients, versus merely being short.)
Note that freshly encrypted ciphertexts are vectors over the sub-ring Z[X]/Φm(X), but later we allow evalu-

ated ciphertexts to be in the larger ring Z[X]/(Xm − 1). It is easy to show that semantic security reduces to the
hardness of the decision ring-LWE problem for the ring Zq[X]/Φm and the distributions used to sample the short
elements.

To see that our invariant holds with respect to the level-0 secret key s0 and freshly encrypted ciphertexts, note
that Equation (9) implies that G · c = G([a, 0] +

∑N
i=1 τi · bi) (mod Xm − 1, q0), and therefore

G · 〈c, s0〉 = G(a+
N∑
i=1

τi〈s0,bi〉)

= G(a+ p ·
N∑
i=1

τi · εi)

= Ga+ p ·G(
N∑
i=1

τi · εi) (mod Xm − 1, q0)

and the coefficient vector of the polynomial u =
∑N

i=1 τi · εi mod (Xm − 1, q0) has low l2 norm.
We stress that the low l2 norm of u depends crucially on our delayed reduction. Indeed, each of the polynomials

{τi}, {εi}, G has low l2 norm, hence their products and sums over Z[X] would still have low norms. However, we
do not know how to prove that the norm remains low when we reduce them modulo Φm, it is only because we
reduce modulo Xm − 1 that we can argue that the norm remains low.

E.3 Addition

Adding two ciphertext vectors that are defined with respect to the same secret key and modulus is just standard
addition in Zq[X]/(Xm − 1). Indeed, if we have G · 〈c, s〉 = p ·Gu+Ga and G · 〈c′, s〉 = p ·Gu′ +Ga′ (both
over Zq[X]/(Xm − 1)) then also G · 〈c + c′, s〉 = p ·G(u + u′) + G(a + a′), and the l2 norm of the coefficient
vector of u+ u′ is still small.

E.4 “Raw multiplication”

As in the BV/BGV family of cryptosystems [5, 4, 3], “raw multiplication” of two ciphertext vectors (defined with
respect to the same secret key and modulus) is done using tensor product. Namely, if we have ciphertext vector
c which is decrypted to a under s and q, and another vector c′ which is decrypted to a′ under s and q, then we
set c̃ = vector(c ⊗ c′) mod (Xm − 1, q) (where vector(·) opens the matrix into a vector using some appropriate

100

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ordering). Denoting s̃ = vector(s⊗ s) mod (Φm, q), we thus have

G · 〈c̃, s̃〉 = G · st(c⊗ c′)s = G · 〈c, s〉 ·
〈
c′, s

〉
= (p ·Gu+Ga) ·

〈
c′, s

〉
= (p · u+ a) ·G ·

〈
c′, s

〉
= (p · u+ a) · (p ·Gu′ +Ga′)

= p ·G(puu′ + ua′ + au′) +Gaa′ (mod Xm − 1, q).

Since the coefficient vector of ũ = puu′ + ua′ + au′ mod (Xm − 1, q) still has small l2 norm, it means that c̃
is a valid ciphertext with respect to s̃ and q, which is decrypted to aa′. Note that above we used mod-(Xm − 1)
arithmetic for the ciphertext and mod-Φm arithmetic for the secret key. This choice was made for convenience in
other operations.

E.5 Key switching

A crucial component of the BV/BGV cryptosystems is the ability to translate a ciphertext with respect to one
secret key into a ciphertext that decrypts to the same thing under another secret key. This is used, for example, to
translate the “extended ciphertext” that we get from raw-multiplication back to a normal ciphertext, or to translate
two ciphertext vectors with respect to different keys into ciphertexts with respect to the same key, so that they can
be added or raw-multiplied.

Let s be a secret-key vector overZq[X]/Φm, and consider another 2-element secret-key vector t ∈ (Zq[X]/Φm)2

whose first entry is 1. To allow translation from s-ciphertexts to t-ciphertexts, we first encode s in a redundant man-
ner by computing 2is mod q for i = 0, 1, . . . , l = dlog qe and concatenating all these vectors to form

ŝ = Powersof2q(s) def= [s | 2s | 4s | . . . | 2ls] mod q.

Then we choose a random low l2 norm vector v over Zq[X]/Φm of the same dimension as ŝ (call this dimension d),
and a matrix R ∈ (Zq[X]/φm)2×d which is chosen at random from the orthogonal space to t, namely tR = 0
(mod Φm, q). The key-switching matrix from s to t is then set as

W = W [s→ t] =
[
ŝ + pv
– 0 –

]
+ R mod (Φm, q)

Again it is easy to show that if decision ring-LWE is hard for the ring Zq[X]/Φm(X) and the distributions used to
sample t and v, then the matrix W above is pseudo-random, even for someone who knows s.

Given a ciphertext vector c (over Zq[X]/(Xm − 1)) that satisfies our invariant with respect to s and q, we
use W to translate it into another vector c′ that satisfies our invariant with respect to t and q, as follows: First, for
i = 0, 1, . . . , l = dlog qe we denote by ci the vector over Z2[X]/(Xm − 1) containing the i’th bits from all the
coefficients of all the entries of c. Namely:

c0 = c mod 2, and ci = 2−i ·
(
(c mod 2i+1)−

∑
j<i

2jcj
)

for i > 0.

Then the bit-decomposition of c is the concatenation of all these vectors,

ĉ = BitDecomp(c) def= [c0 | c1 | . . . | cl].

Clearly ĉ has low l2 norm, since it is represented by a 0-1 vector, and we have 〈ĉ, ŝ〉 = 〈c, s〉 over Zq[X] (and
therefore also over Zq[X]/(Xm−1)). Switching keys from s to t is done simply by setting c′ ←W ĉ mod (Xm−

101

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

1, q). To see that this maintains our invariant, assume that for some a ∈ Zp[X]/Φm we haveG·〈c, s〉 = p·Gu+Ga
(mod Xm − 1, q), where the coefficient vector of u has low l2 norm. Then:

G ·
〈
c′, t

〉
= G · tW ĉ

(a)
= G · t

[
ŝ+ pv
– 0 –

]
ĉ

(b)
= G · 〈ĉ, ŝ〉+ p ·G · 〈ĉ,v〉

(c)
= G · 〈c, s〉+ p ·G · 〈ĉ,v〉 = p ·G (u+ 〈ĉ,v〉)︸ ︷︷ ︸

u′

+Ga (mod Xm − 1, q),

where Equality (a) follows since tR = 0 (mod Φm, q) and therefore G · tR = 0 (mod Xm− 1, q), Equality (b)
holds since the first entry of t is 1, and Equality (c) follows from 〈ĉ, ŝ〉 = 〈c, s〉. Finally, since both v and ĉ have
low l2 norm, then over Zq[X]/(Xm − 1) so has 〈ĉ,v〉 and therefore also u′ = 〈ĉ,v〉+ u mod (Xm − 1, q).

E.6 Modulus switching

The modulus-switching procedure is exactly as in the BGV cryptosystem. Note that this procedure does not involve
any mod-Φm or mod-(Xm− 1) arithmetic: All we do is take a ciphertext vector c over Zqi [X]/(Xm− 1), scale it
down by a factor qi+1/qi and round to get c′ = roundc(qi+1

qi
· c) such that c′ ≡ c (mod p). The reason that this

works in our case is exactly as in BGV, our delayed reduction has no effect here.

E.7 Galois group actions

As described in Section 4.2, applying the action X → Xi on a ciphertext vector c over Zq[X]/(Xm − 1) requires
only a permutation of the coefficients in each of the elements of c (all which are degree-(m − 1) polynomials
over Zq).

Assume that we have G · 〈c, s〉 = p · Gu + Ga (mod Xm − 1, q), and define c(i), u(i) as what you get by
applying the transformation X → Xi to c, u, respectively, over Zq[X]/(Xm − 1), and s(i), a(i) as what you get
by applying the transformation X → Xi to s, a, respectively over Zq[X]/Φm. Below we prove that if i,m are
co-prime and also q,m are co-prime, then we have G ·

〈
c(i), s(i)

〉
= p ·Gu(i) +Ga(i) (mod Xm − 1, q).

UsingG = m (mod Φm), and reducing modulo Φm the equalityG ·〈c, s〉 = p ·Gu+Ga, we havem ·〈c, s〉 =
pm · u+ma (mod Φm, q). Since m, q are co-prime then multiplying by m−1 (mod q) we get 〈c, s〉 = p · u+ a
(mod Φm, q). Namely, for some polynomial k ∈ Zq[X] we have∑

j

cj(X)sj(X) = p · u(X) + a(X) + k(X)Φm(X) (equality in Zq[X]), (10)

and therefore also for every i∑
j

cj(Xi)sj(Xi) = p · u(Xi) + a(Xi) + k(Xi)Φm(Xi) (equality in Zq[X]). (11)

Equation (11) follows since the two sides of Equation (10) are identical as formal polynomials over Zq, and
therefore they must coincide also as functions over any characteristic-q field. It follows that the functions on both
sides of Equation (11) must also coincide over any characteristic-q field, and therefore the two sides must be
identical as formal polynomials over Zq.

Recalling that if i ∈ Z∗m then Φ(X) divides Φ(Xi), we obtain〈
c(i), s(i)

〉
=
∑
j

cj(Xi)sj(Xi) = p · u(Xi) + a(Xi) = p · u(i) + a(i) (mod Φm(X), q).

102

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Now we can multiply by G to “lift” the equality over to Zq[X]/(Xm − 1) and we get

G ·
〈
c(i), s(i)

〉
= p ·Gu(i) +Ga(i) (mod Xm − 1, q),

as needed. Observing that over Zq[X]/(Xm − 1) the coefficient vectors of u and u(i) are just a permutation of
each other (and hence have the same l2 norm) we deduce that our invariant in maintained under the transformation
X 7→ Xi whenever i ∈ Z∗m and m ∈ Z∗q .

103

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Homomorphic Evaluation of the AES Circuit
(Updated Implementation)

Craig Gentry
IBM Research

Shai Halevi
IBM Research

Nigel P. Smart
University of Bristol

January 29, 2015

Abstract

We describe a working implementation of leveled homomorphic encryption (with or without boot-
strapping) that can evaluate the AES-128 circuit. This implementation is built on top of the HElib library,
whose design was inspired by an early version of this work. Our main implementation (without boot-
strapping) takes about 4 minutes and 3GB of RAM, running on a small laptop, to evaluate an entire
AES-128 encryption operation. Using SIMD techniques, we can process upto 120 blocks in each such
evaluation, yielding an amortized rate of just over 2 seconds per block.

For cases where further processing is needed after the AES computation, we describe a different
setting that uses bootstrapping. We describe an implementation that lets us process 180 blocks in just
over 18 minutes using 3.7GB of RAM on the same laptop, yielding amortized 6 seconds/block. We note
that somewhat better amortized per-block cost can be obtained using “byte-slicing” (and maybe also
“bit-slicing”) implementations, at the cost of significantly slower wall-clock time for a single evaluation.

In this article we describe many of the optimizations that went into this implementation. These
include both AES-specific optimizations, as well as several “generic” tools for FHE evaluation (which
are incorporated in the HElib library). The generic tools include (among others) a different variant
of the Brakerski-Vaikuntanathan key-switching technique that does not require reducing the norm of
the ciphertext vector, and a method of implementing the Brakerski-Gentry-Vaikuntanathan modulus-
switching transformation on ciphertexts in CRT representation.

Keywords. AES, Fully Homomorphic Encryption, Implementation

An early version of this work was published in CRYPTO 2012. The current report describes also more recent imple-
mentation work, done over the last two years.

For the early version, the first and second authors were partly sponsored by DARPA under agreement number
FA8750-11-C-0096. The U.S. Government is authorized to reproduce and distribute reprints of the early version for
Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Government. Distribution Statement “A” (Approved for Public
Release, Distribution Unlimited).

For the same early version, the third author was sponsored by DARPA and AFRL under agreement number
FA8750-11-2-0079. The same disclaimers as above apply. He is also supported by the European Commission through
the ICT Programme under Contract ICT-2007-216676 ECRYPT II and via an ERC Advanced Grant ERC-2010-AdG-
267188-CRIPTO, by EPSRC via grant COED–EP/I03126X, and by a Royal Society Wolfson Merit Award. The views
and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the European Commission or EPSRC.

104

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Contents

1 Introduction 107

2 Background 109
2.1 Notations and Mathematical Background . 109
2.2 BGV-type Cryptosystems . 109
2.3 Computing on Packed Ciphertexts . 111

3 General-Purpose Optimizations 112
3.1 A New Variant of Key Switching . 112
3.2 Modulus Switching in Evaluation Representation . 114
3.3 Dynamic Noise Management . 114

4 Homomorphic Evaluation of AES 115
4.1 Homomorphic Evaluation of the Basic Operations . 115

4.1.1 AddKey and SubBytes . 115
4.1.2 ShiftRows and MixColumns . 117
4.1.3 The Cost of One Round Function . 118

4.2 Byte- and Bit-Slice Implementations . 118
4.3 Using Bootstrapping . 118
4.4 Performance Details . 119

References 120

A More Details 122
A.1 Plaintext Slots . 122
A.2 Canonical Embedding Norm . 123
A.3 Double CRT Representation . 123
A.4 Sampling From Aq . 124
A.5 Canonical embedding norm of random polynomials . 124

B The Basic Scheme 125
B.1 Our Moduli Chain . 125
B.2 Modulus Switching . 126
B.3 Key Switching . 126
B.4 Key-Generation, Encryption, and Decryption . 128
B.5 Homomorphic Operations . 129

C Security Analysis and Parameter Settings 130
C.1 Lower-Bounding the Dimension . 130

C.1.1 LWE with Sparse Key . 132
C.2 The Modulus Size . 133
C.3 Putting It Together . 134

D Scale(c, qt, qt−1) in dble-CRT Representation 136

105

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

E Other Optimizations 137

106

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

1 Introduction

In his breakthrough result [13], Gentry demonstrated that fully-homomorphic encryption was theoreti-
cally possible, assuming the hardness of some problems in integer lattices. Since then, many different
improvements have been made, for example authors have proposed new variants, improved efficiency,
suggested other hardness assumptions, etc. Some of these works were accompanied by implementation
[28, 14, 8, 29, 21, 9], but these implementations were either “proofs of concept” that can compute only
one basic operation at a time (at great cost), or special-purpose implementations limited to evaluating very
simple functions. In the early version of this work we reported on the first implementation powerful enough
to support an “interesting real world circuit,” specifically the AES-128 encryption operation. To this end, we
implemented a variant of the leveled FHE-without-bootstrapping scheme of Brakerski, Gentry, and Vaikun-
tanathan [5] (BGV). In the current article we report on an updated implementation of the same circuit, using
the “general purpose” open-source HElib library [18], whose design was inspired by that early version of
our work. (As of December 2014, we made our new implementation available as part of HElib.)

Why AES? We chose to shoot for an evaluation of AES since it seems like a natural benchmark: AES is
widely deployed and used extensively in security-aware applications (so it is “practically relevant” to imple-
ment it), and the AES circuit is nontrivial on one hand, but on the other hand not astronomical. Moreover the
AES circuit has a regular (and quite “algebraic”) structure , which is amenable to parallelism and optimiza-
tions. Indeed, for these same reasons AES is often used as a benchmark for implementations of protocols for
secure multi-party computation (MPC), for example [26, 10, 19, 20]. Using the same yardstick to measure
FHE and MPC protocols is quite natural, since these techniques target similar application domains and in
some cases both techniques can be used to solve the same problem.

Beyond being a natural benchmark, homomorphic evaluation of AES decryption also has interesting
applications: When data is encrypted under AES and we want to compute on that data, then homomorphic
AES decryption would transform this AES-encrypted data into an FHE-encrypted data, and then we could
perform whatever computation we wanted. (Such applications were alluded to in [21, 29, 6]).

Why BGV? Our implementation is based on the (ring-LWE-based) BGV cryptosystem [5], which is one
of the few variants that seem the most likely to yield “somewhat practical” homomorphic encryption. Other
variants are the NTRU-like cryptosystem of Lòpez-Alt et al. [23], the ring-LWE-based scale-invariant cryp-
tosystem of Brakerski [4]. These three variants offer somewhat different implementation tradeoffs, but they
all have similar performance characteristics. We don’t expect the differences between these variants to be
very significant, and moreover most of our optimizations for BGV are useful also for the other two vari-
ants. (Another interesting approach if to implement the newer cryptosystem of Gentry et al. [16], or some
combination thereof.)

Contributions of this work. Our implementation is based on a variant of the BGV scheme [5, 7, 6] (based
on ring-LWE [24]), using the techniques of Smart and Vercauteren (SV) [29] and Gentry, Halevi and Smart
(GHS) [15], and we introduce many new optimizations. Some of our optimizations are specific to AES,
these are described in Section 4. Most of our optimization, however, are more general-purpose and can be
used for homomorphic evaluation of other circuits, these are described in Section 3.

Many of our general-purpose optimizations are aimed at reducing the number of FFTs and CRTs that
we need to perform, by reducing the number of times that we need to convert polynomials between coef-
ficient and evaluation representations. Since the cryptosystem is defined over a polynomial ring, many of

107

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

the operations involve various manipulation of integer polynomials, such as modular multiplications and
additions and Frobenius maps. Most of these operations can be performed more efficiently in evaluation
representation, when a polynomial is represented by the vector of values that it assumes in all the roots of
the ring polynomial (for example polynomial multiplication is just point-wise multiplication of the evalu-
ation values). On the other hand some operations in BGV-type cryptosystems (such as key switching and
modulus switching) seem to require coefficient representation, where a polynomial is represented by listing
all its coefficients.1 Hence a “naive implementation” of FHE would need to convert the polynomials back
and forth between the two representations, and these conversions turn out to be the most time-consuming
part of the execution. In our implementation we keep ciphertexts in evaluation representation at all times,
converting to coefficient representation only when needed for some operation, and then converting back.

We describe variants of key switching and modulus switching that can be implemented while keeping
almost all the polynomials in evaluation representation. Our key-switching variant has another advantage, in
that it significantly reduces the size of the key-switching matrices in the public key. This is particularly im-
portant since one limiting factor for evaluating “interesting” circuits is the ability to keep the key-switching
matrices in memory. Other optimizations that we present are meant to reduce the number of modulus
switching and key switching operations that we need to do.

Our Implementation and tests. Many of the optimizations described in this work were incorporated in
the HElib C++ library, which is built on top of NTL (and GnuMP). We tested our implementation on a two
years old Lenovo X230 laptop with Intel Core i5-3320M running at 2.6GHz, on which we run an Ubuntu
14.04 VM with 4GB of RAM and with the g++ compiler version 4.9.2. The detailed results of our tests
are described in Section 4.4, the one-line summary is that we can evaluate AES-128 homomorphically on
120 blocks in 245 seconds on that commodity laptop. Also, if we need to incorporate extra processing then
we can use bootstrapping and get evaluation on 180 blocks in under 18 minutes. All of our programs are
single-threaded, so only one core was used in the computations.

We note that there are a multitude of optimizations that one can perform on our basic implementation.
Most importantly, there are great gains to be had by making better use of parallelism: Unfortunately, the
HElib library is not yet thread safe, which severely limits our ability to utilize the multi-core functionality
of modern processors. Much of the work in homomorphic-AES is “embarrassingly parallelizable” and so
we expect a fully parallel implementation to have a speedup factor roughly equal to the number of active
cores (with parallelization opportunities not running our until perhaps 100x of current implementation). The
byte-sliced and bit-sliced implementations (which we did not implement on top of HElib) obviously offer
even more room for parallelism.

Organization. In Section 2 we review the main features of BGV-type cryptosystems [6, 5], and briefly
survey the techniques for homomorphic computation on packed ciphertexts from SV and GHS [29, 15].
Then in Section 3 we describe our “general-purpose” optimizations on a high level, with additional details
provided in Appendices A and B. A brief overview of AES and a high-level description and performance
numbers is provided in Section 4.

1The need for coefficient representation ultimately stems from the fact that the noise in the ciphertexts is small in coefficient
representation but not in evaluation representation.

108

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

2 Background

2.1 Notations and Mathematical Background

For an integer q we identify the ring Z/qZ with the interval (−q/2, q/2] ∩ Z, and use [z]q to denote the
reduction of the integer z modulo q into that interval. Our implementation utilizes polynomial rings defined
by cyclotomic polynomials, A = Z[X]/Φm(X). The ring A is the ring of integers of a the mth cyclotomic

number field Q(ζm). We let Aq
def= A/qA = Z[X]/(Φm(X), q) for the (possibly composite) integer q, and

we identify Aq with the set of integer polynomials of degree upto φ(m)− 1 reduced modulo q.

Coefficient vs. Evaluation Representation. Letm, q be two integers such that Z/qZ contains a primitive
m-th root of unity, and denote one such primitive m-th root of unity by ζ ∈ Z/qZ. Recall that the m’th
cyclotomic polynomial splits into linear terms modulo q, Φm(X) =

∏
i∈(Z/mZ)∗(X − ζi) (mod q).

We consider two ways of representing an element a ∈ Aq: Viewing a as a degree-(φ(m) − 1) polyno-
mial, a(X) =

∑
i<φ(m) aiX

i, the coefficient representation of a just lists all the coefficients in order a =〈
a0, a1, . . . , aφ(m)−1

〉
∈ (Z/qZ)φ(m). For the other representation we consider the values that the polyno-

mial a(X) assumes on all primitive m-th roots of unity modulo q, bi = a(ζi) mod q for i ∈ (Z/mZ)∗. The
bi’s in order also yield a vector b ∈ (Z/qZ)φ(m), which we call the evaluation representation of a. Clearly
these two representations are related via b = Vm ·a, where Vm is the Vandermonde matrix over the primitive
m-th roots of unity modulo q. We remark that for all i we have the equality (a mod (X−ζi)) = a(ζi) = bi,
hence the evaluation representation of a is just a polynomial Chinese-Remaindering representation.

In both representations, an element a ∈ Aq is represented by a φ(m)-vector of integers in Z/qZ. If q is
a composite then each of these integers can itself be represented either using the standard binary encoding
of integers or using Chinese-Remaindering relative to the factors of q. We usually use the standard binary
encoding for the coefficient representation and Chinese-Remaindering for the evaluation representation.
(Hence the latter representation is really a double CRT representation, relative to both the polynomial factors
of Φm(X) and the integer factors of q.)

2.2 BGV-type Cryptosystems

Our implementation uses a variant of the BGV cryptosystem due to Gentry, Halevi and Smart, specifically
the one described in [15, Appendix D] (in the full version). In this cryptosystem both ciphertexts and secret
keys are vectors over the polynomial ring A, and the native plaintext space is the space of binary polynomials
A2. (More generally it could be Ap for some fixed p ≥ 2, but in our case we will always use A2.)

At any point during the homomorphic evaluation there is some “current integer modulus q” and “current
secret key s”, that change from time to time. A ciphertext c is decrypted using the current secret key s
by taking inner product over Aq (with q the current modulus) and then reducing the result modulo 2 in
coefficient representation. Namely, the decryption formula is

a ← [[〈c, s〉 mod Φm(X)]q︸ ︷︷ ︸
noise

]2 . (1)

The polynomial [〈c, s〉 mod Φm(X)]q is called the “noise” in the ciphertext c. Informally, c is a valid
ciphertext with respect to secret key s and modulus q if this noise has “sufficiently small norm” relative
to q. The meaning of “sufficiently small norm” is whatever is needed to ensure that the noise does not wrap
around q when performing homomorphic operations, in our implementation we keep the norm of the noise
always below some pre-set bound (which is determined in Appendix C.2).

109

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Following [24, 15], the specific norm that we use to evaluate the magnitude of the noise is the “canonical
embedding norm reduced mod q”, specifically we use the conventions as described in [15, Appendix D] (in
the full version). This is useful to get smaller parameters, but for the purpose of presentation the reader can
think of the norm as the Euclidean norm of the noise in coefficient representation. More details are given in
the Appendices. We refer to the norm of the noise as the noise magnitude.

The central feature of BGV-type cryptosystems is that the current secret key and modulus evolve as
we apply operations to ciphertexts. We apply five different operations to ciphertexts during homomorphic
evaluation. Three of them — addition, multiplication, and automorphism — are “semantic operations” that
we use to evolve the plaintext data which is encrypted under those ciphertexts. The other two operations
— key-switching and modulus-switching — are used for “maintenance”: These operations do not change
the plaintext at all, they only change the current key or modulus (respectively), and they are mainly used
to control the complexity of the evaluation. Below we briefly describe each of these five operations on a
high level. For the sake of self-containment, we also describe key generation and encryption in Appendix B.
More detailed description can be found in [15, Appendix D].

Addition. Homomorphic addition of two ciphertext vectors with respect to the same secret key and mod-
ulus q is done just by adding the vectors over Aq. If the two arguments were encrypting the plaintext
polynomials a1, a2 ∈ A2 then the sum will be an encryption of a1 + a2 ∈ A2. This operation has no effect
on the current modulus or key, and the norm of the noise is at most the sum of norms from the noise in the
two arguments.

Multiplication. Homomorphic multiplication is done via tensor product over Aq. In principle, if the two
arguments have dimension n over Aq then the product ciphertext has dimension n2, each entry in the output
computed as the product of one entry from the first argument and one entry from the second.2

This operation does not change the current modulus, but it changes the current key: If the two input
ciphertexts are valid with respect to the dimension-n secret key vector s, encrypting the plaintext polynomi-
als a1, a2 ∈ A2, then the output is valid with respect to the dimension-n2 secret key s′ which is the tensor
product of s with itself, and it encrypts the polynomial a1 · a2 ∈ A2. The norm of the noise in the product
ciphertext can be bounded in terms of the product of norms of the noise in the two arguments. For our choice
of norm function, the norm of the product is no larger than the product of the norms of the two arguments.

Key Switching. The public key of BGV-type cryptosystems includes additional components to enable
converting a valid ciphertext with respect to one key into a valid ciphertext encrypting the same plaintext
with respect to another key. For example, this is used to convert the product ciphertext which is valid with
respect to a high-dimension key back to a ciphertext with respect to the original low-dimension key.

To allow conversion from dimension-n′ key s′ to dimension-n key s (both with respect to the same
modulus q), we include in the public key a matrix W = W [s′ → s] over Aq, where the i’th column of W is
roughly an encryption of the i’th entry of s′ with respect to s (and the current modulus). Then given a valid
ciphertext c′ with respect to s′, we roughly compute c = W · c′ to get a valid ciphertext with respect to s.

In some more detail, the BGV key switching transformation first ensures that the norm of the ciphertext
c′ itself is sufficiently low with respect to q. In [5] this was done by working with the binary encoding of
c′, and one of our main optimization in this work is a different method for achieving the same goal (cf.
Section 3.1). Then, if the i’th entry in s′ is s′i ∈ A (with norm smaller than q), then the i’th column of
W [s′ → s] is an n-vector wi such that [〈wi, s〉 mod Φm(X)]q = 2ei + s′i for a low-norm polynomial

2It was shown in [7] that over polynomial rings this operation can be implemented while increasing the dimension only to 2n−1
rather than to n2.

110

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ei ∈ A. Denoting e = (e1, . . . , en′), this means that we have sW = s′ + 2e over Aq. For any ciphertext
vector c′, setting c = W · c′ ∈ Aq we get the equation

[〈c, s〉 mod Φm(X)]q = [sWc′ mod Φm(X)]q = [
〈
c′, s′

〉
+ 2

〈
c′, e

〉
mod Φm(X)]q

Since c′, e, and [〈c′, s′〉 mod Φm(X)]q all have low norm relative to q, then the addition on the right-hand
side does not cause a wrap around q, hence we get [[〈c, s〉 mod Φm(X)]q]2 = [[〈c′, s′〉 mod Φm(X)]q]2, as
needed. The key-switching operation changes the current secret key from s′ to s, and does not change the
current modulus. The norm of the noise is increased by at most an additive factor of 2‖ 〈c′, e〉 ‖.

Modulus Switching. The modulus switching operation is intended to reduce the norm of the noise, to
compensate for the noise increase that results from all the other operations. To convert a ciphertext c with
respect to secret key s and modulus q into a ciphertext c′ encrypting the same thing with respect to the same
secret key but modulus q′, we roughly just scale c by a factor q′/q (thus getting a fractional ciphertext),
then round appropriately to get back an integer ciphertext. Specifically c′ is a ciphertext vector satisfying
(a) c′ = c (mod 2), and (b) the “rounding error term” τ def= c′ − (q′/q)c has low norm. Converting c
to c′ is easy in coefficient representation, and one of our optimizations is a method for doing the same in
evaluation representation (cf. Section 3.2) This operation leaves the current key s unchanged, changes the
current modulus from q to q′, and the norm of the noise is changed as ‖n′‖ ≤ (q′/q)‖n‖+ ‖τ · s‖. Note that
if the key s has low norm and q′ is sufficiently smaller than q, then the noise magnitude decreases by this
operation.

A BGV-type cryptosystem has a chain of moduli, q0 < q1 · · · < qL−1, where fresh ciphertexts are
with respect to the largest modulus qL−1. During homomorphic evaluation every time the (estimated) noise
grows too large we apply modulus switching from qi to qi−1 in order to decrease it back. Eventually we get
ciphertexts with respect to the smallest modulus q0, and we cannot compute on them anymore (except by
using bootstrapping).

Automorphisms. In addition to adding and multiplying polynomials, another useful operation is convert-
ing the polynomial a(X) ∈ A to a(i)(X) def= a(Xi) mod Φm(X). Denoting by κi the transformation
κi : a 7→ a(i), it is a standard fact that the set of transformations {κi : i ∈ (Z/mZ)∗} forms a group
under composition (which is the Galois group Gal(Q(ζm)/Q)), and this group is isomorphic to (Z/mZ)∗.
In [5, 15] it was shown that applying the transformations κi to the plaintext polynomials is very useful, some
more examples of its use can be found in our Section 4.

Denoting by c(i), s(i) the vector obtained by applying κi to each entry in c, s, respectively, it was shown
in [5, 15] that if s is a valid ciphertext encrypting a with respect to key s and modulus q, then c(i) is a valid
ciphertext encrypting a(i) with respect to key s(i) and the same modulus q. Moreover the norm of noise
remains the same under this operation. We remark that we can apply key-switching to c(i) in order to get an
encryption of a(i) with respect to the original key s.

2.3 Computing on Packed Ciphertexts

Smart and Vercauteren observed [28, 29] that the plaintext space A2 can be viewed as a vector of “plaintext
slots”, by an application the polynomial Chinese Remainder Theorem. Specifically, if the ring polynomial
Φm(X) factors modulo 2 into a product of irreducible factors Φm(X) =

∏`−1
j=0 Fj(X) (mod 2), then a

plaintext polynomial a(X) ∈ A2 can be viewed as encoding ` different small polynomials, aj = a mod Fj .
Just like for integer Chinese Remaindering, addition and multiplication in A2 correspond to element-wise
addition and multiplication of the vectors of slots.

111

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The effect of the automorphisms is a little more involved. When i is a power of two then the transforma-
tions κi : a 7→ a(i) is just applied to each slot separately. When i is not a power of two the transformation κi
has the effect of roughly shifting the values between the different slots. For example, for some parameters
we could get a cyclic shift of the vector of slots: If a encodes the vector (a0, a1, . . . , a`−1), then κi(a) (for
some i) could encode the vector (a`−1, a0, . . . , a`−2). This was used in [15] to devise efficient procedures
for applying arbitrary permutations to the plaintext slots.

We note that the values in the plaintext slots are not just bits, rather they are polynomials modulo the
irreducible Fj’s, so they can be used to represents elements in extension fields GF(2d). In particular, in our
AES implementations we used the plaintext slots to hold elements of GF(28), and encrypt one byte of the
AES state in each slot. Then we can use an adaption of the techniques from [15] to permute the slots when
performing the AES row-shift and column-mix.

3 General-Purpose Optimizations

Below we summarize our optimizations that are not tied directly to the AES circuit and can be used also in
homomorphic evaluation of other circuits. Underlying many of these optimizations is our choice of keeping
ciphertext and key-switching matrices in evaluation (double-CRT) representation. Roughly speaking, our
chain of moduli is defined via a set of same-size primes, p0, p1, p2, . . ., chosen such that Z/piZ has m’th
roots of unity. (In other words, m|pi − 1 for all i.) For i = 0, . . . , L − 1 we then define our i’th modulus
as qi =

∏i
j=0 pi. To gain efficiency, we actually choose p0 to be half the bit-size of the other pi’s, and so

the odd indexed moduli in the chain are a product of the primes starting at p0 (qi =
∏bi/2c
i=0 pi) and the even-

indexed moduli are products that do not include p0 (qi =
∏i/2
i=1 pi). In our implementation the half-sized

prime has 23-25 bits (and the full-sized primes therefore have 46-50 bits). For easy of exposition, however,
in the rest of this report we ignore this “half-sized” prime and describe all our optimizations as if we were
using only a chain of same-size primes.

In the t-th level of the scheme we have ciphertexts consisting of elements in Aqt (i.e., polynomials
modulo (Φm(X), qt)). We represent an element c ∈ Aqt by a φ(m) × (t + 1) “matrix” of its evaluations
at the primitive m-th roots of unity modulo the primes p0, . . . , pt. Computing this representation from the
coefficient representation of c involves reducing c modulo the pi’s and then t + 1 invocations of the FFT
algorithm, modulo each of the pi (picking only the FFT coefficients corresponding to (Z/mZ)∗). To convert
back to coefficient representation we invoke the inverse FFT algorithm, each time padding the φ(m)-vector
of evaluation point with m − φ(m) zeros (for the evaluations at the non-primitive roots of unity). This
yields the coefficients of the polynomials modulo (Xm − 1, pi) for i = 0, . . . , t, we then reduce each of
these polynomials modulo (Φm(X), pi) and apply Chinese Remainder interpolation. We stress that we try
to perform these transformations as rarely as we can.

3.1 A New Variant of Key Switching

As described in Section 2, the key-switching transformation introduces an additive factor of 2 〈c′, e〉 in
the noise, where c′ is the input ciphertext and e is the noise component in the key-switching matrix. To
keep the noise magnitude below the modulus q, it seems that we need to ensure that the ciphertext c′

itself has low norm. In BGV [5] this was done by representing c′ as a fixed linear combination of small
vectors, i.e. c′ =

∑
i 2ic′i with c′i the vector of i’th bits in c′. Considering the high-dimension ciphertext

c∗ = (c′0|c′1|c′2| · · ·) and secret key s∗ = (s′|2s′|4s′| · · ·), we note that we have 〈c∗, s∗〉 = 〈c′, s′〉, and c∗

has low norm (since it consists of 0-1 polynomials). BGV therefore included in the public key the matrix

112

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

W = W [s∗ → s] (rather than W [s′ → s]), and had the key-switching transformation computes c∗ from c′

and sets c = W · c∗.
When implementing key-switching, there are two drawbacks to the above approach. First, this increases

the dimension (and hence the size) of the key switching matrix. This drawback is fatal when evaluating deep
circuits, since having enough memory to keep the key-switching matrices turns out to be a limiting factor in
our ability to evaluate such circuits. In addition, for this key-switching we must first convert c′ to coefficient
representation (in order to compute the c′i’s), then convert each of the c′i’s back to evaluation representation
before multiplying by the key-switching matrix. In level t of the circuit, this seem to require Ω(t log qt)
FFTs.

In this work we propose a different variant: Rather than manipulating c′ to decrease its norm, we instead
temporarily increase the modulus q. We recall that for a valid ciphertext c′, encrypting plaintext a with
respect to s′ and q, we have the equality 〈c′, s′〉 = 2e′ + a over Aq, for a low-norm polynomial e′. This
equality, we note, implies that for every odd integer p we have the equality 〈c′, ps′〉 = 2e′′ + a, holding
over Apq, for the “low-norm” polynomial e′′ (namely e′′ = p · e′+ p−1

2 a). Clearly, when considered relative
to secret key ps and modulus pq, the noise in c′ is p times larger than it was relative to s and q. However,
since the modulus is also p times larger, we maintain that the noise has norm sufficiently smaller than the
modulus. In other words, c′ is still a valid ciphertext that encrypts the same plaintext a with respect to secret
key ps and modulus pq. By taking p large enough, we can ensure that the norm of c′ (which is independent
of p) is sufficiently small relative to the modulus pq.

We therefore include in the public key a matrix W = W [ps′ → s] modulo pq for a large enough odd
integer p. (Specifically we need p ≈ q

√
m.) Given a ciphertext c′, valid with respect to s and q, we apply

the key-switching transformation simply by setting c = W ·c′ over Apq. The additive noise term 〈c′, e〉 that
we get is now small enough relative to our large modulus pq, thus the resulting ciphertext c is valid with
respect to s and pq. We can now switch the modulus back to q (using our modulus switching routine), hence
getting a valid ciphertext with respect to s and q.

We note that even though we no longer break c′ into its binary encoding, it seems that we still need to
recover it in coefficient representation in order to compute the evaluations of c′ mod p. However, since we
do not increase the dimension of the ciphertext vector, this procedure requires only O(t) FFTs in level t (vs.
O(t log qt) = O(t2) for the original BGV variant). Also, the size of the key-switching matrix is reduced by
roughly the same factor of log qt.

Our new variant comes with a price tag, however: We use key-switching matrices relative to a larger
modulus, but still need the noise term in this matrix to be small. This means that the LWE problem under-
lying this key-switching matrix has larger ratio of modulus/noise, implying that we need a larger dimension
to get the same level of security than with the original BGV variant. In fact, since our modulus is more than
squared (from q to pq with p > q), the dimension is increased by more than a factor of two. This translates
to more than doubling of the key-switching matrix, partly negating the size and running time advantage that
we get from this variant.

Of course, one can also use a hybrid of the two approaches: we can decrease the norm of c′ only
somewhat by breaking it into a few digits (as opposed to binary bits as in [5]), and then increase the modulus
somewhat until it is large enough relative to the smaller norm of c′. The HElib implementation indeed let
us break c to any number of digits, upto the number of primes in the chain, and in our experiments we used
anywhere between 3 and 6 digits to get the right level of security for the different settings.

113

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

3.2 Modulus Switching in Evaluation Representation

Given an element c ∈ Aqt in evaluation (double-CRT) representation relative to qt =
∏t
j=0 pj , we want to

modulus-switch to qt−1 – i.e., scale down by a factor of pt; we call this operation Scale(c, qt, qt−1). The
output should be c′ ∈ A, represented via the same double-CRT format (with respect to p0, . . . , pt−1), such
that (a) c′ ≡ c (mod 2), and (b) the “rounding error term” τ = c′ − (c/pt) has a very low norm. As pt is

odd, we can equivalently require that the element c† def= pt · c′ satisfy

(i) c† is divisible by pt,

(ii) c† ≡ c (mod 2), and

(iii) c† − c (which is equal to pt · τ) has low norm.

Rather than computing c′ directly, we will first compute c† and then set c′ ← c†/pt. Observe that once we
compute c† in double-CRT format, it is easy to output also c′ in double-CRT format: given the evaluations
for c† modulo pj (j < t), simply multiply them by p−1

t mod pj . The algorithm to output c† in double-CRT
format is as follows:

1. Set c̄ to be the coefficient representation of c mod pt. (Computing this requires a single “small FFT”
modulo the prime pt.)

2. Add or subtract pt from every odd coefficient of c̄, thus obtaining a polynomial δ with coefficients in
(−pt, pt] such that δ ≡ c̄ ≡ c (mod pt) and δ ≡ 0 (mod 2).

3. Set c† = c− δ, and output it in double-CRT representation.

Since we already have c in double-CRT representation, we only need the double-CRT representation
of δ, which requires t more “small FFTs” modulo the pj’s.

As all the coefficients of c† are within pt of those of c, the “rounding error term” τ = (c† − c)/pt has
coefficients of magnitude at most one, hence it has low norm.

The procedure above uses t + 1 small FFTs in total. This should be compared to the naive method of
just converting everything to coefficient representation modulo the primes (t + 1 FFTs), CRT-interpolating
the coefficients, dividing and rounding appropriately the large integers (of size≈ qt), CRT-decomposing the
coefficients, and then converting back to evaluation representation (t+ 1 more FFTs). The above approach
makes explicit use of the fact that we are working in a plaintext space modulo 2; in Appendix D we present
a technique which works when the plaintext space is defined modulo a larger modulus.

3.3 Dynamic Noise Management

As described in the literature, BGV-type cryptosystems tacitly assume that each homomorphic operation
operation is followed a modulus switch to reduce the noise magnitude. In our implementation, however, we
attach to each ciphertext an estimate of the noise magnitude in that ciphertext, and use these estimates to
decide dynamically when a modulus switch must be performed.

Each modulus switch consumes a level, and hence a goal is to reduce, over a computation, the number of
levels consumed. By paying particular attention to the parameters of the scheme, and by carefully analyzing
how various operations affect the noise, we are able to control the noise much more carefully than in prior
work. In particular, we note that modulus-switching is really only necessary just prior to multiplication
(when the noise magnitude is about to get squared), in other times it is acceptable to keep the ciphertexts at
a higher level (with higher noise).

114

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

4 Homomorphic Evaluation of AES

Next we describe our homomorphic implementation of AES-128. Our main impelemntation is “packed”,
namely the entire AES state is packed in just one ciphertext. Two other possible implementations (of byte-
slice and bit-slice AES) are described later in Section 4.2. We note that in our earlier work we implemented
all htree versions, but in the newer work we only re-implemented the “packed” version.

A Brief Overview of AES. The AES-128 cipher consists of ten applications of the same keyed round
function (with different round keys). The round function operates on a 4 × 4 matrix of bytes, which are
sometimes considered as element of F28 . The basic operations that are performed during the round function
are AddKey, SubBytes, ShiftRows, MixColumns. The AddKey is simply an XOR operation of the current
state with 16 bytes of key; the SubBytes operation consists of an inversion in the field F28 followed by a
fixed F2-affine map on the bits of the element; the ShiftRows rotates the entries in the row i of the 4 × 4
matrix by i − 1 places to the left; finally the MixColumns operations pre-multiplies the state matrix by a
fixed 4× 4 matrix.

Our Packed Representation of the AES state. For our implementation we chose the native plaintext
space of our homomorphic encryption so as to support operations on the finite field F28 . To this end we
choose our ring polynomial as Φm(X) that factors modulo 2 into degree-d irreducible polynomials such
that 8|d. (In other words, the smallest integer d such that m|(2d − 1) is divisible by 8.) This means that our
plaintext slots can hold elements of F2d , and in particular we can use them to hold elements of F28 which
is a sub-field of F2d . Since we have ` = φ(m)/d plaintext slots in each ciphertext, we can represent upto
b`/16c complete AES state matrices per ciphertext.

Moreover, we choose our parameter m so that there exists an element g ∈ Z∗m that has order 16 in
both Z∗m and the quotient group Z∗m/ 〈2〉. This condition means that if we put 16 plaintext bytes in slots
t, tg, tg2, tg3, . . . (for some t ∈ Z∗m), then the conjugation operation X 7→ Xg implements a cyclic right
shift over these sixteen plaintext bytes. Below we denote the vector of plaintext slots by a = (αi)`i=1, with
each αi ∈ F28 . We place the 16 bytes of the AES state in plaintext slots using column-first ordering, namely
we have

a ≈ [α00α10α20α30α01α11α21α31α02α12α22α32α03α13α23α33],

representing the input plaintext matrix

A =
(
αij
)
i,j

=

α00 α01 α02 α03

α10 α11 α12 α13

α20 α21 α22 α23

α30 α31 α32 α33

 .

4.1 Homomorphic Evaluation of the Basic Operations

We now examine each AES operation in turn, and describe how it is implemented homomorphically.

4.1.1 AddKey and SubBytes

The AddKey is just a simple addition of ciphertexts, which yields a 4× 4 matrix of bytes in the input to the
SubBytes operation.

115

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

During S-box lookup, each plaintext byte αij should be replaced by βij = S(αij), where S(·) is a fixed
permutation on the bytes. Specifically, S(x) is obtained by first computing y = x−1 in F28 (with 0 mapped
to 0), then applying a bitwise affine transformation z = T (y) where elements in F28 are treated as bit strings
with representation polynomial G(X) = x8 + x4 + x3 + x+ 1.

We implement F28 inversion followed by the F2 affine transformation using the Frobenius automor-
phisms, X −→ X2j

. Recall that the transformation κ2j (a(X)) = (a(X2j
) mod Φm(X)) is applied sepa-

rately to each slot, hence we can use it to transform the vector (αi)`i=1 into (α2j

i)`i=1. We note that applying
the Frobenius automorphisms to ciphertexts has almost no influence on the noise magnitude, and hence it
does not consume any levels.3

Inversion over F28 is done using essentially the same procedure as Algorithm 2 from [27] for computing
β = α−1 = α254. This procedure takes only three Frobenius automorphisms and four multiplications,
arranged in a depth-3 circuit (see details below.) To apply the AES F2 affine transformation, we use the fact
that any F2 affine transformation can be computed as a F28 affine transformation over the conjugates. Thus
there are constants γ0, γ1, . . . , γ7, δ ∈ F28 such that the AES affine transformation TAES(·) can be expressed
as TAES(β) = δ +

∑7
j=0 γj · β2j

over F28 . We therefore again apply the Frobenius automorphisms to
compute eight ciphertexts encrypting the polynomials κ2j (b) for j = 0, 1, . . . , 7, and take the appropriate
linear combination (with coefficients the γj’s) to get an encryption of the vector (TAES(α−1

i))`i=1. For our
parameters, a multiplication-by-constant operation consumes roughly half a level in terms of added noise.

One subtle implementation detail to note here, is that although our plaintext slots all hold elements
of the same field F28 , they hold these elements with respect to different polynomial encodings. The AES
affine transformation, on the other hand, is defined with respect to one particular fixed polynomial encoding.
This means that we must implement in the i’th slot not the affine transformation TAES(·) itself but rather
the projection of this transformation onto the appropriate polynomial encoding: When we take the affine
transformation of the eight ciphertexts encrypting bj = κ

2
j (b), we therefore multiply the encryption of bj

not by a constant that has γj in all the slots, but rather by a constant that has in slot i the projection of γj to
the polynomial encoding of slot i.

Below we provide a pseudo-code description of our S-box lookup implementation, together with an
approximation of the levels that are consumed by these operations.

Level
Input: ciphertext c t

// Compute c254 = c−1

1. c2 ← c� 2 t // Frobenius X 7→ X2

2. c3 ← c× c2 t− 1 // Multiplication
3. c12 ← c3 � 4 t− 1 // Frobenius X 7→ X4

4. c14 ← c12 × c2 t− 2 // Multiplication
5. c15 ← c12 × c3 t− 2 // Multiplication
6. c240 ← c15 � 16 t− 2 // Frobenius X 7→ X16

7. c254 ← c240 × c14 t− 3 // Multiplication

// Affine transformation over F2

8. c′
2j ← c254 � 2j for j = 0, 1, 2, . . . , 7 t− 3 // Frobenius X 7→ X2j

9. c′′ ← γ +
∑7

j=0 γj × c′
2j t− 3.5 // Linear combination over F28

3It does increase the noise magnitude somewhat, because we need to do key switching after these automorphisms. But this is
only a small influence, and we will ignore it here.

116

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

4.1.2 ShiftRows and MixColumns

As commonly done, we lump together the ShiftRows/MixColumns operations, viewing both as a single
linear transformation over vectors from (F28)16. As mentioned above, by a careful choice of the parameterm
and the placement of the AES state bytes in our plaintext slots, we can implement a rotation-by-i of the rows
of the AES matrix as a single automorphism operationsX 7→ Xgi

(for some element g ∈ (Z/mZ)∗). Given
the ciphertext c′′ after the SubBytes step, we use these operations in conjunction with `-SELECT operations
(as described in [15]) to compute four ciphertexts corresponding to the appropriate permutations of the 16
bytes (in each of the `/16 different input blocks). These four ciphertexts are combined via a linear operation
(with coefficients 1, X , and (1 +X)) to obtain the final result of this round function.

Moreover, the multiply-by-constant operations implied by `-SELECT can be folded into the multiply-
by-constant operations of the linear transformations, hence the entire shift-row/mix-column operation con-
sumes only 1/2 level in terms of noise. Finally, it is possible to implement the entire procedure using only
six rotation operations, as described next. Recall our column-byte-ordering of the AES state:

a ≈ [α00α10α20α30α01α11α21α31α02α12α22α32α03α13α23α33]

A =

α00 α01 α02 α03

α10 α11 α12 α13

α20 α21 α22 α23

α30 α31 α32 α33

 .

We apply to the state vector a three right-rotations by 11, 6, and 1 positions to get the three vectors a11, a6, a1

representing the matrices A11, A6, A1, respectively:

a11 ≈ [α11α21α31 . . . α30α01] a6 ≈ [α22α32α03 . . . α02α12] a1 ≈ [α33α00α10 . . . α13α23]

A11 =

α11 α12 α13 α10

α21 α22 α23 α20

α31 α32 α33 α30

α02 α03 α00 α01

 A6 =

α22 α23 α20 α21

α32 α33 α30 α31

α03 α00 α01 α02

α13 α10 α11 α12

 A1 =

α33 α30 α31 α32

α00 α01 α02 α03

α10 α11 α12 α13

α20 α21 α22 α23

Considering the top row in the four matrices (consisting of the bytes in positions 0,4,8,12), we see that
we get exactly the four rows of the matrix after the shift-row operations. Hence these four bytes in the
four matrices are exactly aligned so we can use SIMD operations to compute the column-mix operations.
We next multiply these matrices by constants that have 0’s in all positions except 0,4,8,12, and in those
selected positions they have either 1, X , or X + 1. Below we denote these constants by C1, CX and CX+1,
respectively. Setting

B′0 = A · CX + (A1 +A6) · C1 +A11 · CX+1, B′1 = (A+A1) · C1 +A6 · CX+1 +A11 · CX,
B′2 = (A+A11) · C1 +A1 · CX+1 +A6 · CX, B′3 = A · CX+1 +A1 · CX + (A6 +A11) · C1

we get that the top rows of the four B′i’s contain the four rows of the resulting matrix B after mix-column,
and moreover all the other rows in the B′i’s are zero. Having computed all the rows of the result, we use
three more rotations to move them to place, namely set B = B′0 + (B′1 � 1) + (B′2 � 2) + (B′3 � 3). A
pseudo-code of the combined shift-row/mix-column operation is given below:

117

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Level
Input: ciphertext c′′ t− 3.5

10. c′′j ← c′′ � j for j = 0, 1, 6, 11 t− 3.5 // Rotations
11. c∗0 ← c′′0 · CX + (c′′1 + c′′6)C1 + c′′11 · CX+1

c∗1 ← (c′′0 + c′′1)C1 + c′′6 · CX+1 + c′′11 · CX

c∗2 ← (c′′0 + c′′11)C1 + c′′1 · CX+1 + c′′6 · CX

c∗3 ← c′′0 · CX+1 + c′′1 · CX + (c′′6 + c′′11)C1 t− 4 // Linear combinations
12. Output c∗0 + (c∗1 � 1) + (c∗2 � 2) + (c∗3 � 3) t− 4 // Assembling the result

4.1.3 The Cost of One Round Function

The above description yields an estimate of 4 levels for implementing one round function, which is in-
deed what we get in our experiments. The time complexity is dominated by the number of key-switching
operations, which we need to do for every multiplication and every automorphism. The byte-substitution
takes three multiplications and four automorphisms for inversion, and seven more automorphisms for the
affine transformation, for a total of 14 key-switches. The shift-row/mix-column operation adds six more
automorphisms, for a grand total of 20 key-switches per round.

We mention that the byte-slice implementation in Section 4.2 below would consume the same number of
levels but use less key-switching operations per round since the shift-row/column-mix operation no longer
needs automorphisms. Hence we would get 14 rather than 20 key-switching operations per round, so we
expect the amortized complexity of this implementation to be faster by a factor of 20/14 ≈ 1.4. However,
since we need to manipulate 16 times as many ciphertexts, the implementation would take much more time
per evaluation (by a factor of 16 · 14/20 = 11.2) and require more memory.

4.2 Byte- and Bit-Slice Implementations

In the byte sliced implementation we use sixteen distinct ciphertexts to represent a single state matrix. (But
since each ciphertext can hold ` plaintext slots, then these 16 ciphertexts can hold the state of ` different
AES blocks). In this representation there is no interaction between the slots, thus we operate with pure `-fold
SIMD operations. The AddKey and SubBytes steps are exactly as above (except applied to 16 ciphertexts
rather than a single one). The permutations in the ShiftRows/MixColumns step are now “for free”, but the
scalar multiplication in MixColumns still consumes 1/2 level in the modulus chain.

For the bit sliced implementation we represent the entire round function as a binary circuit, and we use
128 distinct ciphertexts (one per bit of the state matrix). However each set of 128 ciphertexts is able to
represent a total of ` distinct blocks. The main issue here is how to create a circuit for the round function
which is as shallow, in terms of number of multiplication gates, as possible. Again the main issue is the
SubBytes operation as all operations are essentially linear. To implement the SubBytes we used the “depth-
16” circuit of Boyar and Peralta [3], which consumes four levels. The rest of the round function can be
represented as a set of bit-additions, Thus, implementing this method means that we should again consume
only four levels per level.

4.3 Using Bootstrapping

Without bootstrapping, implementing ten rounds requires over 40 levels in the modulus chain, which means
that we need a very large dimension to get security. We could hope to use the “bootstrapping as optimiza-
tion” technique from BGV [5] to get smaller dimension, and hence speed up the computation. As it turns

118

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Test m φ(m) lvls |Q| security params/key-gen Encrypt Decrypt memory
no bootstrap 53261 46080 40 886 150-bit 26.45 / 73.03 245.1 394.3 3GB
bootstrap 28679 23040 23 493 123-bit 148.2 / 37.2 1049.9 1630.5 3.7GB

Table 1: Performence results of homomorphic AES. Time is in seconds, the modulus size |Q| includes extra
primes as in Section 3.1.

out, however, the reduction in dimension is not enough to compensate for the extra time spent in the re-
cryption procedure itself, so this does not lead to faster process. Bootstrapping is still needed, however, in
applications that further process the result of the AES encryption. Hence in our implementation we also
tested incorporating recryption into the AES computation.

One avenue for optimization in this case is to recrypt several ciphertexts together: The implementation
of recryption in HElib handles “fully packed ciphertexts” whose slots contain elements from F2d (for some
d divisible by 8), but our AES implementation only uses F28 elements (i.e. bytes) in the slots. We can
therefore recrypt several ciphertexts together, packing d/8 bytes in each slot. Since in this setting most of
the AES computation time is spent on recryption, we can process d/8 ciphertexts at nearly the same time
as we do a single ciphertext, yielding a nearly d/8 speedup in amortized time. In our experiments we used
d = 24, so this yields roughly a 3× improvement.

4.4 Performance Details

As remarked in the introduction, we tested our implementations on a two-year-old Lenovo X230 laptop
with Intel Core i5-3320M running at 2.6GHz, on an Ubuntu 14.04 VM with 4GB of RAM, using the g++
compiler version 4.9.2. The results of these tests are summarized in Table 1.

Non-bootstrapping implementation. For the non-bootstrapping experiment we selected parameters large
enough to cope with 40 levels of computation. Appendix C contains our old derivation of the parameters to
use, in our newer implementation we used instead the HElib derivation (that takes into consideration also the
hybrid approach from Section 3.1), and is described in the HElib design document [18, Sec 3.1.4]. A rule-
of-thumb is that for an L-level computation we need the dimension to be roughly 1000 ·L. Specifically here
we worked with the m-th cyclotomic for m = 53261, which yields lattices of dimension φ(m) = 46080.
This setting has 1920 slots, so we can fit 1920/16 = 120 AES blocks in each ciphertext.

For this setting, key-generation took about 1.5 minutes, of which roughly 30 seconds were spent comput-
ing key-independent tables and about one minute was spent generating the keys and key-switching matrices.
The input to the actual computation consisted of 120 plaintext blocks (in cleartext), and the eleven AES
round keys encrypted in eleven packed ciphertext using our homomorphic encryption scheme. Homomor-
phic AES-encryption operation took 252 seconds, yielding throughput of 2 seconds per block.

Implementation using bootstrapping. Since bootstrapping in HElib takes about 12 levels, we chose our
parameters here to cope with more than 20 levels of computation, so that we can compute at least two
AES rounds per recryption. Specifically we had 23 computation levels and worked with m = 28679 and
φ(m) = 23040, a setting that yields 123-bit security by our estimates (see Equation (8) in Appendix C).
This setting features 960 slots per ciphertext, each holding an element of F224 , which is enough to pack 60
AES blocks.

119

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Key-generation for this setting took about four minutes, three of which were spent computing key-
independent tables, and under one minute spent on generating the keys and key-switching matrices. The
input to the actual computation consisted of 180 plaintext blocks (in cleartext), and the same 11 packed
cipehrtext encrypting the AES round keys. During the computation we applied the AES operation to three
ciphertexts in parallel, and packed them into a single cipehrtext before each recryption.

The AES-encryption operation took 1050 seconds, of which 823 seconds were spent during two recryp-
tion operations, and the other 227 seconds were spent on the AES computation of the three ciphertexts. With
180 blocks, this gives throughput of 5.8 seconds per block. The entire computation used 3.7GB of memory.

Implementing AES decryption. We also implemented the AES decryption operation, basically by just
reversing all the operations of the AES-encryption circuit. The operations performed in both cases are nearly
identical (except a few multiply-by-constant operations), and yet in our tests the decryption time was about
60% slower than encryption.

For the non-bootstrapping case, one reason is that the AES encryption operation begins with inversion
that lowers the level of the ciphertext, whereas decryption begins with the linear operations that keep the
level more or less the same. As a result, operations on decryption are performed 2-3 levels higher than on
encryption, which means that they need to manipulate more primes in our chain of moduli. It is not clear to
us why this causes such a large slowdown, we speculate that some of it is the result of memory swapping or
some other low-level effects.

For the bootstrapping case, the reason for the large slowdown is that the last inversion operation on
decryption happens quite low in the chain, which triggers one more recryption operation, three on decryption
vs. two on encryption. (This artifactc can probably be removed by special-casing the last round, but we did
not attempt to do it.)

Acknowledgments

We thank Jean-Sebastien Coron for pointing out to us the efficient implementation from [27] of the AES
S-box lookup.

References

[1] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and
circular-secure encryption based on hard learning problems. In CRYPTO, volume 5677 of Lecture
Notes in Computer Science, pages 595–618. Springer, 2009.

[2] Sanjeev Arora and Rong Ge. New algorithms for learning in the presence of errors. In ICALP, volume
6755 of Lecture Notes in Computer Science, pages 403–415. Springer, 2011.

[3] Joan Boyar and René Peralta. A depth-16 circuit for the AES S-box. Manuscript, http://eprint.
iacr.org/2011/332, 2011.

[4] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP.
Manuscript, http://eprint.iacr.org/2012/078, 2012.

[5] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption without
bootstrapping. In Innovations in Theoretical Computer Science (ITCS’12), 2012. Available at http:
//eprint.iacr.org/2011/277.

120

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

[6] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS’11. IEEE Computer Society, 2011.

[7] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE and secu-
rity for key dependent messages. In Advances in Cryptology - CRYPTO 2011, volume 6841 of Lecture
Notes in Computer Science, pages 505–524. Springer, 2011.

[8] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully homomorphic
encryption over the integers with shorter public keys. In Advances in Cryptology - CRYPTO 2011,
volume 6841 of Lecture Notes in Computer Science, pages 487–504. Springer, 2011.

[9] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and modulus
switching for fully homomorphic encryption over the integers. In Advances in Cryptology - EURO-
CRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages 446–464. Springer, 2012.

[10] Ivan Damgård and Marcel Keller. Secure multiparty aes. In Proc. of Financial Cryptography 2010,
volume 6052 of LNCS, pages 367–374, 2010.

[11] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. Manuscript, 2011.

[12] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In EUROCRYPT, volume 4965 of
Lecture Notes in Computer Science, pages 31–51. Springer, 2008.

[13] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
STOC, pages 169–178. ACM, 2009.

[14] Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryption scheme. In
EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 129–148. Springer, 2011.

[15] Craig Gentry, Shai Halevi, and Nigel Smart. Fully homomorphic encryption with polylog overhead.
In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 465–482. Springer, 2012.
Full version at http://eprint.iacr.org/2011/566.

[16] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Ran Canetti and Juan A. Garay, edi-
tors, Advances in Cryptology - CRYPTO 2013, Part I, pages 75–92. Springer, 2013.

[17] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness of the
learning with errors assumption. In Innovations in Computer Science - ICS ’10, pages 230–240. Ts-
inghua University Press, 2010.

[18] Shai Halevi and Victor Shoup. Design and implementation of a homomorphic-encryption library.
manuscript, available at http://people.csail.mit.edu/shaih/pubs/he-library.
pdf, Accessed January 2015.

[19] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party computation using
garbled circuits. In USENIX Security Symposium, 2011.

[20] C. Orlandi J.B. Nielsen, P.S. Nordholt and S. Sheshank. A new approach to practical active-secure
two-party computation. Manuscript, 2011.

121

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

[21] Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic encryption be practi-
cal? In CCSW, pages 113–124. ACM, 2011.

[22] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for lwe-based encryption. In CT-RSA,
volume 6558 of Lecture Notes in Computer Science, pages 319–339. Springer, 2011.

[23] Adriana Lòpez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on
the cloud via multikey fully homomorphic encryption. In STOC. ACM, 2012.

[24] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 1–23, 2010.

[25] Daniele Micciancio and Oded Regev. Lattice-based cryptography, pages 147–192. Springer, 2009.

[26] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Steven C. Williams. Secure two-party compu-
tation is practical. In Proc. ASIACRYPT 2009, volume 5912 of LNCS, pages 250–267, 2009.

[27] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. In CHES,
volume 6225 of Lecture Notes in Computer Science, pages 413–427. Springer, 2010.

[28] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In Public Key Cryptography - PKC’10, volume 6056 of Lecture Notes in Computer
Science, pages 420–443. Springer, 2010.

[29] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Manuscript at
http://eprint.iacr.org/2011/133, 2011.

A More Details

Following [24, 5, 15, 29] we utilize rings defined by cyclotomic polynomials, A = Z[X]/Φm(X). We let
Aq denote the set of elements of this ring reduced modulo various (possibly composite) moduli q. The ring
A is the ring of integers of a the mth cyclotomic number field K.

A.1 Plaintext Slots

In our scheme plaintexts will be elements of A2, and the polynomial Φm(X) factors modulo 2 into ` ir-
reducible factors, Φm(X) = F1(X) · F2(X) · · ·F`(X) (mod 2), all of degree d = φ(m)/`. Just as in
[5, 15, 29] each factor corresponds to a “plaintext slot”. That is, we view a polynomial a ∈ A2 as represent-
ing an `-vector (a mod Fi)`i=1.

It is standard fact that the Galois group Gal = Gal(Q(ζm)/Q) consists of the mappings κk : a(X) 7→
a(xk) mod Φm(X) for all k co-prime with m, and that it is isomorphic to (Z/mZ)∗. As noted in [15], for
each i, j ∈ {1, 2, . . . , `} there is an element κk ∈ Gal which sends an element in slot i to an element in slot
j. Namely, if b = κi(a) then the element in the j’th slot of b is the same as that in the i’th slot of a. In
addition Gal contains the Frobenius elements, X −→ X2i

, which also act as Frobenius on the individual
slots separately.

For the purpose of implementing AES we will be specifically interested in arithmetic in F28 (represented
as F28 = F2[X]/G(X) with G(X) = X8 + X4 + X3 + X + 1). We choose the parameters so that d is
divisible by 8, so F2d includes F2d as a subfield. This lets us think of the plaintext space as containing
`-vectors over F2n .

122

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

A.2 Canonical Embedding Norm

Following [24], we use as the “size” of a polynomial a ∈ A the l∞ norm of its canonical embedding. Recall
that the canonical embedding of a ∈ A into Cφ(m) is the φ(m)-vector of complex numbers σ(a) = (a(ζim))i
where ζm is a complex primitive m-th root of unity and the indexes i range over all of (Z/mZ)∗. We call
the norm of σ(a) the canonical embedding norm of a, and denote it by

‖a‖can∞ = ‖σ(a)‖∞.

We will make use of the following properties of ‖ · ‖can∞ :

• For all a, b ∈ A we have ‖a · b‖can∞ ≤ ‖a‖can∞ · ‖b‖can∞ .

• For all a ∈ A we have ‖a‖can∞ ≤ ‖a‖1.

• There is a ring constant cm (depending only on m) such that ‖a‖∞ ≤ cm · ‖a‖can∞ for all a ∈ A.

The ring constant cm is defined by cm = ‖CRT−1
m ‖∞ where CRTm is the CRT matrix for m, i.e. the

Vandermonde matrix over the complex primitive m-th roots of unity. Asymptotically the value cm can grow
super-polynomially with m, but for the “small” values of m one would use in practice values of cm can be
evaluated directly. See [11] for a discussion of cm.

Canonical Reduction. When working with elements in Aq for some integer modulus q, we sometimes
need a version of the canonical embedding norm that plays nice with reduction modulo q. Following [15],
we define the canonical embedding norm reduced modulo q of an element a ∈ A as the smallest canonical
embedding norm of any a′ which is congruent to a modulo q. We denote it as

|a|canq
def= min{ ‖a′‖can∞ : a′ ∈ A, a′ ≡ a (mod q) }.

We sometimes also denote the polynomial where the minimum is obtained by [a]canq , and call it the canonical
reduction of a modulo q. Neither the canonical embedding norm nor the canonical reduction is used in the
scheme itself, it is only in the analysis of it that we will need them. We note that (trivially) we have
|a|canq ≤ ‖a‖can∞ .

A.3 Double CRT Representation

As noted in Section 2, we usually represent an element a ∈ Aq via double-CRT representation, with respect
to both the polynomial factor of Φm(X) and the integer factors of q. Specifically, we assume that Z/qZ
contains a primitive m-th root of unity (call it ζ), so Φm(X) factors modulo q to linear terms Φm(X) =∏
i∈(Z/mZ)∗(X − ζj) (mod q). We also denote q’s prime factorization by q =

∏t
i=0 pi. Then a polynomial

a ∈ Aq is represented as the (t + 1) × φ(m) matrix of its evaluation at the roots of Φm(X) modulo pi for
i = 0, . . . , t:

dble-CRTt(a) =
(
a
(
ζj
)

mod pi
)
0≤i≤t,j∈(Z/mZ)∗

.

The double CRT representation can be computed using t+1 invocations of the FFT algorithm modulo the pi,
picking only the FFT coefficients which correspond to elements in (Z/mZ)∗. To invert this representation
we invoke the inverse FFT algorithm t+1 times on a vector of length m consisting of the thinned out values
padded with zeros, then apply the Chinese Remainder Theorem, and then reduce modulo Φm(X) and q.

123

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Addition and multiplication in Aq can be computed as component-wise addition and multiplication of
the entries in the two tables (modulo the appropriate primes pi),

dble-CRTt(a+ b) = dble-CRTt(a) + dble-CRTt(b)
dble-CRTt(a · b) = dble-CRTt(a) · dble-CRTt(b).

Also, for an element of the Galois group κk ∈ Gal (which maps a(X) ∈ A to a(Xk) mod Φm(X)), we can
evaluate κk(a) on the double-CRT representation of a just by permuting the columns in the matrix, sending
each column j to column j · k mod m.

A.4 Sampling From Aq

At various points we will need to sample from Aq with different distributions, as described below. We denote
choosing the element a ∈ A according to distributionD by a← D. The distributions below are described as
over φ(m)-vectors, but we always consider them as distributions over the ring A, by identifying a polynomial
a ∈ A with its coefficient vector.

The uniform distribution Uq: This is just the uniform distribution over (Z/qZ)φ(m), which we identify with
(Z ∩ (−q/2, q/2])φ(m)). Note that it is easy to sample from Uq directly in double-CRT representation.

The “discrete Gaussian” DGq(σ2): LetN (0, σ2) denote the normal (Gaussian) distribution on real numbers
with zero-mean and variance σ2, we use drawing from N (0, σ2) and rounding to the nearest integer as
an approximation to the discrete Gaussian distribution. Namely, the distribution DGqt(σ2) draws a real
φ-vector according to N (0, σ2)φ(m), rounds it to the nearest integer vector, and outputs that integer vector
reduced modulo q (into the interval (−q/2, q/2]).

Sampling small polynomials, ZO(p) andHWT (h): These distributions produce vectors in {0,±1}φ(m).
For a real parameter ρ ∈ [0, 1], ZO(p) draws each entry in the vector from {0,±1}, with probability

ρ/2 for each of −1 and +1, and probability of being zero 1− ρ.
For an integer parameter h ≤ φ(m), the distribution HWT (h) chooses a vector uniformly at random

from {0,±1}φ(m), subject to the conditions that it has exactly h nonzero entries.

A.5 Canonical embedding norm of random polynomials

In the coming sections we will need to bound the canonical embedding norm of polynomials that are pro-
duced by the distributions above, as well as products of such polynomials. In some cases it is possible to
analyze the norm rigorously using Chernoff and Hoeffding bounds, but to set the parameters of our scheme
we instead use a heuristic approach that yields better constants:

Let a ∈ A be a polynomial that was chosen by one of the distributions above, hence all the (nonzero)
coefficients in a are IID (independently identically distributed). For a complex primitive m-th root of unity
ζm, the evaluation a(ζm) is the inner product between the coefficient vector of a and the fixed vector zm =
(1, ζm, ζ 2

m, . . .), which has Euclidean norm exactly
√
φ(m). Hence the random variable a(ζm) has variance

V = σ2φ(m), where σ2 is the variance of each coefficient of a. Specifically, when a ← Uq then each
coefficient has variance q2/12, so we get variance VU = q2φ(m)/12. When a← DGq(σ2) we get variance
VG ≈ σ2φ(m), and when a ← ZO(ρ) we get variance VZ = ρφ(m). When choosing a ← HWT (h) we
get a variance of VH = h (but not φ(m), since a has only h nonzero coefficients).

124

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Moreover, the random variable a(ζm) is a sum of many IID random variables, hence by the law of large
numbers it is distributed similarly to a complex Gaussian random variable of the specified variance.4 We
therefore use 6

√
V (i.e. six standard deviations) as a high-probability bound on the size of a(ζm). Since the

evaluation of a at all the roots of unity obeys the same bound, we use six standard deviations as our bound
on the canonical embedding norm of a. (We chose six standard deviations since erfc(6) ≈ 2−55, which is
good enough for us even when using the union bound and multiplying it by φ(m) ≈ 216.)

In many cases we need to bound the canonical embedding norm of a product of two such “random
polynomials”. In this case our task is to bound the magnitude of the product of two random variables, both
are distributed close to Gaussians, with variances σ2

a, σ
2
b , respectively. For this case we use 16σaσb as our

bound, since erfc(4) ≈ 2−25, so the probability that both variables exceed their standard deviation by more
than a factor of four is roughly 2−50.

B The Basic Scheme

We now define our leveled HE scheme on L levels; including the Modulus-Switching and Key-Switching
operations and the procedures for KeyGen,Enc,Dec, and for Add,Mult, Scalar-Mult, and Automorphism.

Recall that a ciphertext vector c in the cryptosystem is a valid encryption of a ∈ A with respect to
secret key s and modulus q if [[〈c, s〉]q]2 = a, where the inner product is over A = Z[X]/Φm(X), the
operation [·]q denotes modular reduction in coefficient representation into the interval (−q/2,+q/2], and
we require that the “noise” [〈c, s〉]q is sufficiently small (in canonical embedding norm reduced mod q). In
our implementation a “normal” ciphertext is a 2-vector c = (c0, c1), and a “normal” secret key is of the
form s = (1,−s), hence decryption takes the form

a← [c0 − c1 · s]q mod 2. (2)

B.1 Our Moduli Chain

We define the chain of moduli for our depth-L homomorphic evaluation by choosing L “small primes”
p0, p1, . . . , pL−1 and the t’th modulus in our chain is defined as qt =

∏t
j=0 pj . (The sizes will be determined

later.) The primes pi’s are chosen so that for all i, Z/piZ contains a primitive m-th root of unity. Hence we
can use our double-CRT representation for all Aqt .

This choice of moduli makes it easy to get a level-(t− 1) representation of a ∈ A from its level-t repre-
sentation. Specifically, given the level-t double-CRT representation dble-CRTt(a) for some a ∈ Aqt , we can
simply remove from the matrix the row corresponding to the last small prime pt, thus obtaining a level-(t−1)
representation of a mod qt−1 ∈ Aqt−1 . Similarly we can get the double-CRT representation for lower levels
by removing more rows. By a slight abuse of notation we write dble-CRTt

′
(a) = dble-CRTt(a) mod qt′

for t′ < t.
Recall that encryption produces ciphertext vectors valid with respect to the largest modulus qL−1 in our

chain, and we obtain ciphertext vectors valid with respect to smaller moduli whenever we apply modulus-
switching to decrease the noise magnitude. As described in Section 3.3, our implementation dynamically
adjust levels, performing modulus switching when the dynamically-computed noise estimate becomes too
large. Hence each ciphertext in our scheme is tagged with both its level t (pinpointing the modulus qt relative
to which this ciphertext is valid), and an estimate ν on the noise magnitude in this ciphertext. In other words,

4The mean of a(ζm) is zero, since the coefficients of a are chosen from a zero-mean distribution.

125

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

a ciphertext is a triple (c, t, ν) with 0 ≤ t ≤ L− 1, c a vector over Aqt , and ν a real number which is used
as our noise estimate.

B.2 Modulus Switching

The operation SwitchModulus(c) takes the ciphertext c = ((c0, c1), t, ν) defined modulo qt and produces a
ciphertext c′ = ((c′0, c

′
1), t−1, ν ′) defined modulo qt−1, Such that [c0− s · c1]qt ≡ [c′0− s · c′1]qt−1 (mod 2),

and ν ′ is smaller than ν. This procedure makes use of the function Scale(x, q, q′) that takes an element
x ∈ Aq and returns an element y ∈ Aq′ such that in coefficient representation it holds that y ≡ x (mod 2),
and y is the closest element to (q′/q) · x that satisfies this mod-2 condition.

To maintain the noise estimate, the procedure uses the pre-set ring-constant cm (cf. Appendix A.2) and
also a pre-set constant Bscale which is meant to bound the magnitude of the added noise term from this
operation. It works as follows:

SwitchModulus((c0, c1), t, ν):
1. If t < 1 then abort; // Sanity check
2. ν ′ ← qt−1

qt
· ν +Bscale; // Scale down the noise estimate

3. If ν ′ > qt−1/2cm then abort; // Another sanity check
4. c′i ← Scale(ci, qt, qt−1) for i = 0, 1; // Scale down the vector
5. Output ((c′0, c

′
1), t− 1, ν ′).

The constant Bscale is set as Bscale = 2
√
φ(m)/3 · (8

√
h + 3), where h is the Hamming weight of the

secret key. (In our implementation we use h = 64, so we getBscale ≈ 77
√
φ(m).) To justify this choice, we

apply to the proof of the modulus switching lemma from [15, Lemma 13] (in the full version), relative to the
canonical embedding norm. In that proof it is shown that when the noise magnitude in the input ciphertext
c = (c0, c1) is bounded by ν, then the noise magnitude in the output vector c′ = (c′0, c

′
1) is bounded by

ν ′ = qt−1

qt
· ν + ‖ 〈s, τ〉 ‖can∞ , provided that the last quantity is smaller than qt−1/2.

Above τ is the “rounding error” vector, namely τ def= (τ0, τ1) = (c′0, c
′
1) − qt−1

qt
(c0, c1). Heuristically

assuming that τ behaves as if its coefficients are chosen uniformly in [−1,+1], the evaluation τi(ζ) at an
m-th root of unity ζm is distributed close to a Gaussian complex with variance φ(m)/3. Also, s was drawn
from HWT (h) so s(ζm) is distributed close to a Gaussian complex with variance h. Hence we expect
τ1(ζ)s(ζ) to have magnitude at most 16

√
φ(m)/3 · h (recall that we use h = 64). We can similarly bound

τ0(ζm) by 6
√
φ(m)/3, and therefore the evaluation of 〈s, τ〉 at ζm is bounded in magnitude (whp) by:

16
√
φ(m)/3 · h + 6

√
φ(m)/3 = 2

√
φ(m)/3 ·

(
8
√
h+ 3

)
≈ 77

√
φ(m) = Bscale (3)

B.3 Key Switching

After some homomorphic evaluation operations we have on our hands not a “normal” ciphertext which is
valid relative to “normal” secret key, but rather an “extended ciphertext” ((d0, d1, d2), qt, ν) which is valid
with respect to an “extended secret key” s′ = (1,−s,−s′). Namely, this ciphertext encrypts the plaintext
a ∈ A via

a =
[[
d0 − s · d1 − s′ · d2

]
qt

]
2

and the magnitude of the noise
[
d0−s·d1−d2 ·s′

]
qt

is bounded by ν. In our implementation, the component
s is always the same element s ∈ A that was drawn from HWT (h) during key generation, but s′ can vary
depending on the operation. (See the description of multiplication and automorphisms below.)

126

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

To enable that translation, we use some “key switching matrices” that are included in the public key. (In
our implementation these “matrices” have dimension 2 × 1, i.e., the consist of only two elements from A.)
As explained in Section 3.1, we save on space and time by artificially “boosting” the modulus we use from
qt up to P · qt for some “large” modulus P . We note that in order to represent elements in APqt using our
dble-CRT representation we need to choose P so that Z/PZ also has primitive m-th roots of unity. (In fact
in our implementation we pick P to be a prime.)

The key-switching “matrix”. Denote by Q = P · qL−2 the largest modulus relative to which we need
to generate key-switching matrices. To generate the key-switching matrix from s′ = (1,−s,−s′) to s =
(1,−s) (note that both keys share the same element s), we choose two element, one uniform and the other
from our “discrete Gaussian”,

as,s′ ← UQ and es,s′ ← DGQ(σ2),

where the variance σ is a global parameter (that we later set as σ = 3.2). The “key switching matrix” then
consists of the single column vector

W [s′ → s] =
(
bs,s′

as,s′

)
, where bs,s′

def=
[
s · as,s′ + 2es,s′ + P s′

]
Q
. (4)

Note that W above is defined modulo Q = PqL−2 , but we need to use it relative to Qt = Pqt for whatever
the current level t is. Hence before applying the key switching procedure at level t, we reduceW moduloQt
to getWt

def= [W]Qt . It is important to note that sinceQt dividesQ thenWt is indeed a key-switching matrix.
Namely it is of the form (b, a)T with a ∈ UQt and b = [s · a + 2es,s′ + P s′]Qt (with respect to the same
element es,s′ ∈ A from above).

The SwitchKey procedure. Given the extended ciphertext c = ((d0, d1, d2), t, ν) and the key-switching
matrix Wt = (b, a)T , the procedure SwitchKeyWt

(c) proceeds as follows:5

SwitchKey(b,a)((d0, d1, d2), t, ν):

1. Set
(
c′0
c′1

)
←
[(

Pd0 b
Pd1 a

)(
1
d2

)]
Qt

; // The actual key-switching operation

2. c′′i ← Scale(c′i, Qt, qt) for i = 0, 1; // Scale the vector back down to qt
3. ν ′ ← ν +BKs · qt/P +Bscale; // The constant BKs is determined below
4. Output ((c′′0, c

′′
1), t, ν ′).

To argue correctness, observe that although the “actual key switching operation” from above looks
superficially different from the standard key-switching operation c′ ← W · c, it is merely an optimization
that takes advantage of the fact that both vectors s′ and s share the element s. Indeed, we have the equality
over AQt :

c′0 − s · c′1 = [(P · d0) + d2 · bs,s′ − s ·
(
(P · d1) + d2 · as,s′

)
= P · (d0 − s · d1 − s′d2) + 2 · d2 · εs,s′ ,

5For simplicity we describe the SwitchKey procedure as if it always switches back to mod-qt, but in reality if the noise estimate
is large enough then it can switch directly to qt−1 instead.

127

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

so as long as both sides are smaller than Qt we have the same equality also over A (without the mod-Qt
reduction), which means that we get

[c′0 − s · c′1]Qt = [P · (d0 − s · d1 − s′d2) + 2 · d2 · εs,s′]Qt ≡ [d0 − s · d1 − s′d2]Qt (mod 2).

To analyze the size of the added term 2d2εs,s′ , we can assume heuristically that d2 behaves like a uniform
polynomial drawn from Uqt , hence d2(ζm) for a complex root of unity ζm is distributed close to a complex
Gaussian with variance q2t φ(m)/12. Similarly εs,s′(ζm) is distributed close to a complex Gaussian with
variance σ2φ(m), so 2d2(ζ)ε(ζ) can be modeled as a product of two Gaussians, and we expect that with
overwhelming probability it remains smaller than 2 · 16 ·

√
q2t φ(m)/12 · σ2φ(m) = 16√

3
· σqtφ(m). This

yields a heuristic bound 16/
√

3 · σφ(m) · qt = BKs · qt on the canonical embedding norm of the added
noise term, and if the total noise magnitude does not exceed Qt/2cm then also in coefficient representation
everything remains below Qt/2. Thus our constant BKs is set as

16σφ(m)√
3

≈ 9σφ(m) = BKs (5)

Finally, dividing by P (which is the effect of the Scale operation), we obtain the final ciphertext that we
require, and the noise magnitude is divided by P (except for the added Bscale term).

B.4 Key-Generation, Encryption, and Decryption

The procedures below depend on many parameters, h, σ,m, the primes pi and P , etc. These parameters will
be determined later.

KeyGen(): Given the parameters, the key generation procedure chooses a low-weight secret key and then
generates an LWE instance relative to that secret key. Namely, we choose

s← HWT (h), a← UqL−1 , and e← DGqL−1(σ2)

Then sets the secret key as s and the public key as (a, b) where b = [a · s+ 2e]qL−1 .
In addition, the key generation procedure adds to the public key some key-switching “matrices”, as

described in Appendix B.3. Specifically the matrix W [s2 → s] for use in multiplication, and some matrices
W [κi(s) → s] for use in automorphisms, for κi ∈ Gal whose indexes generates (Z/mZ)∗ (including in
particular κ2).

Encpk(m): To encrypt an element m ∈ A2, we choose one “small polynomial” (with 0,±1 coefficients) and
two Gaussian polynomials (with variance σ2),

v ← ZO(0.5) and e0, e1 ← DGqL−1(σ2)

Then we set c0 = b·v+2·e0+m, c1 = a·v+2·e1, and set the initial ciphertext as c′ = (c0, c1, L−1, Bclean),
where Bclean is a parameter that we determine below.

The noise magnitude in this ciphertext (Bclean) is a little larger than what we would like, so before we
start computing on it we do one modulus-switch. That is, the encryption procedure sets c← SwitchModulus(c′)
and outputs c. We can deduce a value for Bclean as follows:∣∣c0 − s · c1

∣∣can
qt
≤ ‖c0 − s · c1‖can∞
= ‖((a · s+ 2 · e) · v + 2 · e0 + m− (a · v + 2 · e1) · s‖can∞
= ‖m + 2 · (e · v + e0 − e1 · s)‖can∞
≤ ‖m‖can∞ + 2 · (‖e · v‖can∞ + ‖e0‖can∞ + ‖e1 · s‖can∞)

128

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Using our complex Gaussian heuristic from Appendix A.5, we can bound the canonical embedding norm of
the randomized terms above by

‖e · v‖can∞ ≤ 16σφ(m)/
√

2, ‖e0‖can∞ ≤ 6σ
√
φ(m), ‖e1 · s‖can∞ ≤ 16σ

√
h · φ(m)

Also, the norm of the input message m is clearly bounded by φ(m), hence (when we substitute our param-
eters h = 64 and σ = 3.2) we get the bound

φ(m) + 32σφ(m)/
√

2 + 12σ
√
φ(m) + 32σ

√
h · φ(m) ≈ 74φ(m) + 858

√
φ(m) = Bclean (6)

Our goal in the initial modulus switching from qL−1 to qL−2 is to reduce the noise from its initial level of
Bclean = Θ(φ(m)) to our base-line bound of B = Θ(

√
φ(m)) which is determined in Equation (12) below.

Decpk(c): Decryption of a ciphertext (c0, c1, t, ν) at level t is performed by setting m′ ← [c0 − s · c1]qt ,
then converting m′ to coefficient representation and outputting m′ mod 2. This procedure works when
cm · ν < qt/2, so this procedure only applies when the constant cm for the field A is known and relatively
small (which as we mentioned above will be true for all practical parameters). Also, we must pick the
smallest prime q0 = p0 large enough, as described in Appendix C.2.

B.5 Homomorphic Operations

Add(c, c′): Given two ciphertexts c = ((c0, c1), t, ν) and c′ = ((c′0, c
′
1), t′, ν ′), representing messages

m,m′ ∈ A2, this algorithm forms a ciphertext ca = ((a0, a1), ta, νa) which encrypts the message ma =
m + m′.

If the two ciphertexts do not belong to the same level then we reduce the larger one modulo the smaller
of the two moduli, thus bringing them to the same level. (This simple modular reduction works as long as
the noise magnitude is smaller than the smaller of the two moduli, if this condition does not hold then we
need to do modulus switching rather than simple modular reduction.) Once the two ciphertexts are at the
same level (call it t′′), we just add the two ciphertext vectors and two noise estimates to get

ca =
((

[c0 + c′0]qt′′ , [c1 + c′1]qt′′
)
, t′′, ν + ν ′

)
.

Mult(c, c′): Given two ciphertexts representing messages m,m′ ∈ A2, this algorithm forms a ciphertext
encrypts the message m ·m′.

We begin by ensuring that the noise magnitude in both ciphertexts is smaller than the pre-set constant
B (which is our base-line bound and is determined inEquation (12) below), performing modulus-switching
as needed to ensure this condition. Then we bring both ciphertexts to the same level by reducing modulo
the smaller of the two moduli (if needed). Once both ciphertexts have small noise magnitude and the same
level we form the extended ciphertext (essentially performing the tensor product of the two) and apply
key-switching to get back a normal ciphertext. A pseudo-code description of this procedure is given below.

Mult(c, c′):

1. While ν(c) > B do c← SwitchModulus(c); // ν(c) is the noise estimate in c

2. While ν(c′) > B do c′ ← SwitchModulus(c′); // ν(c′) is the noise estimate in c′

3. Bring c, c′ to the same level t by reducing modulo the smaller of the two moduli
Denote after modular reduction c = ((c0, c1), t, ν) and c′ = ((c′0, c

′
1), t, ν ′)

129

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

4. Set (d0, d1, d2)← (c0 · c′0 , c1 · c′0 + c0 · c′1 , − c1 · c′1);
Denote c′′ = ((d0, d1, d2), t, ν · ν ′)

5. Output SwitchKeyW [s2→s](c′′) // Convert to “normal” ciphertext

We stress that the only place where we force modulus switching is before the multiplication operation.
In all other operations we allow the noise to grow, and it will be reduced back the first time it is input to a
multiplication operation. We also note that we may need to apply modulus switching more than once before
the noise is small enough.

Scalar-Mult(c, α): Given a ciphertext c = (c0, c1, t, ν) representing the message m, and an element α ∈ A2

(represented as a polynomial modulo 2 with coefficients in {−1, 0, 1}), this algorithm forms a ciphertext
cm = (a0, a1, tm, νm) which encrypts the message mm = α ·m. This procedure is needed in our imple-
mentation of homomorphic AES, and is of more general interest in general computation over finite fields.

The algorithm makes use of a procedure Randomize(α) which takes α and replaces each non-zero co-
efficients with a coefficients chosen at random from {−1, 1}. To multiply by α, we set β ← Randomize(α)
and then just multiply both c0 and c1 by β. Using the same argument as we used in Appendix A.5 for the
distribution HWT (h), here too we can bound the norm of β by ‖β‖can∞ ≤ 6

√
Wt(α) where Wt(α) is the

number of nonzero coefficients of α. Hence we multiply the noise estimate by 6
√

Wt(α), and output the
resulting ciphertext cm = (c0 · β, c1 · β, t, ν · 6

√
Wt(α)).

Automorphism(c, κ): In the main body we explained how permutations on the plaintext slots can be real-
ized via using elements κ ∈ Gal; we also require the application of such automorphism to implement the
Frobenius maps in our AES implementation.

For each κ that we want to use, we need to include in the public key the “matrix” W [κ(s) → s]. Then,
given a ciphertext c = (c0, c1, t, ν) representing the message m, the function Automorphism(c, κ) produces
a ciphertext c′ = (c′0, c

′
1, t, ν

′) which represents the message κ(m). We first set an “extended ciphertext” by
setting

d0 = κ(c0), d1 ← 0, and d2 ← κ(c1)

and then apply key switching to the extended ciphertext ((d0, d1, d2), t, ν) using the “matrix” W [κ(s)→ s].

C Security Analysis and Parameter Settings

Below we derive the concrete parameters for use in our early implementation. This part of the report is
outdated, we left it here for historical purpose.

We begin in Appendix C.1 by deriving a lower-bound on the dimension N of the LWE problem under-
lying our key-switching matrices, as a function of the modulus and the noise variance. (This will serve as
a lower-bound on φ(m) for our choice of the ring polynomial Φm(X).) Then in Appendix C.2 we derive
a lower bound on the size of the largest modulus Q in our implementation, in terms of the noise variance
and the dimension N . Then in Appendix C.3 we choose a value for the noise variance (as small as possible
subject to some nominal security concerns), solve the somewhat circular constraints on N and Q, and set all
the other parameters.

C.1 Lower-Bounding the Dimension

Below we apply to the LWE-security analysis of Lindner and Peikert [22], together with a few (arguably
justifiable) assumptions, to analyze the dimension needed for different security levels. The analysis below

130

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

assumes that we are given the modulus Q and noise variance σ2 for the LWE problem (i.e., the noise is
chosen from a discrete Gaussian distribution modulo Q with variance σ2 in each coordinate). The goal is to
derive a lower-bound on the dimension N required to get any given security level. The first assumption that
we make, of course, is that the Lindner-Peikert analysis — which was done in the context of standard LWE
— applies also for our ring-LWE case. We also make the following extra assumptions:

• We assume that (once σ is not too tiny), the security depends on the ratio Q/σ and not on Q and σ
separately. Nearly all the attacks and hardness results in the literature support this assumption, with
the exception of the Arora-Ge attack [2] (that works whenever σ is very small, regardless of Q).

• The analysis in [22] devised an experimental formula for the time that it takes to get a particular quality
of reduced basis (i.e., the parameter δ of Gama and Nguyen [12]), then provided another formula for
the advantage that the attack can derive from a reduced basis at a given quality, and finally used a
computer program to solve these formulas for some given values of N and δ. This provides some
time/advantage tradeoff, since obtaining a smaller value of δ (i.e., higher-quality basis) takes longer
time and provides better advantage for the attacker.

For our purposes we made the assumption that the best runtime/advantage ratio is achieved in the
high-advantage regime. Namely we should spend basically all the attack running time doing lattice
reduction, in order to get a good enough basis that will break security with advantage (say) 1/2. This
assumption is consistent with the results that are reported in [22].

• Finally, we assume that to get advantage of close to 1/2 for an LWE instance with modulus Q and
noise σ, we need to be able to reduce the basis well enough until the shortest vector is of size roughly
Q/σ. Again, this is consistent with the results that are reported in [22].

Given these assumptions and the formulas from [22], we can now solve the dimension/security tradeoff
analytically. Because of the first assumption we might as well simplify the equations and derive our lower
bound on N for the case σ = 1, where the ratio Q/σ is equal to Q. (In reality we will use σ ≈ 4 and
increase the modulus by the same 2 bits).

Following Gama-Nguyen [12], recall that a reduced basis B = (b1|b2| . . . |bm) for a dimension-M ,
determinant-D lattice (with ‖b1‖ ≤ ‖b2‖ ≤ · · · ‖bM‖), has quality parameter δ if the shortest vector in that
basis has norm ‖b1‖ = δM · D1/M . In other words, the quality of B is defined as δ = ‖b1‖1/M/D1/M2

.
The time (in seconds) that it takes to compute a reduced basis of quality δ for a random LWE instance was
estimated in [22] to be at least

log(time) ≥ 1.8/ log(δ)− 110. (7)

For a randomQ-ary lattice of rankN , the determinant is exactlyQN whp, and therefore a quality-δ basis has
‖b1‖ = δM ·QN/M . By our second assumption, we should reduce the basis enough so that ‖b1‖ = Q, so we
needQ = δM ·QN/M . The LWE attacker gets to choose the dimensionM , and the best choice for this attack
is obtained when the right-hand-side of the last equality is minimized, namely for M =

√
N logQ/ log δ.

This yields the condition

logQ = log(δMQN/M) = M log δ + (N/M) logQ = 2
√
N logQ log δ,

which we can solve for N to get N = logQ/4 log δ. Finally, we can use Equation (7) to express log δ as a
function of log(time), thus getting N = logQ · (log(time) + 110)/7.2. Recalling that in our case we used

131

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

σ = 1 (so Q/σ = Q), we get our lower-bound on N in terms of Q/σ. Namely, to ensure a time/advantage
ratio of at least 2k, we need to set the rank N to be at least

N ≥ log(Q/σ)(k + 110)
7.2

(8)

For example, the above formula says that to get 80-bit security level we need to set N ≥ log(Q/σ) · 26.4,
for 100-bit security level we need N ≥ log(Q/σ) · 29.1, and for 128-bit security level we need N ≥
log(Q/σ) · 33.1. We comment that these values are indeed consistent with the values reported in [22].

C.1.1 LWE with Sparse Key

The analysis above applies to “generic” LWE instance, but in our case we use very sparse secret keys (with
only h = 64 nonzero coefficients, all chosen as ±1). This brings up the question of whether one can get
better attacks against LWE instances with a very sparse secret (much smaller than even the noise). We
note that Goldwasser et al. proved in [17] that LWE with low-entropy secret is as hard as standard LWE
with weaker parameters (for large enough moduli). Although the specific parameters from that proof do not
apply to our choice of parameter, it does indicate that weak-secret LWE is not “fundamentally weaker” than
standard LWE. In terms of attacks, the only attack that we could find that takes advantage of this sparse key
is by applying the reduction technique of Applebaum et al. [1] to switch the key with part of the error vector,
thus getting a smaller LWE error.

In a sparse-secret LWE we are given a random N -by-M matrix A (modulo Q), and also an M -vector
y = [sA + e]Q. Here the N -vector s is our very sparse secret, and e is the error M -vector (which is also
short, but not sparse and not as short as s).

Below let A1 denotes the first N columns of A, A2 the next N columns, then A3, A4, etc. Similarly
e1, e2, . . . are the corresponding parts of the error vector and y1,y2, . . . the corresponding parts of y. As-
suming that A1 is invertible (which happens with high probability), we can transform this into an LWE
instance with respect to secret e1, as follows:

We have y1 = sA1 + e1, or alternatively A−1
1 y1 = s +A−1

1 e1. Also, for i > 1 we have yi = sAi + ei,
which together with the above gives AiA−1

1 y1 − yi = AiA
−1
1 e1 − ei. Hence if we denote

B1
def= A−1

1 , and for i > 1 Bi
def= AiA1−1,

and similarly z1 = A−1
1 y1, and for i > 1 zi

def= AiA
−1
1 yi,

and then set B def= (Bt
1|Bt

2|Bt
3| . . .) and z def= (z1|z2|z3| . . .), and also f = (s|e2|e3| . . .) then we get the

LWE instance
z = et1B + f

with secret et1. The thing that makes this LWE instance potentially easier than the original one is that the
first part of the error vector f is our sparse/small vector s, so the transformed instance has smaller error than
the original (which means that it is easier to solve).

Trying to quantify the effect of this attack, we note that the optimal M value in the attack from Ap-
pendix C.1 above is obtained at M = 2N , which means that the new error vector is f = (s|e2), which has
Euclidean norm smaller than e = (e1|e2) by roughly a factor of

√
2 (assuming that ‖s‖ � ‖e1‖ ≈ ‖e2‖).

Maybe some further improvement can be obtained by using a smaller value for M , where the shorter error
may outweigh the “non optimal” value of M . However, we do not expect to get major improvement this
way, so it seems that the very sparse secret should only add maybe one bit to the modulus/noise ratio.

132

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

C.2 The Modulus Size

In this section we assume that we are given the parameter N = φ(m) (for our polynomial ring modulo
Φm(X)). We also assume that we are given the noise variance σ2, the number of levels in the modulus
chain L, an additional “slackness parameter” ξ (whose purpose is explained below), and the number of
nonzero coefficients in the secret key h. Our goal is to devise a lower bound on the size of the largest
modulus Q used in the public key, so as to maintain the functionality of the scheme.

Controlling the Noise. Driving the analysis in this section is a bound on the noise magnitude right after
modulus switching, which we denote below by B. We set our parameters so that starting from ciphertexts
with noise magnitude B, we can perform one level of fan-in-two multiplications, then one level of fan-in-ξ
additions, followed by key switching and modulus switching again, and get the noise magnitude back to the
same B.

• Recall that in the “reduced canonical embedding norm”, the noise magnitude is at most multiplied
by modular multiplication and added by modular addition, hence after the multiplication and addition
levels the noise magnitude grows from B to as much as ξB2.

• As we’ve seen in Appendix B.3, performing key switching scales up the noise magnitude by a factor of
P and adds another noise term of magnitude upto BKs · qt (before doing modulus switching to scale it
back down). Hence starting from noise magnitude ξB2, the noise grows to magnitude PξB2+BKs ·qt
(relative to the modulus Pqt).

Below we assume that after key-switching we do modulus switching directly to a smaller modulus.

• After key-switching we can switch to the next modulus qt−1 to decrease the noise back to our boundB.
Following the analysis from Appendix B.2, switching moduli from Qt to qt−1 decreases the noise
magnitude by a factor of qt−1/Qt = 1/(P · pt), and then add a noise term of magnitude Bscale.

Starting from noise magnitude PξB2 +BKs · qt before modulus switching, the noise magnitude after
modulus switching is therefore bounded whp by

P · ξB2 +BKs · qt
P · pt

+Bscale =
ξB2

pt
+
BKs · qt−1

P
+Bscale

Using the analysis above, our goal next is to set the parameters B,P and the pt’s (as functions of N, σ, L, ξ
and h) so that in every level t we get ξB2

pt
+ BKs·qt−1

P + Bscale ≤ B. Namely we need to satisfy at every
level t the quadratic inequality (in B)

ξ

pt
B2 − B +

(
BKs · qt−1

P
+Bscale︸ ︷︷ ︸

denote this by Rt−1

)
≤ 0 . (9)

Observe that (assuming that all the primes pt are roughly the same size), it suffices to satisfy this inequality
for the largest modulus t = L−2, sinceRt−1 increases with larger t’s. Noting thatRL−3 > Bscale, we want
to get this term to be as close to Bscale as possible, which we can do by setting P large enough. Specifically,
to make it as close as RL−3 = (1 + 2−n)Bscale it is sufficient to set

P ≈ 2n
BKsqL−3

Bscale
≈ 2n

9σNqL−3

77
√
N

≈ 2n−3qL−3 · σ
√
N, (10)

133

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Below we set (say) n = 8, which makes it close enough to use just RL−3 ≈ Bscale for the derivation below.
Clearly to satisfy Inequality (9) we must have a positive discriminant, which means 1−4 ξ

pL−2
RL−3 ≥ 0,

or pL−2 ≥ 4ξRL−3. Using the value RL−3 ≈ Bscale, this translates into setting

p1 ≈ p2 · · · ≈ pL−2 ≈ 4ξ ·Bscale ≈ 308ξ
√
N (11)

Finally, with the discriminant positive and all the pi’s roughly the same size we can satisfy Inequality (9) by
setting

B ≈ 1
2ξ/pL−2

=
pL−2

2ξ
≈ 2Bscale ≈ 154

√
N. (12)

The Smallest Modulus. After evaluating our L-level circuit, we arrive at the last modulus q0 = p0 with
noise bounded by ξB2. To be able to decrypt, we need this noise to be smaller than q0/2cm, where cm is
the ring constant for our polynomial ring modulo Φm(X). For our setting, that constant is always below 40,
so a sufficient condition for being able to decrypt is to set

q0 = p0 ≈ 80ξB2 ≈ 220.9ξN (13)

The Encryption Modulus. Recall that freshly encrypted ciphertext have noiseBclean (as defined in Equa-
tion (6)), which is larger than our baseline boundB from above. To reduce the noise magnitude after the first
modulus switching down toB, we therefore set the ratio pL−1 = qL−1/qL−2 so thatBclean/pL−1 +Bscale ≤
B. This means that we set

pL−1 =
Bclean

B −Bscale
≈ 74N + 858

√
N

77
√
N

≈
√
N + 11 (14)

The Largest Modulus. Having set all the parameters, we are now ready to calculate the resulting bound
on the largest modulus, namely QL−2 = qL−2 · P . Using Equations (11), and (13), we get

qt = p0 ·
t∏
i=1

pi ≈ (220.9ξN) ·
(
308ξ
√
N
)t = 220.9 · 308t · ξt+1 ·N t/2+1. (15)

Now using Equation (10) we have

P ≈ 25qL−3σ
√
N ≈ 225.9 · 308L−3 · ξL−2 ·N (L−3)/2+1 · σ

√
N

≈ 2 · 308L · ξL−2σNL/2

and finally

QL−2 = P · qL−2 ≈ (2 · 308L · ξL−2σNL/2) · (220.9 · 308L−2 · ξL−1 ·NL/2)
≈ σ · 216.5L+5.4 · ξ2L−3 ·NL (16)

C.3 Putting It Together

We now have in Equation (8) a lower bound on N in terms of Q, σ and the security level k, and in Equa-
tion (16) a lower bound on Q with respect to N, σ and several other parameters. We note that σ is a free
parameter, since it drops out when substituting Equation (16) in Equation (8). In our implementation we
used σ = 3.2, which is the smallest value consistent with the analysis in [25].

134

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

For the other parameters, we set ξ = 8 (to get a small “wiggle room” without increasing the parameters
much), and set the number of nonzero coefficients in the secret key at h = 64 (which is already included in
the formulas from above, and should easily defeat exhaustive-search/birthday type of attacks). Substituting
these values into the equations above we get

p0 ≈ 223.9N, pi ≈ 211.3
√
N for i = 1, . . . , L− 2

P ≈ 211.3L−5NL/2, and QL−2 ≈ 222.5L−3.6σNL.

Substituting the last value of QL−2 into Equation (8) yields

N >
(L(logN + 23)− 8.5)(k + 110)

7.2
(17)

Targeting k = 80-bits of security and solving for several different depth parameters L, we get the results in
the table below, which also lists approximate sizes for the primes pi and P .

L N log2(p0) log2(pi) log2(pL−1) log2(P)
10 9326 37.1 17.9 7.5 177.3
20 19434 38.1 18.4 8.1 368.8
30 29749 38.7 18.7 8.4 564.2
40 40199 39.2 18.9 8.6 762.2
50 50748 39.5 19.1 8.7 962.1
60 61376 39.8 19.2 8.9 1163.5
70 72071 40.0 19.3 9.0 1366.1
80 82823 40.2 19.4 9.1 1569.8
90 93623 40.4 19.5 9.2 1774.5

Choosing Concrete Values. Having obtained lower-bounds on N = φ(m) and other parameters, we now
need to fix precise cyclotomic fields Q(ζm) to support the algebraic operations we need. We have two
situations we will be interested in for our experiments. The first corresponds to performing arithmetic on
bytes in F28 (i.e. n = 8), whereas the latter corresponds to arithmetic on bits in F2 (i.e. n = 1). We therefore
need to find an odd value of m, with φ(m) ≈ N and m dividing 2d − 1, where we require that d is divisible
by n. Values of m with a small number of prime factors are preferred as they give rise to smaller values of
cm. We also look for parameters which maximize the number of slots ` we can deal with in one go, and
values for which φ(m) is close to the approximate value for N estimated above. When n = 1 we always
select a set of parameters for which the ` value is at least as large as that obtained when n = 8.

n = 8 n = 1
L m N = φ(m) (d, `) cK m N = φ(m) (d, `) cK
10 11441 10752 (48,224) 3.60 11023 10800 (45,240) 5.13
20 34323 21504 (48,448) 6.93 34323 21504 (48,448) 6.93
30 31609 31104 (72,432) 5.15 32377 32376 (57,568) 1.27
40 54485 40960 (64,640) 12.40 42799 42336 (21,2016) 5.95
50 59527 51840 (72,720) 21.12 54161 52800 (60,880) 4.59
60 68561 62208 (72,864) 36.34 85865 63360 (60,1056) 12.61
70 82603 75264 (56,1344) 36.48 82603 75264 (56,1344) 36.48
80 92837 84672 (56,1512) 38.52 101437 85672 (42,2016) 19.13
90 124645 98304 (48,2048) 21.07 95281 94500 (45,2100) 6.22

135

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

D Scale(c, qt, qt−1) in dble-CRT Representation

Let qi =
∏i
j=0 pj , where the pj’s are primes that split completely in our cyclotomic field A. We are given

a c ∈ Aqt represented via double-CRT – that is, it is represented as a “matrix” of its evaluations at the
primitive m-th roots of unity modulo the primes p0, . . . , pt. We want to modulus switch to qt−1 – i.e., scale
down by a factor of pt. Let’s recall what this means: we want to output c′ ∈ A, represented via double-CRT
format (as its matrix of evaluations modulo the primes p0, . . . , pt−1), such that

1. c′ = c mod 2.

2. c′ is very close (in terms of its coefficient vector) to c/pt.

In the main body we explained how this could be performed in dble-CRT representation. This made explicit
use of the fact that the two ciphertexts need to be equivalent modulo two. If we wished to replace two with
a general prime p, then things are a bit more complicated. For completeness, although it is not required in
our scheme, we present a methodology below. In this case, the conditions on c† are as follows:

1. c† = c · pt mod p.

2. c† is very close to c.

3. c† is divisible by pt.

As before, we set c′ ← c†/pt. (Note that for p = 2, we trivially have c · pt = c mod p, since pt will be odd.)
This causes some complications, because we set c† ← c+ δ, where δ = −c̄ mod pt (as before) but now

δ = (pt − 1) · c mod p. To compute such a δ, we need to know c mod p. Unfortunately, we don’t have
c mod p. One not-very-satisfying way of dealing with this problem is the following. Set ĉ← [pt]p·c mod qt.
Now, if c encrypted m, then ĉ encrypts [pt]p ·m, and ĉ’s noise is [pt]p < p/2 times as large. It is obviously
easy to compute ĉ’s double-CRT format from c’s. Now, we set c† so that the following is true:

1. c† = ĉ mod p.

2. c† is very close to ĉ.

3. c† is divisible by pt.

This is easy to do. The algorithm to output c† in double-CRT format is as follows:

1. Set c̄ to be the coefficient representation of ĉ mod pt. (Computing this requires a single “small FFT”
modulo the prime pt.)

2. Set δ to be the polynomial with coefficients in (−pt · p/2, pt · p/2] such that δ = 0 mod p and
δ = −c̄ mod pt.

3. Set c† = ĉ+ δ, and output c†’s double-CRT representation.

(a) We already have ĉ’s double-CRT representation.

(b) Computing δ’s double-CRT representation requires t “small FFTs” modulo the pj’s.

136

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

E Other Optimizations

Some other optimizations that we encountered during our implementation work are discussed next. Not all
of these optimizations are useful for our current implementation, but they may be useful in other contexts.

Three-way Multiplications. Sometime we need to multiply several ciphertexts together, and if their num-
ber is not a power of two then we do not have a complete binary tree of multiplications, which means that at
some point in the process we will have three ciphertexts that we need to multiply together.

The standard way of implementing this 3-way multiplication is via two 2-argument multiplications, e.g.,
x · (y · z). But it turns out that here it is better to use “raw multiplication” to multiply these three ciphertexts
(as done in [7]), thus getting an “extended” ciphertext with four elements, then apply key-switching (and
later modulus switching) to this ciphertext. This takes only six ring-multiplication operations (as opposed
to eight according to the standard approach), three modulus switching (as opposed to four), and only one
key switching (applied to this 4-element ciphertext) rather than two (which are applied to 3-element ex-
tended ciphertexts). All in all, this three-way multiplication takes roughly 1.5 times a standard two-element
multiplication.

We stress that this technique is not useful for larger products, since for more than three multiplicands
the noise begins to grow too large. But with only three multiplicands we get noise of roughly B3 after the
multiplication, which can be reduced to noise ≈ B by dropping two levels, and this is also what we get by
using two standard two-element multiplications.

Commuting Automorphisms and Multiplications. Recalling that the automorphisms X 7→ Xi com-
mute with the arithmetic operations, we note that some ordering of these operations can sometimes be
better than others. For example, it may be better perform the multiplication-by-constant before the auto-
morphism operation whenever possible. The reason is that if we perform the multiply-by-constant after the
key-switching that follows the automorphism, then added noise term due to that key-switching is multiplied
by the same constant, thereby making the noise slightly larger. We note that to move the multiplication-by-
constant before the automorphism, we need to multiply by a different constant.

Switching to higher-level moduli. We note that it may be better to perform automorphisms at a higher
level, in order to make the added noise term due to key-switching small with respect to the modulus. On
the other hand operations at high levels are more expensive than the same operations at a lower level. A
good rule of thumb is to perform the automorphism operations one level above the lowest one. Namely,
if the naive strategy that never switches to higher-level moduli would perform some Frobenius operation
at level qi, then we perform the key-switching following this Frobenius operation at level Qi+1, and then
switch back to level qi+1 (rather then using Qi and qi).

Commuting Addition and Modulus-switching. When we need to add many terms that were obtained
from earlier operations (and their subsequent key-switching), it may be better to first add all of these terms
relative to the large modulus Qi before switching the sum down to the smaller qi (as opposed to switching
all the terms individually to qi and then adding).

Reducing the number of key-switching matrices. When using many different automorphisms κi : X 7→
Xi we need to keep many different key-switching matrices in the public key, one for every value of i that

137

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

we use. We can reduces this memory requirement, at the expense of taking longer to perform the automor-
phisms. We use the fact that the Galois group Gal that contains all the maps κi (which is isomorphic to
(Z/mZ)∗) is generated by a relatively small number of generators. (Specifically, for our choice of parame-
ters the group (Z/mZ)∗ has two or three generators.) It is therefore enough to store in the public key only
the key-switching matrices corresponding to κgj ’s for these generators gj of the group Gal. Then in order
to apply a map κi we express it as a product of the generators and apply these generators to get the effect of
κi. (For example, if i = g2

1 · g2 then we need to apply κg1 twice followed by a single application of κg2 .)

138

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Better Bootstrapping in Fully Homomorphic Encryption

Craig Gentry1, Shai Halevi1, and Nigel P. Smart2

1 IBM T.J. Watson Research Center
2 Dept. Computer Science, University of Bristol

Abstract. Gentry’s bootstrapping technique is currently the only known method
of obtaining a “pure” fully homomorphic encryption (FHE) schemes, and it may
offers performance advantages even in cases that do not require pure FHE (e.g.,
when using the noise-control technique of Brakerski-Gentry-Vaikuntanathan).
The main bottleneck in bootstrapping is the need to evaluate homomorphically
the reduction of one integer modulo another. This is typically done by emulating a
binary modular reduction circuit, using bit operations on binary representation of
integers. We present a simpler approach that bypasses the homomorphic modular-
reduction bottleneck to some extent, by working with a modulus very close to a
power of two. Our method is easier to describe and implement than the generic
binary circuit approach, and we expect it to be faster in practice (although we did
not implement it yet). In some cases it also allows us to store the encryption of
the secret key as a single ciphertext, thus reducing the size of the public key.
We also show how to combine our new method with the SIMD homomorphic
computation techniques of Smart-Vercauteren and Gentry-Halevi-Smart, to get a
bootstrapping method that works in time quasi-linear in the security parameter.
This last part requires extending the techniques from prior work to handle arith-
metic not only over fields, but also over some rings. (Specifically, our method uses
arithmetic modulo a power of two, rather than over characteristic-two fields.)

139

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Table of Contents

Better Bootstrapping in Fully Homomorphic Encryption 139
Craig Gentry, Shai Halevi, and Nigel P. Smart

1 Introduction . 141
2 A simpler decryption formula . 144
3 Basic Homomorphic Decryption . 146

3.1 Extracting the Top and Bottom Bits . 147
3.2 Packing the Coefficients . 149
3.3 Lower-Degree Bit Extraction . 150

4 Homomorphic Decryption with Packed Ciphertexts 151
4.1 Using SIMD Techniques for Bootstrapping 152
4.2 Encrypting the qL-Secret-Key . 152
4.3 Step One: Computing Z Homomorphically 153
4.4 Step Two: Switching to CRT Representation 153
4.5 Step Three: Extracting the Relevant Bits . 154
4.6 Step Four: Switching Back to Coefficient Representation 154
4.7 Details of Step Two . 155
4.8 An Alternative Variant . 157

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

1 Introduction

Fully Homomorphic Encryption (FHE) [12, 7] is a powerful technique to enable
a party to compute an arbitrary function on a set of encrypted inputs; and hence
obtain the encryption of the function’s output. Starting from Gentry’s break-
through result [6, 7], all known FHE schemes are constructed from Somewhat
Homomorphic Encryption (SWHE) schemes, that can only evaluate functions
of bounded complexity. The ciphertexts in these SWHE schemes include some
“noise” to ensure security, and this noise grows when applying homomorphic
operations until it becomes so large that it overwhelms the decryption algorithm
and causes decryption errors. To overcome the growth of noise, Gentry used a
bootstrapping transformation, where the decryption procedure is run homomor-
phically on a given ciphertext, using an encryption of the secret key that can be
found in the public key,3 resulting in a new ciphertext that encrypts the same
message but has potentially smaller noise.

Over the last two years there has been a considerable amount of work on de-
veloping new constructions and optimizations [5, 13, 9, 3, 14, 2, 8, 1, 11], but all
of these constructions still have noise that keeps growing and must be reduced
before it overwhelms the decryption procedure. The techniques of Brakerski et
al. [1] yield SWHE schemes where the noise grows slower, only linearly with
the depth of the circuit being evaluated, but for any fixed public key one can still
only evaluate circuits of fixed depth. The only known way to get “pure” FHE
that can evaluate arbitrary functions with a fixed public key is by using boot-
strapping. Also, bootstrapping can be used in conjunction with the techniques
from [1] to get better parameters (and hence faster homomorphic evaluation), as
described in [1, 11].

In nearly all SWHE schemes in the literature that support bootstrapping,
decryption is computed by evaluating some ciphertext-dependent linear opera-
tion on the secret key, then reducing the result modulo a public odd modulus q
into the range (−q/2, q/2], and then taking the least significant bit of the re-
sult. Namely, denoting reduction modulo q by [·]q, we decrypt a ciphertext c
by computing a = [[Lc(s)]q]2 where Lc is a linear function and s is the se-
cret key. Given an encryption of the secret key s, computing an encryption of
Lc(s) is straightforward, and the bulk of the work in homomorphic decryption
is devoted to reducing the result modulo q. This is usually done by computing
encryptions of the bits in the binary representation of Lc(s) and then emulating
the binary circuit that reduces modulo q.

The starting point of this work is the observation that when q is very close to
a power of two, the decryption formula takes a particularly simple form. Specifi-

3 This transformation relies on the underlying SWHE being circularly secure.

141

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

cally, we can compute the linear functionLc(s) modulo a power of two, and then
XOR the top and bottom bits of the result. We then explain how to implement
this simple decryption formula homomorphically, and also how the techniques
of Gentry et al. from [11] can be used to compute this homomorphic decryption
with only polylogarithmic overhead.

We note that applying the techniques from [11] to bootstrapping is not quite
straightforward, because the input and output are not presented in the correct
form for these techniques. (This holds both for the standard approach of emu-
lating binary mod-q circuit and for our new approach.) Also, for our case we
need to extend the results from [11] slightly, since we are computing a function
over a ring (modulo a power of two) and not over a field.

We point out that in all work prior to [11], bootstrapping required adding to
the public key many ciphertexts, encrypting the individual bits (or coefficients)
of the secret key. This resulted in very large public keys, of size at least λ2 ·
polylog(λ) (where λ is the security parameter). Using the techniques from [14,
1, 11], it is possible to encrypt the secret key in a “packed” form, hence reducing
the number of ciphertexts to O(log λ) (so we can get public keys of size quasi-
linear in λ). Using our technique from this work, it is even possible to store an
encryption of the secret key as a single ciphertext, as described in Section 4. We
next outline our main bootstrapping technique in a few more details.

Our method applies mainly to “leveled” schemes that use the noise con-
trol mechanism of Brakerski-Gentry-Vaikuntanathan [1].4 Below and through-
out this paper we concentrate on the BGV ring-LWE-based scheme, since it
offers the most efficient homomorphic operations and the most room for opti-
mizations.5 The scheme is defined over a ringR = Z[X]/F (X) for a monic, ir-
reducible polynomialF (X) (over the integers Z). For an arbitrary integer modu-

lus n (not necessarily prime) we denote the ringRn
def= R/nR = (Z/nZ)[X]/F (X).

The scheme is parametrized by the number of levels that it can handle, which
we denote by L, and by a set of decreasing odd moduli q0 � q1 � · · · � qL,
one for each level.

The plaintext space is given by the ring R2, while the ciphertext space
for the i’th level consists of vectors in (Rqi)

2. Secret keys are polynomials
s ∈ R with “small” coefficients, and we view s as the second element of
the 2-vector s = (1, s). A level-i ciphertext c = (c0, c1) encrypts a plain-
text polynomial m ∈ R2 with respect to s = (1, s) if we have the equality

4 Our method can be used also with other schemes, as long as the scheme allows us to choose a
modulus very close to a power of two. For example they can be used with the schemes from
[3, 2].

5 Our description of the BGV cryptosystem below assumes modulo-2 plaintext arithmetic, gen-
eralizing to modulo-p arithmetic for other primes p > 2 is straightforward.

142

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

over R, [〈c, s〉]qi = [c0 + s · c1]qi ≡ m (mod 2), and moreover the polyno-
mial [c0 + s · c1]qi is “small”, i.e. all its coefficients are considerably smaller
than qi. Roughly, that polynomial is considered the “noise” in the ciphertext,
and its coefficients grow as homomorphic operations are performed.6 The crux
of the noise-control technique from [1] is that a level-i ciphertext can be pub-
licly converted into a level-(i + 1) ciphertext (with respect to the same secret
key), and that this transformation reduces the noise in the ciphertext roughly by
a factor of qi+1/qi.

Secret keys too are associated with levels, and the public key includes some
additional information that (roughly speaking) makes it possible to convert a
ciphertext with respect to level-i key si into a ciphertext with respect to level-
(i + 1) key si+1. In what follows we will only be interested in the secret keys
at level L and level zero; which we will denote by s and s̃ respectively to ease
notation.

For bootstrapping, we have as input a level-L ciphertext (i.e. a vector c ∈
R/qLR modulo the smallest modulus qL). This means that the noise-control
technique can no longer be applied to reduce the noise, hence (essentially) no
more homomorphic operations can be performed on this ciphertext. To enable
further computation, we must therefore “recrypt” the ciphertext c, to obtain a
new ciphertext that encrypts the same element of R with respect to some lower
level i < L.

Our first observation is that the decryption at level L can be made more
efficient when qL is close to a power of two, specifically qL = 2r + 1 for an
integer r, and moreover the coefficients of Z = 〈c, s〉 mod F (X) are much
smaller than q2L in magnitude. In particular if z is one of the coefficients of the
polynomial Z then [[z]qL]2 can be computed as z〈r〉 ⊕ z〈0〉, where z〈i〉 is the
i’th bit of z.

To evaluate the decryption formula homomorphically, we temporarily ex-
tend the plaintext space to polynomials modulo 2r+1 (rather than modulo 2).
The level-L secret key is s = (1, s), where all the coefficients of s are small
(in the interval (−2r,+2r)). We can therefore consider s as a plaintext polyno-
mial in R/2r+1R, encrypt it inside a level-0 ciphertext, and keep that ciphertext
in the public key. Thus, given the level-L ciphertext c, we can evaluate the in-
ner product [〈c, s〉 mod F (X)] homomorphically, obtaining a level-0 ciphertext
that encrypts the polynomial Z.

For simplicity, assume for now that what we get is an encryption of all the
coefficients of Z separately. Given an encryption of a coefficient z of Z (which
is an element in Z/2r+1Z) we show in Section 3.1 how to extract (encryptions
of) the zero’th and r’th bit using a data-oblivious algorithm. Hence we can fi-

6 We ignore here the encryption procedure, since it does not play any role in the current work.

143

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

nally recover a new ciphertext, encrypting the same binary polynomial at a lower
level i < L.

To achieve efficient bootstrapping, we exploit the ability to perform opera-
tions on elements modulo 2r+1 in a SIMD fashion (Single Instruction Multiple
Data); much like in prior work [14, 1, 11]. Some care must be taken when ap-
plying these techniques in our case, since the inputs and outputs of the boot-
strapping procedure are not in the correct format: Specifically, these techniques
require that inputs and outputs be represented using polynomial Chinese Re-
mainders (CRT representation), whereas decryption (and therefore recryption)
inherently deals with polynomials in coefficient representation. We therefore
must use explicit conversion to CRT representation, and ensure that these con-
versions are efficient enough. See details in Section 4.

Also, the techniques from prior work must be extended somewhat to be
usable in our case: Prior work demonstrated that SIMD operations can be per-
formed homomorphically when the underlying arithmetic is over a field, but in
our case we have operations over the ring Z/2r+1Z, which is not a field. The
algebra needed to extend the SIMD techniques to this case is essentially an ap-
plication of the theory of local fields [4]. We prove many of the basic results
that we need in the full version [10], and refer the reader to [4] for a general
introduction and more details.
Notations. Throughout the paper we denote by [z]q the reduction of z mod q into
the interval (− q

2 ,
q
2]. We also denote the i’th bit in the binary representation of

the integer z by z〈i〉. Similarly, when a is an integer polynomial of degree dwith
coefficients (a0, a1, . . . , ad), we denote by a〈i〉 the 0-1 degree-d polynomial
whose coefficients are all the i’th bits (a0〈i〉, a1〈i〉, . . . , ad〈i〉). If c, s are two
same-dimension vectors, then 〈c, s〉 denotes their inner product.
Organization. We begin by presenting the simplified decryption formula in
Section 2 and explain how to evaluate it homomorphically in Section 3. Then in
Section 4 we recall some algebra and explain how to use techniques similar to
[11] to run bootstrapping in time quasi-linear in the security parameter. Some of
the proofs are omitted here, these are found in the full version of this work [10].

2 A simpler decryption formula

When the small modulus qL has a special form – i.e. when it equals u ·2r+v for
some integer r and for some small positive odd integers u, v – then the mod-qL
decryption formula can be made to have a particularly simple form. Below we
focus on the case of qL = 2r + 1, which suffices for our purposes.

So, assume that qL = 2r + 1 for some integer r and that we decrypt by
setting a ← [[〈c, s〉 mod F (X)]qL]2. Consider now the coefficients of the in-

144

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

teger polynomial Z = 〈c, s〉 mod F (X), without the reduction mod qL. Since
s has small coefficients (and we assume that reduction mod-F (X) does not in-
crease the coefficients by much) then all the coefficients of Z are much smaller
than q2L. Consider one of these integer coefficients, denoted by z, so we know
that |z| � q2L ≈ 22r. We consider the binary representation of z as a 2r-bit
integer, and assume for now that z ≥ 0 and also [z]qL ≥ 0. We claim that in this
case, the bit [[z]qL]2 can be computed simply as the sum of the lowest bit and
the r’th bit of z, i.e., [[z]qL]2 = z〈r〉⊕z〈0〉. (Recall that z〈i〉 is the i’th bit of z.)

Lemma 1. Let q = 2r + 1 for a positive integer r, and let z be a non-negative
integer smaller than q2

2 − q, such that [z]q is also non-negative, [z]q ∈ [0, q2].
Then [[z]q]2 = z〈r〉 ⊕ z〈0〉.

Proof. Let z0 = [z]q ∈ [0, q2], and consider the sequence of integers zi = z0+iq
for i = 0, 1, 2, · · · . Since we assume that z ≥ 0 then z can be found in this
sequence, say the k’th element z = zk = z0 + kq. Also since z < q2

2 − q
then k = bz/qc < q

2 − 1. The bit that we want to compute is [[z]q]2 = z0〈0〉.
We claim that z0〈0〉 = zk〈0〉 + zk〈r〉 (mod 2). This is because zk = z0 +
kq = z0 + k(2r + 1) = (z0 + k) + k2r, which in particular means that
zk〈0〉 = z0〈0〉+ k〈0〉 (mod 2). But since 0 ≤ z0 ≤ q/2 and 0 ≤ k < q/2− 1
then 0 ≤ z0 + k < q − 1 = 2r, so there is no carry bit from the addition z0 + k
to the r’th bit position. It follows that the r’th bit of zk is equal to the 0’th bit
of k (i.e., zk〈r〉 = k〈0〉), and therefore zk〈0〉 = z0〈0〉+k〈0〉 = z0〈0〉+zk〈r〉
(mod 2), which implies that z0〈0〉 = zk〈0〉+ zk〈r〉 (mod 2), as needed. ut

We note that the proof can easily be extended for the case q = u2r + v, if
the bound on z is strengthened by a factor of v. To remove the assumption that
both z and [z]q are non-negative, we use the following easy corollary:

Corollary 1. Let r ≥ 3 and q = 2r + 1 and let z be an integer with absolute
value smaller than q2

4 − q, such that [z]q ∈ (− q
4 ,

q
4). Then [[z]q]2 = z〈r〉 ⊕

z〈r − 1〉 ⊕ z〈0〉.

Proof. Denoting z′ = z+(q2−1)/4 = z+(q+1)(q−1)/4 =
(
z+ q−1

4

)
+q· q−1

4 ,

we have z′ ≡ z + q−1
4 (mod q) (since q−1

4 = 2r−2 is an integer). Moreover
since [z]q ∈ (− q

4 ,
q
4] then [z]q + q−1

4 ∈ [0, q/2], hence [z′]q = [z]q + q−1
4 (over

the integers), and as q−1
4 is an even integer then [z]q = [z′]q (mod 2), or in other

words [[z]q]2 = [[z′]q]2. Since z > − q2

4 and z is an integer then z ≥ − q2−1
4 and

therefore z′ = z+ q2−1
4 ≥ 0. Thus z′ satisfies all the conditions set in Lemma 1,

so applying that lemma we have [[z]q]2 = [[z′]q]2 = z′〈r〉 ⊕ z′〈0〉.

145

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

We next observe that z′ = z + (q + 1)(q − 1)/4 = z + (2r + 2)2r−2 =
z + 2r−1 + 22r−2. Since 2r − 2 > r, this means that the bits 0 through r in the
binary representation of z′ are determined by z + 2r−1 alone, so we have:

z′〈i〉 = z〈i〉 for i = 0, 1, . . . , r − 2
z′〈r − 1〉 = 1− z〈r − 1〉

z′〈r〉 =
{
z〈r〉 if z〈r − 1〉 = 0
1− z〈r〉 if z〈r − 1〉 = 1

}
= z〈r〉 ⊕ z〈r − 1〉

Putting it all together, we get [[z]q]2 = [[z′]q]2 = z′〈r〉 ⊕ z′〈0〉 = z〈r〉 ⊕
z〈r − 1〉 ⊕ z〈0〉. ut

Using Corollary 1 we can get our simplified decryption formula. First, we
set our parameters such that qL = 2r + 1 and all the coefficients of the integer
polynomial Z = 〈c, s〉 mod F (X) are smaller than q2L

4 − 1 in absolute value,
and moreover they are all less than qL−1

4 away from a multiple of qL. Given a
two-element ciphertext c = (c0, c1) ∈ ((Z/qLZ)[X]/F (X))2, then compute
Z ← 〈c, s〉 mod F (X) over the integers (without reduction mod qL), and fi-
nally recover the plaintext as Z〈r〉 + Z〈r − 1〉 + Z〈0〉. Ultimately, we obtain
the plaintext polynomial a ∈ F2[X]/F (X), where each coefficient in a is ob-
tained as the XOR of bits 0, r − 1, and r of the corresponding coefficient in Z.

Working modulo 2r+1. Since we are only interested in the contents of bit posi-
tions 0, r−1, and r in the polynomial Z, we can compute Z modulo 2r+1 rather
than over the integers. Observing that when qL = 2r + 1 then q2L−1

4 ≡ 2r−1

(mod 2r+1), our simplified decryption of a ciphertext vector c = (c0, c1) pro-
ceeds as follows:

1. Compute Z ← [〈c, s〉 mod F (X)]2r+1 ;
2. Recover the 0-1 plaintext polynomial a = [Z〈r〉+ Z〈r − 1〉+ Z〈0〉]2.

3 Basic Homomorphic Decryption

To get a homomorphic implementation of the simplified decryption formula
from above, we use an instance of our homomorphic encryption scheme with
underlying plaintext space Z2r+1 . Namely, denoting by s̃ the level-0 secret-key
and by q0 the largest modulus, a ciphertext encrypting a ∈ (Z/2r+1Z)[X]/F (X)
with respect to s̃ and q0 is a 2-vector c̃ over (Z/q0Z)[X]/F (X) such that
|[〈c̃, s̃〉 mod F (X)]q0 | � q0 and [〈c̃, s̃〉 mod F (X)]q0 ≡ a (mod 2r+1).

Recall that the ciphertext before bootstrapping is with respect to secret key s
and modulus qL = 2r + 1. In this section we only handle the simple case where

146

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

the public key includes an encryption of each coefficient of the secret-key s sep-
arately. Namely, denoting s = (1, s) and s(X) =

∑d−1
j=0 sjX

j , we encode for
each j the coefficient sj as the constant polynomial sj ∈ (Z/2r+1Z)[X]/F (X).
(I.e., the degree-d polynomial whose free term is sj ∈ [−2r + 1, 2r] and all the
other coefficients are zero.) Then for each j we include in the public key a ci-
phertext c̃j that encrypts this constant polynomial sj with respect to s̃ and q0.
Below we abuse notations somewhat, using the same notation to refer both to a
constant polynomial z ∈ (Z/2rZ)[X]/F (X) and the free term of that polyno-
mial z ∈ (Z/2rZ).

Computing Z Homomorphically. Given the qL-ciphertext c = (c0, c1) (that
encrypts a plaintext polynomial a ∈ F2[X]/F (X)), we use the encryption
of s from the public key to compute the simple decryption formula from above.
Computing an encryption of Z = [〈c, s〉 mod F (X)]2r+1 is easy, since the co-
efficients of Z are just affine functions (over (Z/2r+1Z)) of the coefficients of s,
which we can compute from the encryption of the sj’s in the public key.

3.1 Extracting the Top and Bottom Bits

Now that we have encryptions of the coefficients of Z, we need to extract the
relevant three bits in each of these coefficients and add them (modulo 2) to get
encryptions of the plaintext coefficients. In more details, given a ciphertext c̃ sat-
isfying [〈c̃, s̃〉 mod F (X)]q0 ≡ z (mod 2r+1) where z is some constant poly-
nomial, we would like to compute another ciphertext c̃ satisfying [〈c̃, s̃〉 mod
F (X)]q0 ≡ z〈0〉 + z〈r − 1〉 + z〈r〉 (mod 2) (with [〈c̃, s̃〉 mod F (X)]q0 still
much smaller then q0 in magnitude). To this end, we describe a procedure to
compute for all i = 0, 1, . . . , r a ciphertext c̃i satisfying [〈c̃i, s̃〉 mod F (X)]q0 ≡
z〈i〉 (mod 2). Clearly, we can immediately set c̃0 = c̃, we now describe how
to compute the other c̃i’s.

The basic observation underlying this procedure is that modulo a power of 2,
the second bit of z−z2 is the same as that of z, but the LSB is zero-ed out. Thus
setting z′ = (z − z2)/2 (which is an integer), we get that the LSB of z′ is the
second bit of z. More generally, we have the following lemma:

Lemma 2. Let z be an integer with binary representation z =
∑r

i=0 2iz〈i〉.
Define w0

def= z, and for i ≥ 1 define

wi
def=

z −
∑i−1

j=0 2jw 2i−j

j mod 2r+1

2i
(division by 2i over the rationals).

(1)
Then the wi’s are integers and we have wi〈0〉 = z〈i〉 for all i.

147

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Proof. The lemma clearly holds for i = 0. Now fix some i ≥ 1, assume that
the lemma holds for all j < i, and we prove that it holds also for i. It is easy to
show by induction that for any integer u and all j ≤ r we have

u2j
mod 2r+1 = u〈0〉+ 2j+1t for some integer t.

Namely, the LSB of u2j
mod 2r+1 is the same as the LSB of u, and the next j

bits are all zero. This means that the bit representation of vj
def= 2jw2i−j

j mod
2r+1 has bits 0, 1, . . . , j − 1 all zero (due to the multiplication by 2j), then
vj〈j〉 = wj〈0〉 = z〈j〉 (by the induction hypothesis), and the next i− j bits are
again zero (by the observation above). In other words, the lowest i + 1 bits of
vj are all zero, except the j’th bit which is equal to the j’th bit of z.

This means that the lowest i bits of the sum
∑i−1

j=0 vj are the same as the
lowest i bits of z, and the i+ 1’st bit of the sum is zero. Hence the lowest i bits
of z −

∑i−1
j=0 vj are all zero, and the i + 1’st bit is z〈i〉. Hence z −

∑i−1
j=0 vj

is divisible by 2i (over the integers), and the lowest bit of the result is z〈i〉, as
needed. ut

Our procedure for computing the ciphertexts c̃i mirrors Lemma 2. Specifi-
cally, we are given the ciphertext c̃ = c̃0 that encrypts z = w0 mod 2r+1, and we
iteratively compute ciphertexts c̃1, c̃2, . . . such that c̃i encrypts wi mod 2r−i+1.
Eventually we get c̃r that encrypts wr mod 2, which is what we need (since the
LSB of wr is the r’th bit of z).

Note that most of the operations in Lemma 2 are carried out in (Z/2r+1Z),
and therefore can be evaluated homomorphically in our (Z/2r+1Z)-homomorphic
cryptosystem. The only exception is the division by 2i in Equation (1), and we
now show how this division can also be evaluated homomorphically. To im-
plement division we begin with an arbitrary ciphertext vector c̃ that encrypts
a plaintext element a ∈ (Z/2jZ)[X]/F (X) (for some j) with respect to the
level-0 key s̃ and modulus q0. Namely, we have the equality over Z[X]:

(〈c̃, s̃〉 mod F (X)) = a+ 2j · S + q0 · T

for some polynomials S, T ∈ Z[X]/F (X), where the norm of a+ 2jS is much
smaller than q0. Assuming that a is divisible by 2 over the integers (i.e., all its
coefficients are even) consider what happens when we multiply c̃ by the integer

148

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

(q0 + 1)/2 (which is the inverse of 2 modulo q0). Then we have

(
〈
q0+1

2 · c̃, s̃
〉

mod F (X)) = q0+1
2 · (〈c̃, s̃〉 mod F (X))

=
(q0 + 1) · a

2
+

(q0 + 1) · 2j · S
2

+
q0 · (q0 + 1) · T

2
= (q0 + 1) · (a/2) + (q0 + 1) · 2j−1S + q0 · q0+1

2 · T
= a/2 + 2j−1 · S + q0 ·

(
a/2 + 2j−1S + q0+1

2 T
)

Clearly the coefficients of a/2 + 2j−1S are half the size of those of a + 2jS,
hence they are much smaller than q0. It follows that c̃′ = [c̃ · (q0 + 1)/2]q0 is
a valid ciphertext that encrypts the plaintext a/2 ∈ (Z/2j−1Z)[X]/F (X) with
respect to secret key s̃ and modulus q0.

The same argument shows that if a is divisible by 2i over the integers (for
some i < j) then [c̃ · ((q0 + 1)/2)i]q0 is a valid ciphertext encrypting a/2i ∈
(Z/2j−iZ)[X]/F (X). Combining this division-by-two procedure with homo-
morphic exponentiation mod 2r+1, the resulting homomorphic bit-extraction
procedure is described in Figure 1.

Bit-Extraction(c̃, r, q0):
Input: A ciphertext c̃ encrypting a constant b ∈ (Z/2r+1Z) w.r.t. secret key s̃ and modulus q0.
Output: A ciphertext c̃′ encrypting b〈0〉 ⊕ b〈r − 1〉 ⊕ b〈r〉 ∈ F2 w.r.t. secret key s̃ and modulus q0.

1. Set c̃0 ← c̃ // c̃ encrypt z w.r.t. s̃
2. For i = 1 to r
3. Set acc← c̃ // acc is an accumulator
4. For j = 0 to i− 1 // Compute z −

P
j 2jwi−1

j

5. Set tmp← HomExp(c̃j , 2
i−j) // Homomorphic exponentiation to the power 2i−j

6. Set acc← acc− 2j · tmp mod q0

7. Set c̃i ← acc · ((q0 + 1)/2)i mod q0 // c̃i encrypts z〈i〉
8. Output c̃0 + c̃r−1 + c̃r mod q0

HomExp(c̃, n) uses native homomorphic multiplication to multiply c̃ by itself n times. To aid ex-
position, this code assumes that the modulus and secret key remain fixed, else modulus-switching
and key-switching should be added (and the level increased correspondingly to some i > 0).

Fig. 1. A Homomorphic Bit-Extraction Procedure.

3.2 Packing the Coefficients

Now that we have encryption of all the coefficients of a, we just need to “pack”
all these coefficients back in one polynomial. Namely, we have encryption of
the constant polynomials a0, a1, . . ., and we want to get an encryption of the

149

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

polynomial a(X) =
∑

i aiX
i. Since a is just a linear combination of the ai’s

(with the coefficient of each ai being the “scalar” Xi ∈ (Z/2Z)[X]/Φm), we
can just use the additive homomorphism of the cryptosystem to compute an
encryption of a from the encryptions of the ai’s.

3.3 Lower-Degree Bit Extraction

As described in Figure 1, extracting the r’th bit requires computing polynomials
of degree upto 2r, here we describe a simple trick to lower this degree. Recall
our simplified decryption process: we set Z ← [〈c, s〉 mod Φm(X)]2r+1 , and
then recover a = [Z〈r〉+ Z〈r − 1〉+ Z〈0〉]2.

Consider what happens if we add qL to all the odd coefficients in c, call the
resulting vector c′: On one hand, now all the coefficients of c′ are even. On the
other hand, the coefficients of Z ′ = 〈c′, s〉 mod Φm(X) are still small enough
to use Lemma 1 (since they are at most cm · q · ‖s‖1 larger than those of Z itself,
where cm is the ring constant of mod-Φm(X) arithmetic and ‖s‖1 is the l1-norm
of s). Since c′ = c (mod qL) then we have

[[〈c, s〉 mod Φm(X)]qL]2 = [[
〈
c′, s

〉
mod Φm(X)]qL]2 = Z ′〈r〉+Z ′〈r〉−1+Z ′〈0〉

However, since c′ is even then so is Z ′. This means that Z ′〈0〉 = 0, and if we
divide Z ′ by two (over the integers), Z ′′ = Z ′/2, then we have [[〈c, s〉 mod
Φm(X)]qL]2 = Z ′′〈r − 1〉 ⊕ Z ′′〈r − 2〉. We thus have a variation of the simple
decryption formula that only needs to extract the r − 1’st and r − 2’nd bits,
so it can be realized using polynomials of degree upto 2r−1. Note that we can
implement this variant of the decryption formula homomorphically, because Z ′

is even so an q0-encryption of Z ′ can be easily converted into an encryption of
Z ′/2 (by multiplying by q0+1

2 modulo q0 as described in Section 3.1).
This technique can be pushed a little further, adding to c multiples of q so

that it is divisible by 4, 8, 16, etc., and reducing the required degree correspond-
ingly to 2r−2, 2r−3, 2r−4, etc. The limiting factor is that we must maintain that
〈c′, s〉 has coefficients sufficiently smaller than q2L, in order to be able to use
Lemma 1. Clearly, if c′ = c+qκ where all the coefficients of κ are smaller than
some bound B (in absolute value), then the coefficients of 〈c′, s〉 can be larger
than the coefficients of Z = 〈c, s〉 (in absolute value) by at most cm ·q ·B · ‖s‖1.
(Heuristically we expect the difference to depend on the l2 norm of s more than
its l1 norm.)

If we choose our parameters such that the l1-norm of s is below m, and
work over a ring with cm = O(1), then the coefficients of Z can be made
as small as cm · m · q, and we can make the coefficients of κ as large as
B ≈ q/(4cm · m) in absolute value while maintaining the invariant that the

150

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

coefficients of Z ′ are smaller than q2/4 (which is what we need to be able to use
Lemma 1). By choosing an appropriate κ, we can ensure that the least signifi-
cant blog(q/(4cmm))c = r − dlog(4cmm)e bits of c′ are all zero. This means
that we can implement bit extraction using only polynomials of degree at most
2dlog(4cmm)e < 8cmm = O(m). (Heuristically, we should even be able to get
polynomials of degree O(

√
m) since the l2 norm of s is only O(

√
m).) More-

over if we assume that ring-LWE is hard even with a very sparse secret, then we
can use a secret key with even smaller norm and get the same reduction in the
degree of the bit-extraction routine.

4 Homomorphic Decryption with Packed Ciphertexts

The homomorphic decryption procedure from Section 3 is rather inefficient,
mostly because we need to repeat the bit-extraction procedure from Figure 1 for
each coefficient separately. Instead, we would like to pack many coefficients in
one ciphertext and extract the top bits of all of them together. To this end we
employ a batching technique, similar to [1, 11, 14], using Chinese remainder-
ing over the ring of polynomials to pack many “plaintext slots” inside a single
plaintext polynomial.

Recall that the BGV scheme is defined over a polynomial ringR = Z[X]/F (X).
If the polynomial F (X) factors modulo two into distinct irreducible polynomi-
als F0(X) × · · · × F`−1(X), then, by the Chinese Remainder Theorem, the
plaintext space factors into a product of finite fields R2

∼= F2[X]/F0(X) ×
· · · × F2[X]/F`−1(X).

This factorization is used in [14, 1, 11] to “pack” a vector of ` elements
(one from each F2[X]/Fi(X)) into one plaintext polynomial, which is then en-
crypted in one ciphertext; each of the ` components called a plaintext slot. The
homomorphic operations (add/mult) are then applied to the different slots in
a SIMD fashion. When F (X) is the m-th cyclotomic polynomial, F (X) =
Φm(X), then the field Q[X]/F (X) is Galois (indeed Abelian) and so the poly-
nomials Fi(X) all have the same degree (which we will denote by d). It was
shown in [11] how to evaluate homomorphically the application of the Galois
group on the slots, and in particular this enables homomorphically performing
arbitrary permutations on the vector of slots in time quasi-linear in m. This, in
turn, is used in [11] to evaluate arbitrary arithmetic circuits (of average width
Ω̃(λ)) with overhead only polylog(λ).

However, the prior work only mentions the case of plaintext spaces taken
modulo a prime (in our case two), i.e. R2. In this work we will need to also con-
sider plaintext spaces which are given by a power of a prime, i.e.R2r+1 for some
positive integer r. (We stress that byR2r+1 we really do mean (Z/2tZ)[X]/F (X)

151

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

and not F2r+1 [X]/F (X).) In the full version [10] we show how the techniques
from [11] extends also to this case. The “high brow” way of seeing this is to
consider the message space modulo 2r+1 as the precision r + 1 approximation
to the 2-adic integers; namely we need to consider the localization of the field
K = Q[X]/F (X) at the prime 2.

4.1 Using SIMD Techniques for Bootstrapping

Using the techniques from [11] for bootstrapping is not quite straightforward,
however. The main difficulty is that the input and output of are not presented in a
packed form: The input is a single qL-ciphertext that encrypts a single plaintext
polynomial a (which may or may not have many plaintext elements packed in its
slots), and similarly the output needs to be a single ciphertext that encrypts the
same polynomial a, but with respect to a larger modulus. (We stress that this is
not an artifact of our “simpler decryption formula”, we would need to overcome
the same difficulty also if we tried to use these “SIMD techniques” to speed
up bootstrapping under the standard approach of emulating the binary mod-qL
circuit.) Our “packed bootstrapping” procedure consists of the following steps:

1. Using the encryption of the qL-secret-key with respect to the modulus q0,
we convert the initial qL-ciphertext into a q0-ciphertext encrypting the poly-
nomial Z ∈ (Z/2r+1Z)[X]/Φm(X).

2. Next we apply a homomorphic inverse-DFT transformation to get encryp-
tion of polynomials that have the coefficients of Z in their plaintext slots.

3. Now that we have the coefficients of Z in the plaintext slots, we apply the
bit extraction procedure to all these slots in parallel. The result is encryption
of polynomials that have the coefficients of a in their plaintext slots.

4. Finally, we apply a homomorphic DFT transformation to get back a cipher-
text that encrypts the polynomial a itself.

Below we describe each of these steps in more detail. We note that the main
challenge is to get an efficient implementation of Steps 2 and 4.

4.2 Encrypting the qL-Secret-Key

As in Section 3, we use an encryption scheme with underlying plaintext space
modulo 2r+1 to encrypt the qL-secret-key s under the q0-secret-key s̃. The qL-
secret-key is a vector s = (1, s), where s ∈ Z[X]/Φm(X) is an integer poly-
nomial with small coefficients. Viewing these small coefficients as elements in
Z/2r+1Z, we encrypt s as a q0-ciphertext c̃ = (c̃0, c̃1) with respect to the q0-
secret-key s̃ = (1, s̃), namely we have

[〈c̃, s̃〉 mod Φm]q0 = [̃c0+ c̃1 · s̃ mod Φm]q0 = 2r+1k̃+s (equality over Z[X])

152

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

for some polynomial k̃ with small coefficients.

4.3 Step One: Computing Z Homomorphically

Given a qL-ciphertext c = (c0, c1) we recall from the public key the q0 ci-
phertext c̃ = (c̃0, c̃1) that encrypts s, then compute the mod-2r+1 inner product
homomorphically by setting

z̃ =
(

[c0 + c1c̃0 mod Φm]q0 , [c1c̃1 mod Φm]q0
)
. (2)

We claim that z̃ is a q0-ciphertext encrypting our Z with respect to the secret
key s̃ (and plaintext space modulo 2r+1). To see that, recall that we have the
following two equalities over Z[X],

(c0+c1s mod Φm) = 2r+1k+Z and (c̃0+ c̃1s̃ mod Φm) = q0k̃+2r+1k̃′+s,

where k, k̃, k̃′ ∈ Z[X]/Φm, the coefficients of 2r+1k + Z are smaller than
2q2L � q0, and the coefficients of 2r+1k̃′ + s are also much smaller than q0.
It follows that:

(〈z̃, s̃〉 mod Φm) = [c′0 + c1c̃0 mod Φm]q0 + (s̃ · [c1c̃1 mod Φm]q0 mod Φm)
= (c′0 + c1(c̃0 + c̃1s̃) mod Φm) + q0κ

= (c′0 + c1(2r+1k̃′ + s) mod Φm) + q0κ
′

= (c′0 + c1s mod Φm) + q0κ
′ + 2r+1(c1 · k̃′ mod Φm)

= q0κ
′ + 2r+1(k + c1k̃

′ mod Φm) + Z (equality over Z[X])

for some κ, κ′ ∈ Z[X]/Φm. Moreover, since the coefficients of c1 are smaller
than qL � q0 then the coefficients of 2r+1(k + c1k̃

′ mod Φm) + Z are still
much smaller than q0. Hence z̃ is decrypted under s̃ and q0 to Z, with plaintext
space 2r+1.

4.4 Step Two: Switching to CRT Representation

Now that we have an encryption of the polynomial Z, we want to perform the
homomorphic bit-extraction procedure from Figure 1. However, this procedure
should be applied to each coefficient of Z separately, which is not directly
supported by the native homomorphism of our cryptosystem. (For example,
homomorphically squaring the ciphertext yields an encryption of the polyno-
mial Z2 mod Φm rather than squaring each coefficient of Z separately.) We
therefore need to convert z̃ to CRT-based “packed” ciphertexts that hold the
coefficients of Z in their plaintext slots.

153

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The system parameter m was chosen so that m = Θ̃(λ) and Φm(X) factors
modulo 2 (and therefore also modulo 2r+1) as a product of degree-d polynomi-
als with d = O(logm), Φm(X) =

∏`−1
j=0 Fj(X) (mod 2r+1). This allows us to

view the plaintext polynomial Z(X) as having ` slots, with the j’th slot holding
the value Z(X) mod (Fj(X), 2r+1). This way, adding/multipliying/squaring
the plaintext polynomials has the effect of applying the same operation on each
of the slots separately.

In our case, we have φ(m) coefficients of Z(X) that we want to put in the
plaintext slots, and each ciphertext has only ` = φ(m)/d slots, so we need d
ciphertexts to holds them all. The transformation from the single ciphertext z̃
that encrypts Z itself to the collection of d ciphertexts that hold the coefficients
of Z in their slots is described in Section 4.7 below. (We describe that step last,
since it is the most complicated and it builds on machinery that we develop for
Step Four in Section 4.6.)

4.5 Step Three: Extracting the Relevant Bits

Once we have the coefficients of Z in the plaintext slots, we can just repeat
the procedure from Figure 1. The input to the the bit-extraction procedure is
a collection of some d ciphertexts, each of them holding ` = φ(m)/d of the
coefficients of Z in its ` plaintext slots. (Recall that we chose m = Õ(λ) such
that d = O(logm).) Applying the procedure from Figure 1 to these ciphertexts
will implicitly apply the bit extraction of Lemma 2 to each plaintext slot, thus
leaving us with a collection of d ciphertexts, each holding ` of the coefficients
of a in its plaintext slots.

4.6 Step Four: Switching Back to Coefficient Representation

To finally complete the recryption process, we need to convert the d cipher-
texts holding the coefficients of a in their plaintext slots into a single cipher-
text that encrypts the polynomial a itself. For this transformation, we appeal
to the result of Gentry et al. [11], which says that every depth-L circuit of
average-width Ω̃(λ) and size T can be evaluated homomorphically in time
O(T) · poly(L, log λ), provided that the inputs and outputs are presented in
a packed form. Below we show that the transformation we seek can be com-
puted on cleartext by a circuit of size T = Õ(m) and depth L = polylog(m),
and hence (since m = Θ̃(λ)) it can be evaluated homomorphically in time
Õ(m) = Õ(λ).

To use the result of Gentry et al. we must first reconcile an apparent “type
mismatch”: that result requires that both input and output be presented in a
packed CRT form, whereas we have input in CRT form but output in coefficient

154

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

form. We therefore must interpret the output as “something in CRT representa-
tion” before we can use the result from [11]. The solution is obvious: since we
want the output to be a in coefficient representation, then it is a polynomial that
holds the value Aj = a mod Fj in the j’th slot for all j.

Hence the transformation that we wish to compute takes as input the co-
efficients of the polynomials a(X), and produces as output the polynomials
Aj = a mod Fj for j = 0, 1, . . . , ` − 1. It is important to note that our output
consists of ` values, each of them a degree-d binary polynomial. Since this out-
put is produced by an arithmetic circuit, then we need a circuit that operates on
degree-d binary polynomials, in other words an arithmetic circuit over GF(2d).
This circuit has ` · d inputs (all of which happen to be elements of the base field
F2), and ` outputs that belong to the extension field GF(2d).

Theorem 1. Fix m ∈ Z, let d ∈ Z be the smallest such that m|2d − 1, de-
note ` = φ(m)/d and let G ∈ F2[X] be a degree-d irreducible polynomial
over F2 (that fixes a particular representation of GF(2d)). Let F0(X), F1(X),
. . . , F`−1(X) be the irreducible (degree-d) factors of the m-th cyclotomic poly-
nomial Φm(X) modulo 2.

Then there is an arithmetic circuit Πm over F2[X]/G(X) = GF(2d) with
φ(m) inputs a0, a1, . . . , aφ(m)−1 and ` outputs z0, z1, . . . , z`−1, for which the
following conditions hold:

– When the inputs are from the base field (ai ∈ F2 ∀i) and we denote a(X) =∑
i aiX

i ∈ F2[X], then the outputs satisfy zj = a(X) mod (Fj(X), 2) ∈
F2[X]/G(X).

– Πm has depth O(logm) and size O(m logm).

The proof is in the full version. An immediate corollary of Theorem 1 and the
Gentry et al. result [11, Thm. 3], we have:

Corollary 2. There is an efficient procedure that given d ciphertexts, encrypting
d polynomials that hold the coefficients of a in their slots, computes a single
ciphertext encrypting a. The procedure works in time O(m) · polylog(m) (and
uses at most polylog(m) levels of homomorphic evaluation).

4.7 Details of Step Two

The transformation of Step Two is roughly the inverse of the transformation
that we described above for Step Four, with some added complications. In this
step, we have the polynomial Z(X) over the ring Z/2r+1Z, and we view it as

defining ` plaintext slots with the j’th slot containingBj
def= Z mod (Fj , 2r+1).

Note that the Bj’s are degree-d polynomials, and we consider them as elements

155

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

in the “extension ring” R d
2r+1

def= Z[X]/(G(X), 2r+1) (where G is some fixed
irreducible degree-d polynomial modulo 2r+1).

Analogous to Theorem 1, we would like to argue that there is an arithmetic
circuit over R d

2r+1 that get as input the Bj’s (as elements of R d
2r+1), and outputs

all the coefficients of Z (which are elements of the base ring Z/2r+1Z). Then
we could apply again to the result of Gentry et al. [11] to conclude that this
circuit can be evaluated homomorphically with only polylog overhead.

For the current step, however, the arithmetic circuit would contain not only
addition and multiplication gates, but also Frobenius map gates. Namely, gates
ρk(·) (for k ∈ {1, 2, . . . , d− 1}) computing the functions

ρk
(
u(X)

)
= u(X2k

) mod (G(X), 2r+1).

It was shown in [11] that arithmetic circuits with Frobenius map gates can also
be evaluated homomorphically with only polylog overhead. The Frobenius oper-
ations being simply an additional automorphism operation which can be applied
homomorphically to ciphertexts.

Theorem 2. Fix m, r ∈ Z, let d ∈ Z be the smallest such that m|2d−1, denote
` = φ(m)/d and let G(X) be a degree-d irreducible polynomial over Z/2r+1Z
(that fixes a particular representation ofR d

2r+1). LetF0(X), F1(X), . . . , F`−1(X)
be the irreducible (degree-d) factors of the m-th cyclotomic polynomial Φm(X)
modulo 2r+1.

Then there is an arithmetic circuit Ψm,r with Frobenius-map gates over
R d

2r+1 that has ` inputB0, B1, . . .,B`−1 and φ(m) outputsZ0, Z1, . . . , Zφ(m)−1,
for which the following conditions hold:

– On any inputsB0, . . . , B`−1 ∈ R d
2r+1 , the outputs of Ψm,r are all in the base

ring, Zi ∈ Z/2r+1Z ∀i. Moreover, denoting Z(X) =
∑

i ZiX
i, it holds

that Z(X) mod (Fj(X), 2r+1) = Bj for all j.
– Πm has depth O(logm+ d) and size O(m(d+ logm)).

The proof is in the full version. As before, a corollary of Theorem 2 and the
result from [11], is the following:

Corollary 3. There is an efficient procedure that given a single ciphertext en-
crypting Z ′ outputs d ciphertexts encrypting d polynomials that hold the coef-
ficients of Z ′ in their plaintext slots. The procedure works in time Õ(m) (and
uses at most polylog(m) levels of homomorphic evaluation).

156

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

4.8 An Alternative Variant

The procedure from Section 4.7 works in time Õ(m), but it is still quite expen-
sive. One alternative is to put in the public key not just one ciphertext encrypting
the qL-secret-key s, but rather d ciphertexts encrypting polynomials that hold the
coefficients of s in their plaintext slots. Then, rather than using the simple for-
mula from Equation (2) above, we evaluate homomorphically the inner product
of s = (1, s) and c = (c0, c1) modulo Φm(X) and 2r+1. This procedure will be
even faster if instead of the coefficients of s we encrypt their transformed image
under length-m DFT. Then we can compute the DFT of c1 (in the clear), multi-
ply it homomorphically by the encrypted transformed s (in SIMD fashion) and
then homomorphically compute the inverse-DFT and the reduction modulo Φm.
Unfortunately this procedure still requires that we compute the reduction mod-
Φm(X) homomorphically, which is likely to be the most complicated part of
bootstrapping. Finding a method that does not require this homomorphic poly-
nomial modular reduction is an interesting open problem.

Acknowledgments. The first and second authors are sponsored by DARPA
and ONR under agreement number N00014-11C-0390. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements, either expressed or
implied, of DARPA, or the U.S. Government. Distribution Statement “A” (Ap-
proved for Public Release, Distribution Unlimited).

The third author is sponsored by DARPA and AFRL under agreement num-
ber FA8750-11-2-0079. The same disclaimers as above apply. He is also sup-
ported by the European Commission through the ICT Programme under Con-
tract ICT-2007-216676 ECRYPT II and via an ERC Advanced Grant ERC-
2010-AdG-267188-CRIPTO, by EPSRC via grant COED–EP/I03126X, and by
a Royal Society Wolfson Merit Award. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily rep-
resenting the official policies or endorsements, either expressed or implied, of
the European Commission or EPSRC.

References

1. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption
without bootstrapping. In Innovations in Theoretical Computer Science (ITCS’12), 2012.
Available at http://eprint.iacr.org/2011/277.

2. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In FOCS’11. IEEE Computer Society, 2011.

157

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

3. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In Advances in Cryptology - CRYPTO 2011,
volume 6841 of Lecture Notes in Computer Science, pages 505–524. Springer, 2011.

4. John William Scott Cassels. Local Fields, volume 3 of LMS Student Texts. Cambridge
University Press, 1986.

5. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In Advances in Cryptology - EUROCRYPT’10, volume 6110
of Lecture Notes in Computer Science, pages 24–43. Springer, 2010. Full version available
on-line from http://eprint.iacr.org/2009/616.

6. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. crypto.stanford.edu/craig.

7. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, STOC, pages 169–178. ACM, 2009.

8. Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In FOCS’11. IEEE Computer Society, 2011.

9. Craig Gentry and Shai Halevi. Implementing Gentry’s Fully-Homomorphic Encryption
Scheme. In EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 129–
148. Springer, 2011.

10. Craig Gentry, Shai Halevi, and Nigel P. Smart. Better bootstrapping for fully homomorphic
encryption. http://eprint.iacr.org/2011/680, 2011.

11. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog
overhead. In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages
465–482. Springer, 2012. Full version at http://eprint.iacr.org/2011/566.

12. Ron Rivest, Leonard Adleman, and Michael L. Dertouzos. On data banks and privacy ho-
momorphisms. In Foundations of Secure Computation, pages 169–180, 1978.

13. Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In Public Key Cryptography - PKC’10, volume 6056 of
Lecture Notes in Computer Science, pages 420–443. Springer, 2010.

14. Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Manuscript
at http://eprint.iacr.org/2011/133, 2011.

158

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Ring Switching in BGV-Style Homomorphic Encryption
(Preliminary Version)

Craig Gentry Shai Halevi Nigel P. Smart

January 29, 2015

Abstract

BGV-style homomorphic encryption schemes over polynomial rings, rely for their security on rings
of very large dimension. This large dimension is needed because of the large modulus-to-noise ratio in
the key-switching matrices that are used for the top few levels of the evaluated circuit. However, larger
noise (and hence smaller modulus-to-noise ratio) is used in lower levels of the circuit, so from a secu-
rity standpoint it is permissible to switch to lower-dimension rings, thus speeding up the homomorphic
operations for the lower levels of the circuit. However, implementing such ring-switching is nontrivial,
since these schemes rely on the ring algebraic structure for their homomorphic properties.

A basic ring-switching operation was used by Brakerski, Gentry and Vaikuntanathan, over polyno-
mial rings of the form Z[X]/(X2n

+ 1), in the context of bootstrapping. In this work we generalize and
extend this technique to work over any cyclotomic ring and show how it can be used not only for boot-
strapping but also during the computation itself (in conjunction with the “packed ciphertext” techniques
of Gentry, Halevi and Smart.)

Note: A later version of this work, with a substantially different transformation, appears in SCN 2012.

Acknowledgments

The first and second authors are supported by the Intelligence Advanced Research Projects Activity (IARPA)
via Department of Interior National Business Center (DoI/NBC) contract number D11PC20202. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. Disclaimer: The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.

The third author is supported by the National Science Foundation under CAREER Award CCF-1054495,
by the Alfred P. Sloan Foundation, and by the Defense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL) under Contract No. FA8750-11-C-0098. The views expressed
are those of the authors and do not necessarily reflect the official policy or position of the National Science
Foundation, the Sloan Foundation, DARPA or the U.S. Government.

The fourth author is supported by the European Commission through the ICT Programme under Con-
tract ICT-2007-216676 ECRYPT II and via an ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO, by
EPSRC via grant COED–EP/I03126X, and by a Royal Society Wolfson Merit Award. The views and con-
clusions contained herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the European Commission or EPSRC.

159

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Contents

1 Introduction 161
1.1 Our Contribution . 161
1.2 An Overview of the Construction . 162

2 Notation and Preliminaries 164
2.1 RLWE-based BGV Cryptosystems . 164
2.2 Plaintext Arithmetic . 165
2.3 Breaking Polynomials in Parts . 165

3 The Basic Ring-Switching Procedure 166
3.1 Switching to a Low-Dimension Key . 167
3.2 Lifting to the Bigger Ring Cm,q . 169
3.3 Breaking The Ciphertext into Parts . 170
3.4 Reducing to the Small Ring Rw,q . 171

4 Homomorphic Computation in the Small Ring 173
4.1 Ring-Switching with Plaintext Encoding . 174
4.2 The General Case . 176

160

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

1 Introduction

The last year has seen a rapid advance in the state of fully homomorphic encryption; yet despite these
advances the existing schemes are still too inefficient for most practical purposes. In this paper we make
another step forward in making such schemes more efficient. In particular we present a technique to reduces
the dimension of the ring needed for homomorphic computation of the lower levels of a circuit. Our tech-
niques apply to homomorphic encryption schemes over polynomial rings, such as the scheme of Brakerski
et al. [6, 7, 5], as well as the variants due to Lòpez-Alt et al. [15] and Brakerski [4].

The most efficient variants of all these schemes work over polynomial rings of the form Z[X]/F (X),
and in all of them the ring dimension (which is the degree of F (X)) must be set high enough to ensure secu-
rity: To be able to handle depth-L circuits, these schemes must use key-switching matrices with modulus-to-
noise ratio of 2Ω̃(L·polylog(λ)), hence the ring dimension must also be Ω̃(L · polylog(λ)) (even if we assume
that ring-LWE is hard to within fully exponential factors).1 In practice, the ring dimension for moderately
deep circuits can easily be many thousands. For example, to be able to evaluate AES homomorphically,
Gentry et al. used in [14] circuits of depth L ≥ 50, with corresponding ring-dimension of over 50000.

As homomorphic operations proceed, the noise in the ciphertext grows (or the modulus shrinks, if we
use the modulus-switching technique from [7, 5]), hence reducing the modulus-to-noise ratio. Consequently,
it becomes permissible to start using lower-dimension rings in order to speed up further homomorphic
computation. However, in the middle of the computation we already have evaluated ciphertexts over the
big ring, and so we need a method for transforming these into small-ring ciphertexts that encrypt the same
thing. Such a “ring switching” procedure was described by Brakerski et al. [5], in the context of reducing
the ciphertext-size prior to bootstrapping. The procedure in [5], however, is specific to polynomial rings
of the form R2n = Z[X]/(X2n−1

+ 1), and moreover by itself it cannot be combined with the “packed
evaluation” techniques of Gentry et al. [12]. Extending this procedure is the focus of this work.

1.1 Our Contribution

In this work we present two complementary techniques:

• We extend the procedure from [5] to any cyclotomic ring Rm = Z[X]/Φm(X) for a composite m.
This is important, since the tools from [12] for working with “packed” ciphertexts require that we
work with an odd parameter m. For m = u · w, we show how to break a ciphertext over the big
ring Rm into a collection of u = m/w ciphertexts over the smaller ring Rw = Z[X]/Φw(X), such
that the plaintext-polynomial encrypted in the original big-ring ciphertext can be recovered as a simple
linear function of the plaintext-polynomials encrypted in the smaller-ring ciphertexts.

• We then show how to take a “packed” big-ring ciphertext that contains many plaintext elements in its
plaintext slots, and distribute these plaintext elements among the plaintext slots of several small-ring
ciphertexts. If the original big-ring ciphertext was “sparse” (i.e., if only few of its plaintext slots were
used), then our technique yields just a small number of small-ring ciphertexts, only as many as needed
to fit all the used plaintext slots.

The first technique on its own may be useful in the context of bootstrapping, but it is not enough to
achieve our goal of reducing the computational overhead by switching to small-ring ciphertexts, since we

1The schemes from [5, 4] can replace large rings by using higher-dimension vectors over smaller rings. But their most efficient
variants use big rings and low-dimension vectors, since the complexity of their key-switching step is quadratic in the dimension of
these vectors.

161

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

still need to show how to perform homomorphic operations on the resulting small-ring ciphertexts. This is
achieved by utilizing the second technique. To demonstrate the usefulness of the second technique, consider
the application of homomorphic AES computation [14], where the original big-ring ciphertext contains only
16 plaintext elements (corresponding to the 16 bytes of the AES state). If the small-ring ciphertexts has 16 or
more plaintext slots, then we can convert the original big-ring ciphertext into a single small-ring ciphertext
containing the same 16 bytes in its slots, then continue the computation on this smaller ciphertext.

1.2 An Overview of the Construction

Our starting point is the polynomial composition technique of Brakerski et al. [5]. When m = u · w then
a polynomial of degree up to m − 1, a(X) =

∑m−1
i=0 aiX

i, can be broken into u polynomials of degree up
to w − 1 by splitting the coefficients of a according to their index modulo u. Namely, denoting by a(k) the
polynomial with coefficients ak, ak+u, ak+2u, . . ., we have

a(X) =
u−1∑
k=0

w−1∑
j=0

ak+ujX
k+uj =

u−1∑
k=0

Xk
w−1∑
j=0

ak+ujX
uj =

u−1∑
k=0

Xka(k)(X
u). (1)

We note that this “very syntactic” transformation (of splitting the coefficients of a big-ring polynomial into
several small-ring polynomials) has the following crucial algebraic properties:

1. The end result is a collection of “parts” a(k), all from the small ring Rw (which is a sub-ring of the
big ring Rm, since w|m).

2. Recalling that f(x) 7→ f(xu) is an embedding of Rw inside Rm, we have the property that the
original a can be recovered as a simple linear combination of (the embedding of) the parts a(k).

3. Moreover the transformation T (a) =
〈
a(0), . . . , a(u−1)

〉
is linear, and as such it commutes with the

linear operations inside the decryption formula of BGV-type schemes: If s is a big-ring secret key and
c is (part of) a big-ring ciphertext, then decryption over the big ring includes computing a = s·c ∈ Rm
(and later reducing a mod q and mod 2). Due to linearity, the parts of a can be expressed in terms of
the tensor product between the parts of s and c. Namely, T (s · c) is some linear function (over the
small ring Rw) of T (s)⊗ T (c).

In addition to these algebraic properties, in the case considered in [5] where m,w are powers of two, it turns
out that this transformation also possess the following geometric property:

4. If a is a low-norm element in Rm, then all the parts a(k) in T (a) are low-norm elements in Rw.

The importance of this last property stems from the fact that a valid ciphertext in a BGV-type homomorphic
encryption scheme must have a low noise, namely its inner-product with the unknown secret key must be a
low-norm polynomial. Property 3 above is used to convert a big-ring ciphertext encrypting a (relative to a
big-ring secret key s) into a collection of “syntactically correct” small-ring ciphertexts encrypting the a(k)’s
(relative to the small-ring secret key T (s)), and Property 4 is used to argue that these small-ring ciphertexts
are indeed valid.

When attempting to apply the same transformation for m,w that are not powers of two, it turns out that
the algebraic properties must all still hold, but the geometric property may not. One plausible solution is
to find a different transformation T (·) for breaking a big-ring element into a vector of small-ring elements,
that has all the properties 1-4 above, even when m,w are not powers of two. In the current work, however,

162

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

we stick to the same transformation T (·) as in [5], and address the problem with the geometric property by
“lifting” everything from the big ring Rm = Z[X]/Φm(X) to the even bigger ring Cm = Z[X]/(Xm − 1),
using techniques similar to [12, 9].

The reason that lifting to Cm helps, is that over the bigger ring Cm, the linear combination from Equa-
tion (1) is in fact a “direct sum”, in the sense that every coefficient of the left-hand side comes from exactly
one of the terms on the right. Thus if the result is a low-norm polynomial then all the summands must also
be low-norm polynomials, which is what we need.2

A Key-Switching Optimization. One source of inefficiency in the ring-switching procedure of Brakerski
et al. [5] is that using the tensor product T (s)⊗T (c) amounts essentially to having u small-ring ciphertexts,
each of which is a dimension-u vector over the small ring. Brakerski et al. point out that we can use key-
switching/dimension-reduction to convert these high dimension ciphertexts into low-dimension ciphertexts
over the small ring, but processing u ciphertexts of dimension u requires work quadratic in u. Instead, here
we describe an alternative procedure that saves a factor of u in running time:

Before using T (·) to break the ciphertext into pieces, we apply key-switching over the big ring to get
a ciphertext with respect to another secret key that happens to belong to the small ring Rw (which we note
again is a sub-ring ofRm). The transformation T (·) has the additional property that when applied to a small-
ring element s′ ∈ Rw ⊂ Rm, the resulting vector T (s′) over Rw has just a single non-zero element (namely
s′ itself). Hence T(s′)⊗T (c) is the same as just s′ ·T (c), and this lets us work directly with low-dimension
ciphertexts over the small ring (as opposed to ciphertexts of dimension u). This is described in Section 3.1,
where we prove that key-switching into a key from the small subring is secure as long as ring-LWE [16] is
hard in that small subring.

Packed Ciphertexts. As sketched so far, the ring-switching procedure lets us convert a big-ring ciphertext
encrypting a polynomial a ∈ Rm into a collection of u′ small-ring ciphertexts encrypting the parts a(k) ∈
Rw. However, coming in the middle of homomorphic evaluation, we may need to get small-ring ciphertexts
encrypting things other than the a(k)’s. Specifically, if the original polynomial a encodes several plaintext
elements in its plaintext slots (as in [19, 12]), we may want to get encryption of small-ring polynomials that
encode the same elements in their slots.

We note that the plaintext elements encoded in the polynomial a ∈ Rm are the evaluations a(ζi) where
the ζi’s are primitive m-th roots of unity in some extension field F2d . (Equivalently, the evaluations a(ζi)
can also be described as a mod pi, where pi is some prime ideal in the ring Rm — specifically the ideal
generated by {2, X − ζi}. Noting that these prime ideals are exactly the factors of 2 in Rm, this evaluation
representation overGF (2d) is nothing more than Chinese-Remaindering over the prime factors of 2 inRm.)

Similarly, the plaintext elements encoded in a polynomial b ∈ Rw are the evaluations b(τj) with the
τj’s are primitive w-th roots of unity (equivalently the residues of b relative to the prime ideal factors of 2
in Rw). Our goal, then, is to decompose a big-ring ciphertext encrypting a into small-ring ciphertexts
encrypting some bt’s, such that for every i there are some t, j for which bt(τj) = a(ζi).

To that end, we interpret Equation (1) as expressing the value of a at an arbitrary point X as a linear
combination of the values of the a(k)’s at the point Xu (with coefficients 1, X,X2, . . . , Xu−1). Observing
that if ζ in an m-th root of unity then τ = ζu is a w-th root of unity, we thus obtain a method of expressing
the values of a in the m-th roots of unity as linear combinations of the values of the a(k)’s in the w-th
roots of unity. In Lemma 6 in Section 4 we show how to express, under some conditions on m and w, the

2In the power-of-two setting considered in [5], the same “direct sum” argument can be applied directly in the big ring R2n ,
hence they do not need the “lifting” technique.

163

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

coefficients of the linear combination from Equation (1) as (low norm) polynomials in the τj’s. This allows
us to compute the encryption of the bt’s that we seek as low-weight linear combination of the encryption of
the a(k)’s that we obtained before.

A bird-eye view of this last transformation is that the linear transformation T (a) that we used to break
the plaintext big-ring element into a vector of small-ring parts has the side-effect of inducing some linear
transformation (over F2d) on the contents of the plaintext slots. Hence after we apply T , we compute
homomorphically the inverse linear transformation, thereby recovering the original content.

2 Notation and Preliminaries

Below we define the various algebraic structures that we need for this work. In this paper we will be utilizing
various rings at different points, all will be associated to rings of roots of unity. Below let m, q be arbitrary
positive integers. Let Φm(X) denote the m’th cyclotomic polynomial (i.e., Φm(X) =

∏
i∈(Z/mZ)∗(X −

ζim), where ζm is the complex primitive m’th root of unity, ζm = e2πi/m). Recalling that Φm is an integer
polynomial, we define the following rings:

Rm = Z[X]/Φm(X), Cm = Z[X]/(Xm − 1)
Rm,q = Z[X]/(Φm(X), q), Cm,q = Z[X]/(Xm − 1, q)

We will be interested in cyclotomic rings for a composite m = u · w.

The size of polynomials. Throughout this work we frequently refer to “low norm polynomials”. The
norm that we use to measure the size of polynomials is the l2 norm of their coefficient vectors, i.e. for a

polynomial f we set norm(f) =
√∑

f2
i . (Most of our treatment is not very sensitive to the choice of the

particular norm function.) We informally say that a polynomial in Rm,q or Cm,q has low norm when its
norm is much smaller than the parameter q.

The ring constant cm. We sometime need to switch back and forth between Rm,q and Cm,q while main-
taining “low norm” polynomials. For every integer m there exists a constant cm that bounds the increase in
norm due to reduction modulo Φm(X). Namely, for every polynomial f of degree up to m− 1 is holds that
norm(f mod Φm) ≤ cm · norm(f).

Empirically, the constants cm for the parameters m that we work with is rather small (ranging between
2 and 50 for typical values). But in principle for very smooth m’s the constant cm can be super-polynomial
in m. For the rest of the paper we always assume that our parameters are chosen so that q � cm, so that
we can take “low norm” polynomials in Cm and reduce them modulo Φm without increasing the norm too
much (relative to q). Note that ring constant cm is different, but related to, the associated ring constant from
[8, 12].

2.1 RLWE-based BGV Cryptosystems

Below and throughout this work we denote by [z]q the reduction of the integer z modulo the positive integer
q into the symmetric interval (−q/2, q/2). In our initial ring-LWE-based BGV cryptosystem, secret keys
and ciphertexts are 2-vectors over Rm,q for some odd system parameter q, and moreover the secret key has
the form s = (1, s) where s ∈ Rm is a low-norm polynomial (e.g., with coefficients in {−1, 0, 1}). The
native plaintext space for our initial BGV scheme will beRm,2, namely binary polynomials modulo Φm(X).

164

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

A valid ciphertext c = (c0, c1) ∈ (Rm,q)2 that encrypts the plaintext polynomial a ∈ Rm,2 with respect to
s = (1, s) satisfies the equality (over Rm)

[〈c, s〉]q = [c0 + s · c1]q = a+ 2e, (2)

for some low-norm polynomial e ∈ Rm. Note that by [c0 +s ·c1]q we mean reducing each of the coefficients
of the polynomial c0 + s · c1 ∈ Rm into the interval (−q/2, q/2). Decryption is then just computing
[c0 + s · c1]q, then reducing modulo 2 to recover the plaintext polynomial a.

Throughout the paper we will switch back and forth between different rings. We will maintain the
invariant that valid ciphertexts always satisfy Equation (2), but the ring over which this equation is evaluated
(specifically the meaning of s · c1) will vary. In the input to the ring-switching procedure we will have
a ciphertext where that equality holds over Rm, at the end we will have the output ciphertexts for which
the equality holds over Rw, and in various intermediate points we will have that equality holding over Cm
or Cw.

2.2 Plaintext Arithmetic

Following [19, 5, 12, 13, 14] we consider plaintext polynomials a ∈ Rm,2 as encoding vectors of plaintext
elements from some finite field F2d , where d is the order of 2 in the group (Z/mZ)∗. (This implies that
d divides φ(m), and also that F2d contains primitive m-th roots of unity.) Denoting ` = φ(m)/d, we
can identify polynomials in Rm,2 with `-vectors of elements from F2d . The specific mapping between
polynomials and vectors that we use is as follows:

Consider the quotient group (Z/mZ)∗/ 〈2〉 (which has exactly ` elements), and fix a specific set of
representatives for this quotient group, Tm = {t1, t2, . . . , t`} ⊆ (Z/mZ)∗, containing exactly one element
from every conjugacy class in (Z/mZ)∗/ 〈2〉.3 Also fix a specific primitive m-th root of unity ζ ∈ F2d , and
we identify each polynomial a ∈ Rm,2 with the `-vector consisting of a(ζt) for all t ∈ Tm:

a ∈ Rm,2 ←→
〈
a(ζt1), . . . , a(ζt`)

〉
∈ (F2d)`.

Showing that this is indeed a one-to-one mapping is a standard exercise. In one direction clearly from a we
can compute all the values a(ζti). In the other direction we use the fact that since the coefficients of a are
all in the base field F2 then a(X2) = a(X)2 for any X ∈ F2d . In particular from a(ζti) we can compute
a(ζ2ti), a(ζ4ti), a(ζ8ti), and so on. Since Tm is a complete set of representatives for the quotient group
(Z/mZ)∗/ 〈2〉, then we can get this way the evaluations of a(ζj) for all the indexes j ∈ (Z/mZ)∗. This
gives us the evaluation of a in φ(m) different points, from which we can interpolate a itself.

We thus view the evaluation of the plaintext polynomial in ζtj as the j’th “plaintext slot”, and note
that arithmetic operations in the ring Rm,2 act on the plaintext slots in a SIMD manner, namely point-wise
adding or multiplying the elements in the slots.

We can equivalently view this mapping as Chinese remaindernig represntation (which makes the one-
to-one argument and the SIMD property obvious, but requires careful choises for the represenation of F2d

in the different plaintext slots).

2.3 Breaking Polynomials in Parts

As sketched in the introduction, our approach is rooted at the technique for assembling a high-degree poly-
nomial from low-degree parts by interleaving the coefficients of the parts. Alternatively, we can view this

3In other words, the sets Tm, 2Tm, 4Tm, . . . 2
d−1Tm are all disjoint, and their union is the entire group (Z/mZ)∗.

165

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

as breaking a high-degree polynomial into small-degree parts. Recall that for a polynomial a of degree up
to m− 1, and for any integer u < m, we can break a into u parts of degree less than w = dm/ue, denoted
a(0), . . . , a(u−1), by splitting the coefficients of a according to their index mod u, thus obtaining

a(X) =
u−1∑
k=0

w−1∑
j=0

ak+uj ·Xk+uj =
u−1∑
k=0

Xk ·
(w−1∑
j=0

ak+uj ·Xuj

)
=

u−1∑
k=0

Xk · a(k)(X
u).

Of particular interest to us will be the case where m = u · w, where working with w-degree polynomials
that are evaluated at Xu allows us to move between big rings and small rings. The following lemma will be
useful later in the paper.

Lemma 1. Letm,w be positive integers such that w dividesm, and let u = m/w. Also let Φm(X), Φw(X)
be the m-th and w-th cyclotomic polynomials, respectively.

a. Consider three polynomials f(X), g(X), h(X) of degree at most φ(w)− 1. If h(X) ≡ f(X) · g(X)
(mod Φw(X)) then h(Xu) ≡ f(Xu) · g(Xu) (mod Φm(X)).

b. Consider three polynomials f(X), g(X), h(X) of degree at most w − 1. If h(X) ≡ f(X) · g(X)
(mod Xw − 1) then h(Xu) ≡ f(Xu) · g(Xu) (mod Xm − 1).

Proof. a. Since h(X) ≡ f(X) · g(X) (mod Φw(X)) then for every primitive w-th root of unity τ (say,
over the complex field) we have h(τ) = f(τ) · g(τ). Let us denote f̃(X) = f(Xu) mod Φm(X), g̃(X) =
g(Xu) mod Φm(X), and h̃(X) = h(Xu) mod Φm(X), then for every primitive m-th root of unity ζ we
have

f̃(ζ) · g̃(ζ) = f(ζu) · g(ζu)
(?)
= h(ζu) = h̃(ζ)

where the equality (?) follows since ζu is a primitive w-th of unity whenever ζ is a primitive m-th of unity.
Since f̃ · g̃ has the same evaluations as h̃ on all the primitivem-th roots of unity then it follows that f̃ · g̃ ≡ h̃
(mod Φm), as needed.

b. The proof is identical to Part a, except that we consider all w-th and m-th roots of unity, not just the
primitive roots.

3 The Basic Ring-Switching Procedure

Given a big-ring ciphertext c ∈ (Rm,q)2, encrypting a plaintext polynomial a ∈ Rm,2 relative to a big-ring
secret key s ∈ Rm, our goal is roughly to come up with u small-ring ciphertexts c0, c1, . . . , cu−1 ∈ (Rw,q)2

with ci encrypting the part a(i) ∈ Rw,2, all relative to some small ring secret key s′ ∈ Rw. The basic
procedure consists of the following steps:

1. Key-switch. We use the BGV key-switching method from [5] to switch into a “low-dimension”
secret key, still over the big ring Rm,q. The “low-dimension” key is s′′ ∈ Rm, where s′′ has nonzero
coefficients only for powers Xi where i ≡ 0 (mod u). That is, we have s′′(0) = s′ and s′′(i) = 0 for all
i > 0 (in other words s′′(X) = s′(Xu)).

2. Lift. Next we lift the resulting ciphertext from the big ring Rm,q to the even bigger ring Cm,q, using
the delayed-reduction technique of Gentry et al. [12]. As described in Section 3.2, the new ciphertext
encrypts over the bigger ring Cm,q a plaintext polynomial a′ related to a, still relative to the big-ring
secret key s′′.

166

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

𝐶𝑚

𝑅𝑚

embed
via

mult.-by-𝐺𝑚

𝐶𝑤
𝑢

split coefficients

reconstruction

𝑅𝑤
𝑢

reduce
modulo
Φ𝑤(𝑋)

reconstruction

Figure 1: The transformation used to map elements between the different spaces.

3. Break. Now we can break the bigger-ring ciphertext into a collection of u intermediate-ring cipher-
texts (i.e., pairs over Cw,q), such that the k’th ciphertext is a valid encryption of the k’th part of a′

(i.e., a′(k) ∈ Cw,2). All these ciphertexts are valid (over Cw,q) with respect to the small-ring secret
key s′.

4. Reduce. Finally we reduce all the intermediate ring ciphertexts modulo (Φw(X), q), thereby getting
small ring ciphertexts over Rw,q, valid relative to s′.

We observe that the small ring ciphertext that we get this way may not encrypt the parts a(k) of the original
polynomial a. Rather, we will show that they encrypt some other polynomials ãk, which are defined as
ãk = a′(k) mod (Φw, 2). We will show, however, that these plaintext polynomials ãk satisfy the same
relation to the original plaintext polynomial, namely a(X) ≡

∑
kX

k · ãk(Xu) (mod Φm, 2), which is all
we need for our application.

3.1 Switching to a Low-Dimension Key

To enable this transformation, we include in the public key a “key switching matrix”, essentially encrypting
the old key s under the new low-dimension key s′′. Note that using such a low-dimension secret key has
security implications (since it severely reduces the dimension of the underlying LWE problem). In our case,
however, the whole point of switching to a smaller ring is to get lower dimension, so we do not sacrifice
anything new. Indeed, we show below that assuming the hardness of the decision-ring-LWE problem [16]
over the ring Rw,q, the key-switching matrix in the public key is indistinguishable from a uniformly random
matrix over Rm,q (even for a distinguisher that knows the old secret key s).

The ring-LWE problem in Rw,q. We denote the secret-key and error-distributions prescribed in the ring-
LWE problem in Rw,q by Sw and Ew, respectively. (E.g., these could be low-variance Gaussians in Rw
rounded modulo q, or some distributions involving the dual as in [16].) We also denote the uniform distri-
bution on Rw,q by Uw. For a fixed random secret s′ ← Sw, the ring-LWE problem in Rw,q is given many
pairs (γi, δi) with γi ← Uw, to distinguish the cases where the δi’s are chosen as δi = s′ · γi + ηi with ηi
from the case where they are chosen uniformly at random δi ← Uw.

167

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The key-switching matrix. Let s ∈ Rm be the old big-ring secret key, and s′ ∈ Rw be the small-ring
secret-key that we want to switch into (where s′ was chosen from the secret-key distribution Sw). Define
the new big-ring low-dimension key s′′ ∈ Rm as the unique polynomial of degree less than m such that
s′′(0) = s′ and s′′(k) = 0 for all k > 0. In other words, s′′(X) = s̃(Xu), i.e., the coefficients s′′0, s

′′
u, s
′′
2u, . . .

are exactly the coefficients of s′, and all the other coefficients of s′′ are zero.
For our key-switching matrix we use the following distribution of “error vectors” in Rw,q: We first

draw independently at random u low-norm polynomials from the ring-LWE error distribution, η(k) ← Ew,
then assemble from the η(k)’s a single error polynomial ε′(X) =

∑u−1
k=0 X

k · η(k)(Xu), and output ε =
ε′ mod (Φm, q). That is, we have the distribution

Em =

{
η(0), . . . , η(u−1) ← Ew, output

u−1∑
k=0

Xk · η(k)(X
u) mod (Φm, q)

}

Note that ε′ before the reduction mod (Φm, q) has degree smaller than φ(w) · u < m, and its norm-squared
is the sum of norm-squared of the ε(k)’s. Hence ε′ is a low-norm polynomial, and the norm of ε after
the reduction is larger by at most a factor of cm (cm is the ring constant for Rm), so ε too is a low norm
polynomial.4

Given the old key s ∈ Rm,q and the new s′ ∈ Rw,q, we draw at random l = dlog qe elements from the
error distribution ε0, . . . , εl−1 ← Em, and the columns of our key-switching matrix are the pairs{

(βi, αi)t : αi ← Um, βi = 2is− (s′′ · αi + 2εi) mod (Φm, q)
}
,

where Um is the uniform distribution over the big ring Rm,q. (Note that even if the secret-key and error
distributions over the small ring involce the “dual lattice” as in [16], the β’s are still going to be in the big
ring, because all their parts β(k) are in the small ring.)5

Since the errors εi have low-norm, this is a functional key-switching matrix, as described in [7]. Given
an s-ciphertext c = (c0, c1) we decompose c1 into its bit representation, thus getting an l-vector of polyno-
mials with 0-1 coefficients. Multiplying that vector by the key-switching matrix and adding c0 to the first
coordinate we get a new ciphertext c′ = (c′0, c

′
1) with respect to the new low-dimension big-ring key s′′. As

for security, we prove the following lemma.

Lemma 2. If the decision ring-LWE problem over the ringRw,q is hard, then the key-switching matrix above
is indistinguishable from a uniformly random 2× l matrix with all the entries drawn independently from Um.
The indistinguishability holds even if the distinguisher gets as input the old secret key s ∈ Rm.

Proof. Our goal is to show that under the hardness of ring-LWE inRw, it is infeasible to distinguish the case
where the βi’s where chosen as prescribed in the scheme from the case where they are uniformly random
according to Um. That is, we show that an adversary A that given the old secret key s and the matrix of
(βi, αi)’s can distinguish between these two distributions, can be used to solve the ring-LWE problem in the
small ring Rw,q.

The reduction. A ring-LWE distinguisher B gets l · u pairs (γi,k, δi,k), for i = 0, 1, . . . , l − 1 and k =
0, 1, . . . , u − 1, where the γi,k’s are uniform in Rw,q and the δi,k’s are either set as s′ · γi,k + ηi,k, for

4This argument can be refined to eliminate the dependence on the “smallness” of cm, see Remark 1 at the end of the section.
5We could alternatively use the key-switching variant from [14] where the “matrix” consists of a single column (β, α)t), but

with respect to a largest modulus Q ≈ q2 · m. The proof of security would then depend on the hardness of ring-LWE in Rw,Q

rather than in Rw,q .

168

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

η ← Ew, or chosen at random δi,k ← Uw. B begins by choosing an “old secret key” in the big ring s ∈ Rm,q
(according to whatever distribution the scheme specifies). Then B assembles the αi’s and βi’s by setting

αi(X) = 2
u−1∑
k=0

Xk · γi,k(Xu) mod (Φm, q) and βi(X) = 2i · s− 2 ·
u−1∑
k=0

Xk · δi,k(Xu) mod (Φm, q).

Finally, B runs the adversary A on s and the matrix with columns (βi, αi)t and outputs whatever A does.
Analysis. We observe that when we have polynomials f0, f1, . . . , fu−1 ∈ Rw,q and we set g(X) =∑u−1

k=0 X
kfk(Xu) mod (Φm, q), then the coefficients of g are related to those of the fk’s via a (φ(w) ·

u)× φ(m) matrix of full rank (i.e., rank φ(m)) over Z/qZ. When the fk’s are drawn from Uw then all their
coefficients are uniform in Z/qZ, and therefore so are all the coefficients of g.

Applying this observation to the reduction above, since the γi,k’s are uniform in the small ring Rw,q
then the αi’s are set as twice a uniform element in the big ring Rm,q, which is also uniform since q is odd.
Similarly, if the δi,k’s are uniform in Rw,q then also the βi’s are uniform in the big ring Rm,q. On the other
hand, if the δi,k’s are chosen as δi,k = s′ · γi,k + ηi,k mod (Φw, q), with ηi,k ← Ew, then we have

βi(X) ≡ 2i · s(X)− 2
u−1∑
k=0

Xk · δi,k(Xu)

= 2i · s(X)− 2 ·
u−1∑
k=0

Xk ·

δi,k evaluated at Xu︷ ︸︸ ︷[
(s′ · γi,k + ηi,k) mod (Φw, q)

]
(Xu)

(?)
≡ 2i · s(X)− 2 ·

u−1∑
k=0

Xk ·

no modular reduction︷ ︸︸ ︷[
s′ · γi,k + ηi,k

]
(Xu)

≡ 2i · s(X)− s′(Xu)︸ ︷︷ ︸
s′′(X)

· 2 ·
u−1∑
k=0

Xk · γi,k(Xu)︸ ︷︷ ︸
αi(X)

− 2
u−1∑
k=0

Xk · ηi,k(Xu)︸ ︷︷ ︸
εi(X)

(mod Φm, q),

where the equality (?) follows from Lemma 3 (part a). In this case the αi’s are still uniformly random, but
the εi’s are drawn exactly from our error distribution Em in the big ring Rm,q. This completes the proof.

3.2 Lifting to the Bigger Ring Cm,q

To lift the ciphertexts from the big ring Rm,q to the bigger ring Cm,q, we use the “delayed reduction”
technique of Gentry et al. (from the full version of [12]), which builds on the following lemma:

Lemma 3. ([12, Lemma 12]) For any integer m there is an integer polynomial Gm of degree ≤ m − 1,
such that Gm(α) = m for every complex primitive m-th root of unity α, and Gm(β) = 0 for every complex
non-primitive m-th root of unity β. Moreover the Euclidean norm of Gm’s coefficient vector is

√
m · φ(m).

Denoting Qm(X) = (Xm − 1)/Φm(X), then Gm(X) ≡ m (mod Φm) and Gm(X) ≡ 0 (mod Qm).
We can use polynomial Chinese remaindering to construct Gm from its remainders modulo Φm(X) and
Qm(X). Since Gm(X) ≡ 0 (mod Qm) then we can use Gm to “lift” any equality modulo Φm to an
equality modulo Xm − 1. Namely, if we have f ≡ g (mod Φm) then we also have G · f ≡ G · g
(mod Xm − 1). Specifically for the decryption formula, we start from a valid big-ring ciphertext that

169

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

satisfies the formula c0 + c1 · s′′ ≡ a+2e+ qκ (mod Φm) (for some low-norm polynomial e and a quotient
polynomial κ), then multiply both sides by Gm to obtain

(Gm · c0) + (Gm · c1) · s′′ ≡ 2(Gm · e) + (Gm · a) + q(Gm · κ) (mod Xm − 1).

Assuming that q � m, the products Gm · e mod (Xm − 1) and Gm · a mod (Xm − 1) are both low-norm.
Thus, denoting c′0 = Gm · c0 mod (Xm − 1) and c′1 = Gm · c1 mod (Xm − 1), we get that the ciphertext
(c′0, c

′
1) is a valid encryption over the bigger ring Cm of a′ = Gm · a mod (Xm − 1, 2), relative to the

secret key s′′. (We note that upon decryption, one can recover the original plaintext polynomial a, simply by
reducing a′ modulo (Φm(X), 2), this yields [m · a]2 = a, because Gm(X) ≡ m (mod Φm) and m is odd.)

3.3 Breaking The Ciphertext into Parts

After the transformation of the previous step, our ciphertext consists of a pair (c, d) of polynomials in the
bigger ring Cm,q = Z[X]/((Xm − 1), q). This ciphertext is valid with respect to the low-dimension secret
key s′′ of degree smaller than φ(m), satisfying s′′(0) = s′ ∈ Rw,q and s′′(1) = s′′(2) = · · · = s′′(u−1) = 0, in
other words s′′(X) = s′(Xu). Breaking c, d into their parts c(k), d(k), we then have the following lemma.

Lemma 4. The polynomials c(k) and d(k) are such that the following equality holds over Z[X]:

[
c+ d · s′′ mod (Xm − 1, q)

]
(X) =

u−1∑
k=0

Xk ·
[
c(k) + d(k) · s′ mod (Xw − 1, q)

]
(Xu).

(In the above equality, we have on both sides polynomials that are reduced to a lower degree and have their
coefficients reduced modulo q, then evaluated at X or Xu.)

Proof. Recall that decryption over Cm,q calls for computing z = c+ d · s′′ mod (Xm− 1), then reducing z
modulo q and then modulo 2. Breaking the polynomials c, d and s′′ into parts, we can write:

(d · s′′)(X) =
2u−2∑
k=0

∑
i,j s.t.
i+j=k

Xk · d(i)(X
u) · s′′(j)(X

u)

=
u−1∑
k=0

Xk ·

 ∑
i,j s.t.
i+j=k

d(i)(X
u) · s′′(j)(X

u) +
∑
i,j s.t.

i+j=k+u

Xu · d(i)(X
u) · s′′(j)(X

u)

(?)
=

u−1∑
k=0

Xk · d(k)(X
u) · s′′(0)(X

u) =
u−1∑
k=0

Xk · d(k)(X
u) · s′(Xu)

where the equality (?) follows since s′′(j) = 0 for j > 0 and d(i) = 0 for i ≥ u. This implies also that

(c+ d · s′′)(X) =
u−1∑
k=0

Xk · c(k)(X
u) +

u−1∑
k=0

Xk · d(k)(X
u) · s′(Xu)

=
u−1∑
k=0

Xk ·
[
c(k) + d(k) · s′

]
(Xu)

170

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Recall from Lemma 3 (part b) that whenever we have h(X) ≡ f(X) · g(X) (mod Xw − 1) then also
h(Xu) ≡ f(Xu) · g(Xu) mod (Xm − 1). Hence we have

(c+ d · s′′)(X) ≡
u−1∑
k=0

Xk ·
[
c(k) + d(k) · s′ mod (Xw − 1)

]
(Xu) (mod Xm − 1),

and since the right-hand side of the last equality is a polynomial of degree less than m, then we get the
following equality holding over Z[X]:

[
c+ d · s′′ mod (Xm − 1, q)

]
(X) =

u−1∑
k=0

Xk ·
[
c(k) + d(k) · s′ mod (Xw − 1, q)

]
(Xu).

We note that in the above equality, we have on both sides polynomials that are reduced to a lower degree
and have their coefficients reduced modulo q, then evaluated at X or Xu. However, once we perform
these modular reduction on both sides, then both polynomials have degrees less than m and coefficients
smaller than q/2 in absolute value, and since they are congruent modulo ((Xm − 1), q) then they must be
identical.

Size of Polynomials. Importantly, the sum on the right-hand side of the last equality is a “direct sum”,
in the sense that the k’th summand has non-zero coefficients only in powers Xi such that i = k (mod u).
This means that each coefficient in the sum comes from exactly one of the summands. This, in turn, implies
that the norm-squared of the left-hand side is the sum of norm-squared of the terms on the right-hand side.
Hence if the left-hand side has low norm, then also every summand on the right must have low norm.

We stress that this “direct sum” argument is the reason why we lift our ciphertext to the bigger ring
Cm,q. This argument does not apply when working modulo Φm, thus without lifting we could not have used
the fact that the left-hand side has low norm to argue that all the terms on the right have low norm.

Ciphertexts in the intermediate ring Cw,q. Consider now the u intermediate-ring ciphertexts over Cw,q:

c0 = (c(0), d(0)), c1 = (c(1), d(1)), . . . , cu−1 = (c(u−1), d(u−1)).

Since the bigger-ring ciphertext (c, d) was a valid encryption of a′ = Gm·a mod (Xm−1, 2) overCm,q with
respect to secret key s′′, we know that we have [c+ d · s′′ mod (Xm− 1, q)] = 2e′+ a′ for some low-norm
error e′. Let us denote b′ = 2e′ + a′. From the equalities above (and the “direct sum” argument), we know
that the k’th part of b′, namely b′(k) = 2e′(k) + a′(k), is obtained as b′(k) = [c(k) + d(k) · s′ mod (Xw − 1, q)].
As e′(k) is a low-norm error term, we conclude that the vectors ck are valid encryption of the parts a′(k) over
Cw,q with respect to secret key s′. Thus we have shown that valid ciphertexts encrypting the parts a′(k) of a′

(over the intermediate ring Cw,q with respect to s′) can be obtained simply by breaking the polynomials c, d
into their parts.

3.4 Reducing to the Small Ring Rw,q

Now that we have valid ciphertext (c(k), d(k)) encrypting the parts a′(k) over the intermediate ring Cw,q
relative to s′, it only remains to reduce them into the small ring Rw,q. We do this simply by reducing each
of the element (c(k), d(k)) modulo (Φw, q), i.e. we set c̃k = c(k) mod (Φw, q) and d̃k = d(k) mod (Φw, q).

171

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Lemma 5. The ciphertext (c̃k, d̃k) is an encryption (over Rw,q) of the plaintext ãk = a′(k) mod (Φw, 2) ∈
Rw,2.

Proof. Recall that for all k we have the equality (over Z[X])

c(k) + d(k) · s′ mod (Xw − 1, q) = 2e′(k) + a′(k)

for a low-norm error term e′(k). Denoting b′(k) = 2e′(k) + a′(k), we have that b′(k) is a low-norm polynomial in
Cw,q.

Let us now denote b̃k = (b′(k) mod Φw) (without reduction modulo q). Since the b′(k)’s are low-norm

then so are the b̃k (because reduction modulo Φw increases the norm by at most a factor of the ring con-
stant cw). This means that b̃k has norm much smaller than q, so it is already reduced modulo q. In other
words, we also have b̃k = b′(k) mod (Φw, q).

Observe that ãk = (a′(k) mod Φw) + 2 · µk for some low-norm µk’s. The µk’s have low norm because
ãk has low norm (being a 0-1 polynomial) and also (a′(k) mod Φw) has low norm (being at most cw time

more than the norm of the 0-1 polynomial a′(k)). Next we argue that for all k we have b̃k = 2ẽk + ãk for a
low-norm error terms ẽk ∈ Rw,q. This follows because

b̃k = (b′(k) mod Φw) = (2 · e′(k) + a′(k) mod Φw) = (2 · e′(k) mod Φw) + (a′(k) mod Φw)

= 2 · (e′(k) mod Φw) + ãk − 2 · µk = 2 · ((e′(k) mod Φw)− µk︸ ︷︷ ︸
ẽk

) + ãk,

Finally, we obtain:

(c̃k + d̃k · s′ mod (Φw, q)) = (c(k) + d(k) · s′ mod (Φw, q))

= (b′(k) mod (Φw, q)) = b̃k = 2 · ẽk + ãk

In other words, since ẽk has low norm then the pair (c̃k, d̃k) is a valid ciphertext over Rw,q with respect to
secret key s′, encrypting the plaintext polynomial ãk ∈ Rw,2.

What are the ãk’s? At this point we are done converting the original big-ring ciphertext encrypting a ∈
Rm,2 into a collection of valid small-ring ciphertexts encrypting the ãk’s. But how are these ãk’s related to
the original plaintext polynomial a? Ideally we would have liked the ãk to be the parts of a (i.e. ãk = a(k)),
but this is not necessarily what we get. Still, we show that we can recover the original polynomial a from
the ãk’s via the same assembly formula,

a(X) =
u−1∑
k=0

Xk · ãk(Xu) mod (Φm, 2).

To show that we first observe that on both sides of the equation are 0-1 polynomials of degree less than
φ(m), so to demonstrate equality it is enough to show that they agree when evaluated at φ(m) different
points (from any field of our choice). In particular, we now show that they agree on all the primitive m’th
roots of unity over the finite field F2d . For this we recall the following basic facts:

1. The field F2d contains primitive m’th roots of unity, and if ζ ∈ F2d is a primitive m’th roots of unity
then ζu is a primitive w’th root of unity.

172

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

2. Since Gm ≡ m ≡ 1 (mod Φm, 2), then [Gm mod 2](ζ) = 1 for every primitive m’th root of unity
ζ ∈ F2d . Since a′ = Gm · a mod (Xm − 1, 2), it then follows that a′(ζ) = a(ζ) for every primitive
m’th root of unity ζ ∈ F2d .

3. Since ãk = a′(k) mod (Φw, 2), then ãk(τ) = a′(k)(τ) for every primitive w’th root of unity τ ∈ F2d .

Putting all of these facts together, and using the assembly formula for a′ from the parts a′(k), we get for every
primitive m’th root of unity ζ ∈ F2d :

a(ζ) Fact 2= a′(ζ) =
u−1∑
k=0

ζk · a′(k)(ζ
u)

Facts 1,3
=

u−1∑
k=0

ζk · ãk(ζu)

Remark 1. If we use the delayed reduction technique from [12, Appendix E] then we can keep everything
relative to Xm − 1 and Xw − 1 and we do not need to rely on the smallness of the ring constants cm, cw.
The key-switching matrices will remain modulo Φm, however.

4 Homomorphic Computation in the Small Ring

So far we have shown how to break a big-ring ciphertext, encrypting some big-ring polynomial a ∈ Rm,2,
into a collection of u small-ring ciphertexts encrypting small-ring polynomials ã0, ã1, . . . , ãu−1 ∈ Rw,2, that
are “related” to the original plaintext polynomial a. Namely a can be constructed as a particular big-ring
linear combination of the ãk’s, a(X) =

∑
kX

k · ãk(Xu) mod (Φm, 2).
This, however, still falls short of our goal of speeding-up homomorphic computation by switching to

small-ring ciphertexts. Indeed we have not shown how to use the encryption of the ãk’s for further homo-
morphic computation. Following the narrative of SIMD homomorphic computation from [19, 12, 13, 14],
we view the big-ring plaintext polynomial a as an encoding in the big ring of several plaintext elements
from the extension field F2d (with d the order of 2 in (Z/mZ)∗). We therefore wish to obtain small-ring
ciphertexts encrypting small-ring polynomials that encode of the same underlying F2d elements.

One potential ”algebraic issue” with this goal, is that it may not always be possible to embed F2d

elements inside small-ring polynomials from Rw,2. Recall that the extension degree d is determined by
the order of 2 in (Z/mZ)∗. But the order of 2 in (Z/wZ)∗ may be smaller than d, in general it will be some
d′ that divides d. If d′ < d then we can only embed elements of the sub-field F2d′ in small-ring polynomials
from Rw,2, and not the F2d elements that we have encoded in the big-ring polynomial a. For most of this
section we only consider the special case where the order of 2 in both (Z/mZ)∗ and (Z/wZ)∗ is the same d.
We discuss possible extensions to the general case at the end of the section.

Even for the special case where the order of 2 in (Z/mZ)∗ and (Z/wZ)∗ is the same (and hence the
“plaintext slots” in the small ring contain elements from the same extension field as those in the big ring),
we still need to tackle the issue that big ring polynomials have more plaintext slots than small ring polyno-
mials. Specifically, big-ring polynomials have `m = φ(m)/d slots, whereas small-ring polynomials only
have `w = φ(w)/d slots. The solution here is simple: we just partition the slots in the original big-ring poly-
nomial a into `m/`w = φ(m)/φ(w) groups, each consisting of `w slots. For each group we then construct
a small-ring ciphertext, encrypting a small-ring polynomial that encodes the plaintext slots from that group.

One advantage of this approach is that if the original plaintext polynomial a was “sparsely populated”,
holding only a few plaintext elements in its slots, then we can reduce the number of small ring ciphertexts
that we generate to the bear minimum number needed to hold these few plaintext slots. A good example
for this scenario is the computation of the AES circuit in [14]: Since there are only 16 bytes in the AES

173

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

state, we only use 16 slots in the plaintext polynomial a. In this case, as long as we have at least 16 slots in
small-ring polynomials, we can continue working with a single small-ring ciphertext (as opposed to the u
ciphertexts that the technique of the previous section gives us).

4.1 Ring-Switching with Plaintext Encoding

Below we describe our method for converting the plaintext encoding between the different rings, for the
special case where the order of 2 is the same in (Z/mZ)∗ and (Z/wZ)∗. As explained in Section 2.2, each
plaintext slot in the big-ring polynomial is associated with a conjugacy class of 2 in (Z/mZ)∗ (equivalently,
an element in the quotient group Qm = (Z/mZ)∗/ 〈2〉), and similar association holds between plaintext
slots in small-ring polynomials and elements of the quotient group Qw = (Z/wZ)∗/ 〈2〉. We thus begin by
relating the structures and representations of these two quotient groups. Below let Tw = {t′1, . . . , t′`w} ⊆
(Z/wZ)∗ be a representative set for Qw. i.e., a set containing exactly one element from each conjugacy
class in (Z/wZ)∗, ordered arbitrarily.

Clearly, sincew dividesm then (Z/mZ)∗ consists of φ(m)/φ(w) copies of (Z/wZ)∗. That is, (Z/mZ)∗

can be partitioned into φ(m)/φ(w) disjoint sets, each of size φ(w), and each of them congruent modulo w
to (Z/wZ)∗. Moreover, it is easy to see that when the order of 2 is the same in (Z/mZ)∗ and (Z/wZ)∗

then this partitioning can be made to respect the conjugacy classes of 2. Namely for any t ∈ (Z/wZ)∗, we
put 2t mod m in the same part as t. Such conjugation-respecting partition of (Z/mZ)∗ can be constructed
greedily, adding conjugacy classes from (Z/mZ)∗ to the current part until we have a complete copy of
(Z/wZ)∗, then proceeding to the next part. Let S1, S2, S3, . . . be this partition of (Z/mZ)∗, so we have the
properties:

• Si ∩ Sj = ∅ for all i 6= j, and ∪iSi = (Z/mZ)∗;

• For all i we have |Si| = φ(w), and also Si mod w = {(s mod w) : s ∈ Si} = (Z/wZ)∗; and

• For all i we have 2Si mod m = {(2s mod m) : s ∈ Si} = Si.

Given the partition of (Z/mZ)∗ to Si’s and the ordered representative set Tw forQw, one way of getting an
ordered representative set Tm for Qm is to set

Tm =
{
t ∈ (Z/mZ)∗ : ∃ t′ ∈ Tw s.t. t ≡ t′ (mod w)

}
,

obviously this set Tm has exactly one element from each conjugacy class in every part Si. We can order it,
Tm = {t1, t2, . . . , t`m}, by taking all the elements from one part Si before taking any of the elements from
the next part Si+1, and among the elements from the same part use the ordering of Tw.

Finally, fixing a specific primitive m’th root of unity ζ ∈ F2d and the particular primitive w’th root
of unity τ = ζu, we let the j’th plaintext slot encoded in a ∈ Rm,2 be the evaluation a(ζtj) ∈ F2d , and
similarly the j’th plaintext slot encoded in a∗ ∈ Rw,2 is the evaluation a∗(τ t

′
j). The following lemma plays

an important role in our transformation:

Lemma 6. Let m = u · w for odd integers u,w, and denote by d the order of 2 in (Z/mZ)∗. Let ζ be a
primitive m’th root of unity in F2d , and denote τ = ζu, so τ is a primitive w’th root of unity.

Let S ⊂ (Z/mZ)∗ be a subset satisfying (a) |S| = φ(w) and S mod w = (Z/wZ)∗, and (b) S is closed
under multiplication by 2, S = 2S mod m. Then there exists a polynomial h ∈ Rw,2 such that for all j ∈ S,
it holds that h(τ j) = ζj .

174

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Proof. Clearly, since |S| = φ(w) then there exists a unique polynomial h over F2d of degree smaller than
φ(w) such that h(τ j) = ζj all j ∈ S. It is left to show only that h is a polynomial over the base field,
i.e. with 0-1 coefficients. To show this, note that by definition of h we have h(τ j) = ζj for all j ∈ S, and
moreover 2j ∈ S whenever j ∈ S (and hence h(τ2j) = ζ2j). Thus, we get for all j ∈ S

h(τ2j) = ζ2j = (ζj)2 = h(τ j)2.

Since S mod w = (Z/wZ)∗ then the set {τ j : j ∈ S} ranges over all the primitive w’th roots of unity in
F2d , so we have h(θ2) = h(θ)2 for every primitive w’th root of unity θ. It is a well-known fact that for an
arbitrary polynomial h(X) of degree smaller than φ(w) over F2d , if h(θ2) = h(θ)2 holds for every primitive
w’th root of unity θ ∈ F2d , then h is in fact a polynomial over the base field, i.e. a polynomial with 0-1
coefficients. This conclude the proof.

We are now ready to show how to convert a big-ring ciphertext c, encrypting some polynomial a ∈ Rm,2
into a single small-ring ciphertext that encrypt some other a∗ ∈ Rw,2, such that a∗ encodes all the plaintext
elements that were encoded in the plaintext slots corresponding to one of the Si’s (i.e., all the slots Tm ∩ Si
for some Si).

We begin by using the transformation from the previous section to construct from c the collection of u
small-ring ciphertexts c0, c1, . . . , cu−1 that encrypt the polynomials ã0, ã1, . . . , ãu−1 ∈ Rw,2, respectively,
where the ãk’s are related to the original a via the assembly formula a(X) =

∑
kX

k ·ãk(Xu) mod (Φm, 2).
Considering all of these 0-1 polynomials as members of F2d [X], and letting ζ ∈ F2d be a primitive root of
unity (so ζ is a root of [Φm mod 2] over F2d), the assembly formula implies in particular that

a(ζj) =
u−1∑
k=0

ζjk · ãk(ζju) =
u−1∑
k=0

ζjk · ãk(τ j) for every j ∈ Si

(where τ = ζu). Observing that Si satisfies the conditions of Lemma 6, let h ∈ Rw,2 be the polynomial
satisfying h(τ j) = ζj for all j ∈ Si. Further, let us denote hk = (hk mod (Φw, 2)) ∈ Rw,2. Since for all
j ∈ Si, τ j is a primitive w’th root of unity (and hence a root of [Φw mod 2] over F2d), then we get

hk(τ j) = h(τ j)k = ζjk for every j ∈ Si.

We now set c∗ =
∑u−1

k=0 hk · ck mod (Φw, q), and note that this is a linear combination of the valid cipher-
texts ck with low-norm coefficients. (The hk’s have low norm because they are 0-1 polynomials.) Using
the additive homomorphism of the cryptosystem (over the small ring Rw), this means that c∗ is still a valid
small-ring ciphertext, encrypting the polynomial a∗ =

∑u−1
k=0 hk · ãk mod (Φw, 2) ∈ Rw,2. Moreover, by

our definition of the hk’s we have that for all j ∈ Tm ∩ Si,

a∗(τ j) =
u−1∑
k=0

hk(τ j) · ãk(τ j) =
u−1∑
k=0

ζjk · ãk(ζju) = a(ζj).

Using our encoding conventions from the beginning of this section, this means that the content of the plain-
text slots of a∗ is exactly the content of the plaintext slots in a corresponding to Tm ∩ Si.

Ring-switching for “sparsely populated” ciphertexts. We mentioned that when the original big-ring ci-
phertext was sparsely populated, we would like to reduce it to only a small number of small-ring ciphertexts,
only as many as needed to hold all the plaintext slots that contain real data. If the full slots are not already
packed together in one (or a few) of the parts Si, then we can apply the slot permutation techniques of Gentry
et al. [12] to pack them as needed inside the big-ring ciphertext, before breaking it into the small-ring.

175

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

4.2 The General Case

The above treatment relies on the order of 2 in (Z/wZ)∗ and (Z/mZ)∗ being the same d. However, the
only part that relies on this fact was Lemma 6, where we needed it in order to prove that the polynomial
h is defined over the base field. In the general case this no longer holds, so although we can define the
polynomials hk (and therefore a∗) just as above, all of these polynomials will now have coefficients from
the extension field F2d rather than 0-1 coefficients.6 This is unavoidable in general, since we know that we
cannot always encode F2d elements as polynomials in the small ring Rw,2.

In principle there is no problem with using plaintext arithmetic over F2d [X]/Φw (rather than Rw,2 =
F2[X]/Φ(w)). Fixing a representation F2d = F2[Y]/G(Y), we can represent the plaintext polynomial
A(X) ∈ F2d [X]/Φw(X) as a bivariate polynomial A(X,Y) ∈ F2[X,Y]/(Φw(X), G(Y)), writing each
coefficient from F2d as a degree-(d− 1) polynomial in Y . This means that A can be written as A(X,Y) =∑d−1

i=0 ai(X)Y i with the ai’s 0-1 polynomials in Rw,2. An encryption of a A then consists of d small-ring
ciphertexts encrypting the ai’s, and arithmetic operations can be implemented naturally using our basic
operations on encryptions of the ai’s. However, this is likely to be quite inefficient, probably even less
efficient than keeping everything in the big ring.

We remark that in many settings, even though our plaintext slots can hold elements in F2d , we really only
use them to hold elements from a much smaller sub-field (e.g. bits or F28 elements). One could therefore
hope that the technique from above could be generalized to map the F2d plaintext slots over the big ring into
F2d′ slots over the small ring, such that if the content of the slots happened to already belong to the subfield
F2d′ then it will be copied intact. Finding such a generalization for every d′|d is an interesting open problem.

For the case where we use the plaintext slots to hold just bits, it turns out that we can use a slight
adaptation of the procedure for d′ = d. In this case, the transformation from above yields an encryption of a
polynomialA(X) over F2d , that contains in its slots whatever we had in the original big-ring polynomial. In
particular it means that A(τk) ∈ {0, 1} for every k, hence in this case A must be a 0-1 polynomial. So after
we compute an encryption of A (as a set of d encryptions as above), we can just discard all the ciphertexts
except the one corresponding to a0.

References

[1] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and
circular-secure encryption based on hard learning problems. In CRYPTO, volume 5677 of Lecture
Notes in Computer Science, pages 595–618. Springer, 2009.

[2] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In ICALP (1), volume
6755 of Lecture Notes in Computer Science, pages 403–415. Springer, 2011.

[3] Sanjeev Arora and Rong Ge. New algorithms for learning in the presence of errors. Manuscript, 2011.

[4] Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical GapSVP.
Manuscript available at http://eprint.iacr.org/2012/078.

[5] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption without
bootstrapping. In Innovations in Theoretical Computer Science (ITCS’12), 2012. Available at http:
//eprint.iacr.org/2011/277.

6Sometimes it is possible to show that the coefficients are drawn from a smaller extension field.

176

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

[6] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE and secu-
rity for key dependent messages. In Advances in Cryptology - CRYPTO 2011, volume 6841 of Lecture
Notes in Computer Science, pages 505–524. Springer, 2011.

[7] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS’11. IEEE Computer Society, 2011.

[8] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty Computation from
Somewhat Homomorphic Encryption. Available at http://eprint.iacr.org/2011/535.

[9] Leo Ducas and Alain Durmus. Ring-LWE in Polynomial Rings. To appear in PKC 2012, manuscript
availabale from http://eprint.iacr.org/2012/235

[10] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In EUROCRYPT, volume 4965 of
Lecture Notes in Computer Science, pages 31–51. Springer, 2008.

[11] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
STOC, pages 169–178. ACM, 2009.

[12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog overhead.
In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 446-464, 2012. Full
version at http://eprint.iacr.org/2011/566, 2012.

[13] Craig Gentry, Shai Halevi, and Nigel P. Smart. Better bootstrapping for fully homomorphic encryption.
To appear PKC 2012. http://eprint.iacr.org/2011/680, 2011.

[14] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit.
Manuscript, 2012.

[15] Adriana Lòpez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-Fly Multiparty Computation on
the Cloud via Multikey Fully Homomorphic Encryption In STOC 2012.

[16] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 1–23, 2010.

[17] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for Ring-LWE cryptography.
Manuscript, 2012

[18] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption. In
CT-RSA, volume 6558 of Lecture Notes in Computer Science, pages 319–339. Springer, 2011.

[19] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Manuscript at
http://eprint.iacr.org/2011/133, 2011.

177

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Field Switching in BGV-Style
Homomorphic Encryption

Craig GENTRY a Shai HALEVI a Chris PEIKERT b and Nigel P. SMART c

a IBM T.J. Watson Research Center
b Georgia Institute of Technology

c University of Bristol

Abstract. The security of contemporary homomorphic encryption schemes

over cyclotomic number field relies on fields of very large dimension. This
large dimension is needed because of the large modulus-to-noise ratio

in the key-switching matrices that are used for the top few levels of the
evaluated circuit. However, a smaller modulus-to-noise ratio is used in
lower levels of the circuit, so from a security standpoint it is permissible

to switch to lower-dimension fields, thus speeding up the homomorphic
operations for the lower levels of the circuit. However, implementing
such field-switching is nontrivial, since these schemes rely on the field

algebraic structure for their homomorphic properties.
A basic ring-switching operation was used by Brakerski, Gentry and

Vaikuntanathan, over rings of the form Z[X]/(X2n
+ 1), in the context

of bootstrapping. In this work we generalize and extend this technique
to work over any cyclotomic number field, and show how it can be used
not only for bootstrapping but also during the computation itself (in

conjunction with the “packed ciphertext” techniques of Gentry, Halevi
and Smart).

Keywords. Homomorphic Encryption, Ring-LWE

1. Introduction

The last few years have seen a rapid advance in the state of fully homomorphic
encryption, yet despite these advances, the existing schemes are still too expensive
for many practical purposes. In this paper we make another step forward in making
such schemes more efficient. In particular, we present a technique for reducing
the dimension of the ciphertexts involved in the homomorphic computation of
the lower levels of a circuit. Our techniques apply to homomorphic encryption
schemes over number fields, such as the schemes of Brakerski et al. [4,5,3], as well
as the variants due to López-Alt et al. [14] and Brakerski [2].

The most efficient variants of these schemes work over number fields of the form
Q(ζ) ∼= Q[X]/F (X), and in all of them the field dimension n, which is the degree
of F (X), must be set large enough to ensure security: to support homomorphic
evaluation of depth-L circuits with security parameter λ, the schemes require
n = Ω̃(L · polylog(λ)), even under the strongest plausible hardness assumptions

178

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

for their underlying computational problems (e.g., ring-LWE [15]).1 In practice,
the field dimension for moderately deep circuits can easily be many thousands.
For example, to be able to evaluate AES homomorphically, Gentry et al. [13] used
circuits of depth L ≥ 50, with a corresponding field dimension of over 50,000.

As homomorphic operations are performed, the ratio of noise to modulus
in the ciphertexts grows. Consequently, it becomes permissible to use lower-
dimension fields, which can speed up further homomorphic computations. However,
since we must start with ciphertexts from a high-dimensional field, we need
a method for transforming them into small-field ciphertexts that encrypt the
same (or related) messages. Such a “field switching” procedure was described
by Brakerski et al. [3], in the context of reducing the ciphertext size prior to
bootstrapping. The procedure in [3], however, is specific to number fields of the
form K2k = Q[X]/(X2k−1

+ 1), i.e., cyclotomic number fields with power-of-2
index. Moreover, by itself it cannot be combined with the “packed evaluation”
techniques from [18,11]. (These techniques use Chinese-remainder encoding to
“pack” many plaintext values into each ciphertext, and then each homomorphic
operation is applied to all these values at once. For our purposes, we must consider
the effect of the field-switching operation on all these plaintext values.) Extending
and improving the field switching procedure is the goal of our work.

1.1. Our Contribution

We present a general field-switching transformation that can be applied to any
cyclotomic number field K = Q(ζm) ∼= Q[X]/Φm(X) for arbitrary m (where
Φm(X) ∈ Z[X] is the mth cyclotomic polynomial), and works well in conjunction
with packed ciphertexts. For any divisor m′ of m, our procedure takes as input a
“big-field ciphertext” c over K that encrypts many plaintext values, and outputs a
“small-field ciphertext” c′ over K ′ = Q(ζm′) ∼= Q[X]/Φm′(X) ⊆ K that encrypts a
certain subset of the input plaintext values.2

Our transformation relies heavily on the algebraic properties of the cyclotomic
number fields K, K ′ and their respective rings of algebraic integers R, R′. In par-
ticular, we use the interpretation of K as an extension field of K ′, and relationships
between their various embeddings into the complex numbers C; the factorization
of integer primes in R and R′; and the trace function TrK/K′ that maps elements
in K to the subfield K ′. With these tools in hand, the transformation itself is
quite simple, and consists of the following three steps:

1. We first apply a key-switching operation to obtain a big-field ciphertext
over K with respect to a small-field secret key s′ ∈ K ′ ⊂ K. Proving the
security of this operation relies on a novel way of embedding the ring-LWE
problem over K ′ into K, which may be of independent interest.

1The schemes from [3,2] can also obtain security by using high-dimensional vectors over

low-dimensional number fields. But their most efficient variants use low-dimensional vectors over

high-dimensional fields, since the runtime of certain operations is cubic in the dimension of the
vectors.

2More generally, the output ciphertext can even encrypt certain linear functions of the input

plaintext values.

179

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

2. Next, we multiply the resulting ciphertext by a certain element of the
ring R ⊂ K, which depends only on the subset (or other function) of the
plaintext values that we want to include in the output ciphertext.

3. Finally, we take the trace of the K-elements in the ciphertext, thus obtaining
an output ciphertext over the subfield K ′, which decrypts under the secret
key s′ ∈ K ′ to the desired plaintext values.

We note that in addition to being simpler and more general than the transformation
from [3], our transformation is also more efficient even when applied in the special
case of K2k : when switching from K2k to K2k′ , the transformation from [3] includes
a step where the size of the ciphertext (and hence the time that it takes to perform
operations) is expanded by a factor of 2k−k

′
. Our transformation does not need

that extra step, hence saving this extra factor in performance.
In Section 2 below we recall the algebraic concepts needed for our transforma-

tion, and then the transformation itself it described in Section 3.

2. Preliminaries

This work uses a number of algebraic concepts and notations; to assist the reader
we summarize the most important ones in Table 1. For any positive integer u we
let [u] = {0, . . . , u− 1}. Throughout this work, for a coset z ∈ Zq = Z/qZ we let
[z]q ∈ Z denote its canonical representative in Z ∩ [−q/2, q/2). One can also view
[·]q as the operation that takes an arbitrary integer z and reduces it modulo q into
the interval [−q/2, q/2).

2.1. Algebraic Background

Recall that an ideal I in a commutative ring R is a nontrivial (i.e., I 6= ∅ and
I 6= {0}) additive subgroup which is closed under multiplication by R. For ideals
I, J , their sum is the ideal I + J = {a+ b : a ∈ I, b ∈ J}, and their product IJ is
the ideal consisting of all sums of terms ab for a ∈ I, b ∈ J . An R-ideal p is prime
if ab ∈ p (for some a, b ∈ R) implies a ∈ p or b ∈ p (or both). All the rings we
work with have unique factorization of ideals into powers of prime ideals, and a
Chinese Remainder Theorem.

A fractional ideal is, informally, an ideal with a denominator. Formally, letting
K be the field of fractions of R, a fractional ideal of R is a subset I ⊆ K for
which there exists a denominator d ∈ R such that dI ⊆ R is an ideal in R. For
an R-ideal I, the quotient ring RI = R/I consists of the residue classes a+ I for
all a ∈ R, with the ring operations induced by R. More generally, for a (possibly
fractional) ideal I and an ideal J ⊆ R, the quotient IJ = I/IJ is an additive
group, and an R-module, with addition and multiplication operations induced by
R. We often write a mod I instead of a + I to denote the residue classes a + I,
and we write a = b (mod ∗)I to denote that a, b belong to the same residue class,
i.e., a+ I = b+ I.

For computational purposes, all of the rings and fields we work with have
efficient representations of their elements, and efficient (i.e., polynomial time in the
bit length of the arguments) algorithms for all the operations we use. For quotients

180

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Notations Description

p, Fpd The (prime) modulus of the cryptosystem’s native plaintext

space, and the finite field of order pd.

m,m′,
n = ϕ(m), n′ = ϕ(m′)

The indices of the cyclotomic fields, where m′|m. We switch
from the mth to the m′th cyclotomic number field, which are
of degree n, n′ (respectively) over the rationals.

m̄, d, e, f ,

m̄′, d′, e′, f ′
m̄ is the largest divisor of m that is coprime with p; d is the

order of p in Z∗m̄; e = ϕ(m)/ϕ(m̄); and f = ϕ(m̄)/d. Similarly
for m̄′, d′, e′, f ′.

ζm, ζm′ Abstract elements of order m,m′ (respectively) over the ratio-
nals.

K = Q(ζm), K′ = Q(ζm′),

R = Z[ζm], R′ = Z[ζm′]

The cyclotomic number fields and their rings of integers.

σ : K → Cn

σ′ : K′ → Cn′
The canonical embeddings of K,K′, which endow the number

fields with a geometry.

TrK/K′ : K → K′ The trace function, which is the sum of the automorphisms
of K that fix K′ pointwise.

R∨, (R′)∨ The codifferent (or dual) fractional ideals of R and R′ (respec-
tively), defined as R∨ = {a : TrK/Q(aR) ⊆ Z} and similarly

for (R′)∨.

G = Z∗m̄/〈p〉,
G′ = Z∗

m̄′/〈p〉
The multiplicative quotient groups that characterize the prime-
ideal factorizations of pR, pR′, respectively.

g : G→ G′ The (f/f ′)-to-1 homomorphism defined via i 7→ i mod m̄′.

Table 1. Summary of the main algebraic notations.

A/B, cosets are represented using a fixed set of distinguished representatives. In
this work we largely ignore the details of concrete representations and algorithms,
and refer to [16] for fast, specialized algorithms for working with the cyclotomic
fields and rings that we use in this work.

2.1.1. Cyclotomic Fields and Rings

For a positive integer m, let K = Q(ζm) be the mth cyclotomic number field, where
ζm is an abstract element of order m. (In particular, we do not view ζm as any
particular root of unity in C.) The minimal polynomial of ζm is the mth cyclotomic
polynomial Φm(X) =

∏
i∈Z∗m

(X − ηim) ∈ Z[X], where ηm = exp(2π
√
−1/m) ∈ C

is the principal mth complex root of unity, and the roots ηim ∈ C range over all
the primitive complex mth roots of unity. Therefore, K is a field extension of
degree n = ϕ(m) over Q, and is isomorphic to the polynomial ring Q[X]/Φm(X)
by identifying ζm with X. (There are other representations of K as well, and
nothing in this work depends on a particular choice of representation.) The ring
of (algebraic) integers in K, called the mth cyclotomic ring, is R = Z[ζm], which
is isomorphic to Z[X]/Φm(X).

The field extensionK/Q has n automorphisms τi : K → K that fix Q pointwise,
which are characterized by τi(ζm) = ζim for i ∈ Z∗m. (Equivalently, τi(a(X)) =

181

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

a(Xi) mod Φm(X) when viewing K as Q[X]/Φm(X).) Because K/Q is Galois (i.e.,
the number of automorphisms equals the dimension of the extension), the Q-linear3

(field) trace TrK/Q : K → Q can be defined as the sum of the automorphisms:
TrK/Q(a) =

∑
i∈Z∗m

τi(a) ∈ Q. (See below for another formulation.)
Similarly to the automorphisms τi (which map K to itself), there are n

concrete ways of viewing K as a subfield of the complex numbers C. Namely,
there are n injective ring homomorphisms from K to C that fix Q pointwise,
called embeddings, which are denoted σi : K → C for i ∈ Z∗m and characterized by
σi(ζm) = ηim. The embeddings may be seen as the compositions of the abstract
automorphisms τi with the complex embedding that identifies ζm ∈ K with
ηm ∈ C. Therefore, the field trace can also be written as the sum of the embeddings,
as TrK/Q(a) =

∑
i∈Z∗m

σi(a) ∈ Q. The canonical embedding σ : K → Cn is the
concatenation of all the complex embeddings, i.e., σ(a) = (σi(a))i∈Z∗m , and it
endows K with a canonical geometry. In particular, define the Euclidean (`2) and
`∞ norms on K as

‖a‖ := ‖σ(a)‖ =
√∑

i

|σi(a)|2 and ‖a‖∞ := ‖σ(a)‖∞ = max
i
|σi(a)|,

respectively. Note that ‖a · b‖ ≤ ‖a‖∞ · ‖b‖ and ‖a · b‖∞ ≤ ‖a‖∞ · ‖b‖∞ for any
a, b ∈ K, because the σi are ring homomorphisms.

2.1.2. Towers of Cyclotomics

For any positive integer m′ dividing m, let K ′ = Q(ζm′) and R′ = Z[ζm′] be
the m′th cyclotomic field and ring (of dimension n′ = ϕ(m′) over Q and Z),
respectively. As above, the field extension K ′/Q has n′ = ϕ(m′) automorphisms
τ ′i′ : K

′ → K ′ and n′ complex embeddings σ′i′ : K
′ → C (for i′ ∈ Z∗m′), the latter

of which define the canonical embedding σ′ : K ′ → Cn′ .
We will use extensively the fact that K is a field extension of K ′, and R is

a ring extension of R′, both of dimension n/n′ (because K/Q and K ′/Q have
dimensions n and n′, respectively). That is, K ′ and R′ may respectively be seen as
a subfield of K = K ′(ζm) and a subring of R = R′[ζm], under the ring embedding
that identifies ζm′ with ζ

m/m′

m . Moreover, the field extension K/K ′ is Galois, i.e.,
it has n/n′ automorphisms that fix K ′ pointwise, which are precisely those τi for
which i = 1 (mod ∗)m′. This follows from the fact that

τi(ζm′) = τi(ζm/m
′

m) = ζ(m/m′)i mod m
m = ζi mod m′

m′ , (1)

and that reducing modulo m′ induces an (n/n′)-to-1 mapping from Z∗m to Z∗m′ .
The K ′-linear (intermediate) trace function TrK/K′ : K → K ′ may be defined as
the sum of these automorphisms:

TrK/K′(a) =
∑

i=1 (mod ∗)m′
τi(a).

3A function f is S-linear if f(a+ b) = f(a) + f(b) and f(s · a) = s · f(a) for all s ∈ S and all

a, b.

182

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

A standard fact from field theory is that the intermediate trace satisfies TrK/Q =
TrK′/Q ◦TrK/K′ . Another standard fact is that TrK/K′ is a “universal” K ′-linear
function, in that any such function L : K → K ′ can be expressed as L(a) =
TrK/K′(r · a) for some fixed r ∈ K.

Similarly to Equation (1), for any i ∈ Z∗m the embedding σi coincides with
σ′i mod m′ on the subfield K ′. Using this fact we get the following relation between
the intermediate trace and the complex embeddings of K and K ′.

Lemma 2.1. For any a ∈ K and i′ ∈ Z∗m′ ,

σ′i′(TrK/K′(a)) =
∑

i=i′ (mod ∗)m′
σi(a).

In matrix form, σ′(TrK/K′(a)) = P · σ(a), where P is the ϕ(m′)-by-ϕ(m) matrix
(with rows indexed by i′ ∈ Z∗m′ and columns by i ∈ Z∗m) whose (i′, i)th entry is 1
if i = i′ (mod ∗)m′, and is 0 otherwise.

Proof. Fix an arbitrary k ∈ Z∗m such that k = i′ (mod ∗)m′. Then because σ′i′
coincides with σk on K ′, and by definition of TrK/K′ and linearity of σk, we have

σ′i′(TrK/K′(a)) = σk([)
] ∑
j=1 (mod ∗)m′

τj(a)

=
∑

j=1 (mod m′)

σk(τj(a)) =
∑

i=i′ (mod m′)

σi(a),

where for the last equality we have used σk◦τj = σk·j and k ∈ Z∗m, so i = k ·j ∈ Z∗m
runs over all indices congruent to i′ modulo m′ when j ∈ Z∗m runs over all indices
congruent to 1 modulo m′.

An immediate corollary is that the intermediate trace maps short elements of K
to short elements of K ′.

Corollary 2.2. For any a ∈ K, we have ‖TrK/K′(a)‖ ≤ ‖a‖ ·
√
n/n′.

Proof. By Lemma 2.1, we have σ′(TrK/K′(a)) = P · σ(a). The rows of P are
orthogonal (since each column of P has exactly one nonzero entry), and each has
Euclidean norm exactly

√
n/n′.

2.1.3. Prime Splitting and Plaintext Arithmetic

We now describe the factorization (“splitting”) of prime integers in cyclotomic
rings, how it allows for encoding and operating on several finite-field elements,
and the particular functions induced by the (intermediate) trace function TrK/K′ .
Further details and proofs can be found in many texts on algebraic number theory,
e.g., [19].

183

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

2

p′1

p1 p15 p22

p′3

p3 p17 p31

Figure 1. Factorization of 2 ∈ Z into distinct prime ideals p′
i′ in R′ = Z[ζ7], and pi in R = Z[ζ91].

The displayed subscripts indicate a choice of representatives from the cosets of the multiplicative

subgroups 〈2〉 ⊆ Z∗7 and 〈2〉 ⊆ Z∗91, which have orders d′ = 3 and d = 12, respectively.

Prime splitting. Let p ∈ Z be a prime integer. In the mth cyclotomic ring
R = Z[ζm] (which has degree n = ϕ(m) over Z), pR is often not a prime ideal, but
instead factors into prime ideals. To describe how, we first need to introduce some
notation. Divide out all the factors of p from m, writing m = m̄ ·pk where p|m̄. Let
e = ϕ(pk), and let d be the multiplicative order of p modulo m̄ (i.e., in Z∗m̄); note
that d divides ϕ(m̄) = n/e. (The values d, e are respectively called the inertial
degree and ramification index of p in R.) Let G = Z∗m̄/〈p〉, the multiplicative
quotient group Z∗m̄ modulo the order-d subgroup generated by p, so G has order
f = ϕ(m̄)/d = n/(de). For an element i ∈ G of this group, we sometimes write
i〈p〉 to emphasize that it is a coset, and (slightly abusing notation) also let i ∈ Z∗m̄
denote some element of the coset. The ideal pR factors as

pR =
∏
i∈G

pei , (2)

where the pi are distinct prime ideals in R, all having norm |R/pi| = pd. These
are called the prime ideals lying over p in R. Each quotient ring R/pi is therefore
isomorphic to the finite field Fpd . (In fact there are exactly d isomorphisms between
them, because Fpd has d automorphisms.)

Concretely, the prime ideals pi, and the isomorphisms between R/pi and (some
canonical representation of) Fpd , are as follows. Let ωm̄ denote some arbitrary
element of order m̄ in Fpd ; such an element exists because the multiplicative group
F∗pd is cyclic and has order pd−1 = 0 (mod ∗)m̄. For any i〈p〉 ∈ G, the prime ideal
pi is the kernel of the ring homomorphism hi : R→ Fpd defined by hi(ζm) = ωim̄.
It is immediate that this kernel is an ideal; furthermore, it is invariant under the
choice of representative i from the coset i〈p〉, because hip(r) = hi(r)p for any
r ∈ R (since (a+ b)p = ap + bp for any a, b ∈ Fpd). Because pi is the kernel of hi,
we have the induced isomorphism hi : R/pi → Fpd ; indeed, we have d distinct such
isomorphisms, one for each element of the coset i〈p〉.

Looking ahead, the isomorphisms hi (for appropriate choices of representa-
tives i) will be used to define several “plaintext slots” in a homomorphic cryp-
tosystem, i.e., an encoding of f plaintext elements of Fpd as a single element of
the cryptosystem’s plaintext ring R/2R.

Splitting in cyclotomic towers. Of course, the above derivation also applies to the
ideals that lie over p in R′ = Z[ζm′] ⊆ R. For each such ideal p′, we next describe
the factorization of p′R into prime ideals in R. These are the prime ideals that lie

184

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

over p′ in R, and since “lying over” is an associative property, they also lie over p
(as illustrated in Figure 1).

Let m̄, d, e, f,G and the prime ideals pi for i ∈ G be as above for R, and
define m̄′, d′, e′, f ′, G′ = Z∗m̄′/〈p〉 and prime ideals p′i′ for i′ ∈ G′ similarly for R′.
Note that d′|d, e′|e, and f ′|f , and that the natural homomorphism g : G → G′

defined via i 7→ i mod m̄′ is surjective and (f/f ′)-to-1. Then for every i′ ∈ G′, the
factorization of p′i′R is

p′i′R =
∏

i∈g−1(i′)

p
e/e′

i =
∏

i=i′ mod m̄

p
e/e′

i .

Therefore, there are f/f ′ prime ideals of R lying over each p′i′ , and taken over all
i′ ∈ G′ they partition the prime ideals of R lying over p.

Plaintext encoding. Let F = Fpd and F′ = Fpd′ ⊆ F. By the above and the
Chinese Remainder Theorem, the natural ring homomorphisms yield the following
(where ∼= denotes a ring isomorphism):

R′/pR′ → R′/([)
] ∏
i′∈G′

p′i′
∼=
⊕
i′∈G′

R′/p′i′
∼= F′f

′

R/pR→ R/([)
]∏
i∈G

pi = R/([)
] ∏
i′∈G′

∏
i∈g−1(i′)

pi ∼=
⊕
i′∈G′

⊕
i∈g−1(i′)

R/pi ∼= (Ff/f
′
)f
′
.

(Note that the first homomorphism in each line is surjective, but not necessarily
an isomorphism, due to possible ramification.) Following [18,3,11,12,13], in the
context of homomorphic encryption the above morphisms allow for encoding a
vector of f ′ individual elements of F′ (respectively, f elements of F) into the
plaintext ring R′p = R/pR′ (resp., Rp = R/pR), so that a single homomorphic
addition and multiplication acts component-wise on the underlying vectors of field
elements.

Trace operations. As mentioned in the introduction, our field-switching technique
is built around applying the trace function TrK/K′ to the elements of a big-field
ciphertext, thus obtaining a related small-field ciphertext. Since we use “packed”
ciphertexts that encrypt arrays of elements in F via the above isomorphisms, we
need to understand the effect of the trace function on those F-elements.

The remainder of this subsection is therefore devoted to characterizing the
functions (Ff/f ′)f ′ → F′f ′ that can be induced by TrK/K′ . More specifically, we
determine exactly which functions

L : R/(
∏
i∈G

pi)→ R′/(
∏
i′∈G′

p′i′)

can be expressed as L(a) = TrK/K′(r · a) for some fixed r ∈ K. It turns out that
by fixing an appropriate choice of isomorphisms between the quotient rings and

185

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

finite fields above, we can obtain the concatenation of any f ′ individual F′-linear
functions Ff/f ′ → F′ (see Corollary 2.5 for a precise statement).4

As already noted, the isomorphisms between the quotient rings and finite fields
are not necessarily unique; they are determined by the choice of representatives
i′, i of the cosets i′〈p〉 ⊆ Z∗m̄′ and i〈p〉 ⊆ Z∗m̄ (respectively), and roots of unity
ωm̄′ ∈ F′ and ωm̄ ∈ F. For our purposes, it is important to choose these in a
“consistent” fashion, as follows. First, given ωm̄, let ωm̄′ = ω

m̄/m̄′

m̄ ∈ F′. (Note that
all ϕ(m̄′) elements of order m̄′ in F are indeed in the subfield F′.) Next, let ` ≥ 0
be the integer exponent such that m/m′ = (m̄/m̄′) · p`. Then given representative
i′ of i′〈p〉 ∈ G′, choose representative i for each i〈p〉 ∈ g−1(i′) so that p` · i = i′

(mod ∗)m̄′. Note that such i always exists, by definition of the quotient group G
and the mapping g. As explained above, these choices fix particular isomorphisms

hi : R/pi → F (for i〈p〉 ∈ G) and h′i′ : R
′/p′i′ → F′ (for i′〈p〉 ∈ G′),

which are characterized by hi(ζm) = ωim̄ and h′i′(ζm′) = ωi
′

m̄′ .
Next, for each i′ ∈ G′ denote the product of prime ideals lying over p′i′ in R

(called the radical of p′i′R) by p̃i′ =
∏
i∈g−1(i′) pi, and define the ring isomorphism

h̃i′ : R/p̃i′ → Ff/f
′
, h̃i′(a) = ([)

]
hi(a mod pi)i∈g−1(i′),

where Ff/f ′ denotes the product ring with coordinate-wise operations.
In Lemma 2.4 below, we show that under the above isomorphisms, the F′-

linear functions L̄ : Ff/f ′ → F′ correspond bijectively with the R′-linear functions
L : R/p̃i′ → R′/p′i′ , for all i′ ∈ G′. Recall that any function of the latter type
can be expressed as L(a) = TrK/K′(r · a) for some fixed r ∈ K. Conversely,
every function L (with domain and range as above) that can be expressed as
L(a) = TrK/K′(r · a) is clearly R′-linear, so it always induces an F′-linear function.
The heart of Lemma 2.4 is the following fact.

Lemma 2.3. Let p′i′ for some i′ ∈ G′ be a prime ideal lying over p in R′, and let p̃i′

be the radical of pi′R. Let r′ ∈ R′ ⊆ R be arbitrary, and let s = h′i′(r
′ mod p′i′) ∈

F′ ⊆ F. Then

h̃i′(r′ mod p̃i′) = (s, s, . . . , s) ∈ F′f/f
′
,

i.e., every entry of h̃i′(r′ mod p̃i′) is equal to h′i′(r
′ mod p′i′).

Proof. Recall that under our choice of isomorphisms, ωm̄′ = ω
m̄/m̄′

m̄ ∈ F′ is of order
m̄′, and p` ·i = i′ mod m̄′, where ` ≥ 0 is the integer satisfying m/m′ = (m̄/m̄′) ·p`.
Also recall that

h̃i′(r′ mod p̃i′) =
(
hi(r′ mod pi)

)
i∈g−1(i′)

.

4Note that any F′-linear function L : Ff/f ′ → F′ can always be expressed as L(~a) =

TrF/F′ (〈~d,~a〉) for some fixed ~d ∈ Ff/f ′ , where 〈·, ·〉 is the usual inner product and TrF/F′ denotes

the (F′-linear) trace of the field extension F/F′.

186

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

For the representative i of each coset i〈p〉 ∈ g−1(i′), the entry hi(r′ mod pi) is
obtained by mapping ζm to ωim̄, and hence also mapping ζm′ = ζ

m/m′

m = ζ
(m̄/m̄′)·p`

m

to

ω
(m̄/m̄′)·p`·i
m̄ = ωp

`·i
m̄′ = ωi

′

m̄′ ∈ F′,

which is exactly the mapping done by h′i′ . Since r′ ∈ R′ = Z[ζm′], this proves the
claim.

Lemma 2.4. Let i′ ∈ G′ be arbitrary, and let p′ = p′i′ and p̃ = p̃i′ . Then un-
der the isomorphisms h′ = h′i′ and h̃ = h̃i′ defined above, the F′-linear func-
tions L̄ : Ff/f ′ → F′ are in bijective correspondence with the R′-linear functions
L : R/p̃→ R′/p′.

Proof. For any F′-linear function L̄, we claim that L = h′
−1 ◦ L̄ ◦ h̃ is the corre-

sponding R′-linear function. To see this, note that by Lemma 2.3 and the fact
that h̃ is a ring homomorphism, for any r′ ∈ R′ and a ∈ R/p̃ we have

h̃(r′ · a) = h̃(r′ mod p̃)� h̃(a) = h′(r′ mod p′) · h̃(a) ∈ Ff/f
′
,

where multiplication � in F′f ′ and Ff is coordinate-wise. By F′-linearity of L̄ and
the fact that h′ is a ring homomorphism, we have

L(r′ · a) = h′
−1(L̄(h̃(r′ · a))) = h′

−1(
h′(r′ mod p′) · L̄(h̃(a))

)
= r′ ·L(a) ∈ R′/p′,

as desired. The other direction proceeds essentially identically, with L̄ = h′ ◦ L ◦
h̃−1.

An application of the Chinese Remainder Theorem with the prime ideals p̃i′

in R, combined with Lemma 2.4, immediately yields the following corollary.

Corollary 2.5. Let p′ =
∏
i′∈G′ p

′
i′ and p =

∏
i′∈G′ p̃i be the radicals of pR′ and pR,

respectively. Then under the isomorphisms {hi′}i′∈G′ and {h̃i′}i′∈G′ defined above,
the R′-linear functions L : R/p→ R′/p′ are in bijective correspondence with the
functions L̄ : (Ff/f ′)f ′ → F′f ′ of the form

L̄(∗)(~ai′
)
i′∈G′ =

(
L̄i′(~ai′)

)
i′∈G′ ,

where every L̄i′ : Ff/f ′ → F′ is F′-linear.

We note that given a function L̄ : (Ff/f ′)f ′ → F′f ′ as in Corollary 2.5, we can
efficiently find an R′-linear function L̂ : R→ R′ that induces the corresponding L:
first, fix an arbitrary R′-basis B = {bj} of R. Then, using the isomorphisms h′i′
and h̃i′ , the values of L(bj mod p) ∈ R′/p′ are determined by L̄, and uniquely
define L by R′-linearity. We can then define each L̂(bj) ∈ R′ to be an arbitrary
representative of L(bj mod p); these choices uniquely determine L̂, by R′-linearity.
Finally, we can represent L̂ explicitly in trace form as L̂(a) = TrK/K′(r · a) for

187

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

some r ∈ K: recalling that K is a vector space over K ′ with K ′-basis B, we have
a full-rank system of linear equations L̂(bj) = TrK/K′(r · bj) ∈ K ′, which we can
solve to obtain r ∈ K.

Looking ahead, in our application to homomorphic computation we will have
certain linear functions that we want to evaluate (e.g., projection functions), and
we will do so by finding the corresponding constant r, then multiplying by r and
taking the trace (see Section 3.3 for further details). To apply these steps in the
context of a homomorphic encryption scheme, we need the notion of the dual of
the ring of integers, described next.

2.1.4. Duality

An important and useful object in K is the dual of R (also known as the codifferent
of K), defined as

R∨ = {a ∈ K : TrK/Q(aR) ⊆ Z} ⊇ R.

Because TrK/Q = TrK′/Q ◦TrK/K′ , it is easy to verify that also R∨ =
{a ∈ K : TrK/K′(aR) ⊆ R′∨}. Therefore, we have the convenient equation

TrK/K′(R∨) = R′∨. (3)

Note that by contrast, frequently TrK/K′(R) does not equal R′, but is instead some
proper ideal of it.5 Many other algebraic and geometric advantages of working
with R∨ instead of R are discussed in [15,16].

The codifferent is a principal fractional ideal, i.e., R∨ = t−1R for some t ∈ R
(which is not unique). Therefore, division by t induces a bijection from R to R∨,
and from any quotient ring Rp = R/p to R∨p = R∨/pR∨. Although the target
objects are not rings (because R∨ · R∨ 6⊆ R∨), they are R-modules, and the
bijections are R-module isomorphisms.

Of course, we also have R′∨ = t′−1R′ for some t′ ∈ R′. By Equation (3) and
K ′-linearity of the trace, for any ideal p in R′, we have

TrK/K′(R∨p) = TrK/K′(R∨/pR∨) = R′∨/pR′∨ = R′∨p .

In the previous subsection we considered R′-linear functions L : R → R′

(or their induced functions Rp → R′p), which can always be expressed as
L(a) = TrK/K′(r∨ · a) for some fixed r∨ ∈ K. Typically, r∨ is not in R because
TrK/K′(R) 6= R′, but it is easy to see that r∨ ∈ t′R∨ always, because if not, then
TrK/K′(r∨R) 6⊆ t′R′∨ = R′. For the purposes of our field-switching procedure, it
will be more convenient to instead work with corresponding R′-linear functions
from R∨ to R′∨, which can be represented in trace form by elements of R. Namely,
for an R′-linear function L : R → R′, where L(a) = TrK/K′(r∨ · a) for some
r∨ ∈ t′R∨, we will consider the corresponding function

L∨ : R∨ → R′∨, L∨(a∨) = L(t · a∨)/t′ = TrK/K′((t/t′)r∨ · a∨) = TrK/K′(r · a∨),

5This is easily seen, e.g., for R = Z[ζ2k] and R′ = Z, where Tr(R) = 2k−1R′ because

Tr(1) = 2k−1 and Tr(ζj

2k) = 0 for j = 1, . . . , 2k−1 − 1.

188

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

which is represented by r = (t/t′)r∨ ∈ R.
Following [16], we extend the operation [·]q to R∨p by fixing a particular

Z-basis of R∨ (and Zq-basis of R∨q), called the decoding basis, and representing
the argument as a Zq-combination of the basis vectors and applying the [·]q
operation to each of its coefficients. It is shown in [16, Section 6.2] that every
sufficiently short (as always, under the canonical embedding) e ∈ R∨ is indeed the
“canonical” representative of its coset modulo qR∨. Specifically, if ‖e‖ < q/(2

√
n)

then [e mod qR∨]q = e.

2.1.5. Good Bases of R and R∨

We now have almost all the ingredients we need to describe the homomorphic
cryptosystem and our field-switching transformation. The final background mate-
rial we need concerns the geometry of R as a module over R′ (respectively, R∨ as
a module over R′∨). Specifically, we construct certain “good” bases of the ring R
and its dual R∨ in terms of R′ and R′∨ (respectively), and prove some of their
useful geometrical properties. This (somewhat technical) material is used only in
Section 3.1, where we prove the hardness of ring-LWE over K with secret in R′,
assuming its hardness over K ′ with secret in R′.

Since K is a vector space of dimension n/n′ over K ′, the field K has a K ′-
basis (which is not unique), i.e., a set of n/n′ elements of K that are linearly
independent over K ′, so that every element of K can be represented uniquely as a
K ′-linear combination of the basis elements. Similarly, an R′-basis of R is a set
of n/n′ elements in R, such that every element of R can be represented uniquely
as an R′-linear combination of the basis elements. An R′∨-basis of R∨ is defined
analogously.

We wish to construct an R′-basis of R, and a corresponding dual R′∨-basis
of R∨ (any of which are K ′-bases of K), which are “good” in the following sense:
for any vector of K ′-coefficients (with respect to the basis) which are short under
σ′, the corresponding K-element is also short under σ. More formally, represent
an ordered K ′-basis of K as a vector ~b = (bj) ∈ Kn/n′ , and similarly for an
arbitrary vector of K ′-coefficients ~a = (aj) ∈ K ′(n/n

′), which defines the K-element
a = 〈~a,~b〉 =

∑
j aj · bj . Then by linearity, the basis ~b induces a matrix B ∈ Cn×n

such that

σ(a) = B · σ′(~a), where σ′(~a) =
(
σ′(aj)

)
j
. (4)

We seek an R′-basis ~b of R for which B (nearly) preserves Euclidean norms up to
some scaling factor, i.e., all of its singular values are (nearly) equal.

In addition, for any K ′-basis ~b = (bj) of K, its dual K ′-basis ~b ∨ = (b∨j) ⊆ K
is uniquely defined by the linear constraints TrK/K′(bj · b∨j′) = 1 if j = j′, and
0 otherwise. It is a straightforward exercise to verify that if ~b is an R′-basis of
R, then ~b ∨ is an R′∨-basis of R∨. Moreover, the matrix B∨ induced by ~b ∨ is
B∨ = B−T , so its singular values are simply the inverses of those of B.

Lemma 2.6. Let m̂ = m/2 if m is even and m′ is odd, otherwise m̂ = m, and let
r = rad(m)/ rad(m′) be the product of all primes that divide m but not m′. There

189

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

exists an efficiently computable R′-basis ~b of R, for which the corresponding matrix
B has largest and smallest singular values

s1(B) =
√
m̂/m′ and sn(B) =

√
m/(rm′),

respectively. In particular, if r ∈ {1, 2} then B is a unitary matrix scaled by a√
m̂/m′ factor.

Lemma 2.6 implies that for any ~a ∈ K ′(n/n
′) defining a = 〈~a,~b〉 ∈ K and

a∨ = 〈~a,~b ∨〉 ∈ K,

‖σ(a)‖ ≤
√
m̂/m′ · ‖σ′(~a)‖ and ‖σ(a∨)‖ ≤

√
rm′/m · ‖σ′(~a)‖. (5)

More generally, if the aj are independent and have Gaussian distributions over
(the canonical embedding of) K ′, then a and a∨ also have (possibly non-spherical)
Gaussian distributions over K.6 Since we are not too concerned with the exact
distributions, we omit a precise calculation, which is standard. However, one
particular case of interest is when the aj are all i.i.d. according to a spherical
Gaussian of parameter s, and r ∈ {1, 2} so that B (respectively, B∨) is a scaled
unitary matrix. Then because spherical Gaussians are invariant under unitary
transformations, a (resp., a∨) is distributed according to a spherical Gaussian of
parameter s

√
m̂/m′ (resp., s

√
m′/m̂).

The remainder of this subsection is devoted to proving Lemma 2.6. We denote
the k-dimensional identity matrix by Ik, we use ⊗ to denote the Kronecker (or
tensor) product of vectors and matrices, and we apply functions to vectors and
matrices component-wise.

Following the treatment given in [16], let m =
∏
`m` be the prime-power

factorization of m, i.e., the m` > 1 are powers of distinct primes. The ring
R = Z[ζm] has the following Z-basis ~p, which is called the “powerful” basis:

~p =
⊗

`
~pm`

, where ~pm`
= (∗)ζjm` j∈[∗]ϕ(m`)

.

The set ~pm`
is called the “power” Z-basis of Z[ζm`

] = Z[ζm/m`
m] ⊆ R.

Similarly, let m′ =
∏
`m
′
` where each m′` divides m`, i.e., they are both powers

of the same prime (though possibly m′` = 1). Then the powerful Z-basis of R′ is
defined as ~p ′ =

⊗
` ~pm′` , where the power bases ~pm′` are defined as above. Notice

that when m′` > 1, there is a bijective correspondence between j ∈ [ϕ(m`)] and
(j′, k) ∈ [ϕ(m′`)]× [m`/m

′
`], via j = (m`/m

′
`)j
′+k. Therefore, the power bases ~pm`

factor as

~pm`
= ~pm′` ⊗~b`, where ~b` =

{
([)
]
ζkm`k∈[m`/m′`]

if m′` > 1

~pm`
if m′` = 1.

Hence, using the commutativity of the Kronecker product (up to some permutation)
we can factor the powerful basis ~p of R as

6To be completely formal, the Gaussians should be over continuous spaces of the form K⊗Q R;

see [16].

190

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

~p = ~p ′ ⊗~b, where ~b =
⊗

`
~b`. (6)

Because ~p ′ is a Z-basis of R′, it follows that ~b is an R′-basis of R. We next calculate
the matrix B ∈ Cn×n induced by ~b, and verify that it indeed satisfies the claims
in the lemma statement.

Following [16, Section 3], for any prime power m̃ we define CRTm̃ to be the
complex ϕ(m̃)-by-ϕ(m̃) matrix with ωi·jm̃ in its ith row and jth column, for i ∈ Z∗m̃
and j ∈ [ϕ(m̃)]. Using the prime-power factorizations of our m,m′, we define
CRTm =

⊗
` CRTm`

and CRTm′ =
⊗

` CRTm′` . Then up to a permutation of the
rows (determined by the CRT correspondence between Z∗m and

∏
` Z∗m`

), we have

σ(~p T) = CRTm,

i.e., the columns of CRTm are σ(pj) for each entry pj of the row vector ~p T . In
particular, σ(〈~c, ~p〉) = CRTm · ~c for any ~c ∈ Qn. Similarly, σ′((~p ′)T) = CRTm′ up
to a row permutation.

We now claim that, up to some permutations of B’s rows and columns,

B = CRTm · (∗)CRT−1
m′ ⊗ In/n′ =

⊗
`
([)
]
CRTm`

· ([)
]
CRT−1

m′`
⊗ Iϕ(m`)/ϕ(m′`),

(7)
where the second equality follows by the mixed-product property and the com-
mutativity (up to row and column permutations) of the Kronecker product. To
see the first equality, notice that for any ~a ∈ K ′(n/n′) defining a = 〈~a,~b〉 ∈ K,
the matrix (CRT−1

m′ ⊗ I) maps from (a suitable permutation of) the concatenated
embeddings σ′(~a), to a vector ~c ∈ Zn of coefficients such that ~a = 〈~c, ~p ′ ⊗ In/n′〉.
In addition,

a = 〈~a,~b〉 = ~c T · (~p ′ ⊗ In/n′) ·~b = 〈~c, ~p ′ ⊗~b〉 = 〈~c, ~p〉.

Therefore, σ(a) = CRTm · ~c = CRTm · (CRT−1
m′ ⊗ I) · σ′(~a), as desired.

Now, by the last expression in Equation (7), and because singular values
are multiplicative under the Kronecker product, from now on we drop all the `
subscripts, and assume without loss of generality that m and m′ are powers of
the same prime p (where possibly m′ = 1). We analyze the singular values of
CRTm(CRT−1

m′ ⊗ I), for the cases m′ = 1 and m′ > 1. In the first case, clearly
CRTm′ = I1, and it is shown in [16, Section 4] that the largest singular value of
CRTm is

√
m/2 if m is even and

√
m otherwise, and its smallest singular value is√

m/p.
For the case m′ > 1, it follows from the decompositions given in [16, Section 3]

that, up to some row permutation,

CRTm =
√
m/p ·Q · (CRTp ⊗ Im/p)

for some unitary matrix Q, and similarly for CRTm′ . Then a routine calculation
using elementary properties of the Kronecker product reveals that CRTm(CRT−1

m′⊗
I) is some unitary matrix scaled by a

√
m/m′ factor, so all its singular values are√

m/m′. This completes the proof of Lemma 2.6.

191

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

2.2. Homomorphic Cryptosystems

In ring-LWE-based cryptosystems for arbitrary cyclotomics [16] (generalizing those
of [15,4,3]), the plaintext space is Rp for some integer p ≥ 2 that is coprime with
all the odd primes dividing m. We assume that p is prime, which is without loss
of generality by the Chinese Remainder Theorem. Ciphertexts are elements of
(R∨q)2 for some integer q that is coprime with p, and the secret key is some s ∈ R.
A ciphertext c = (c0, c1) ∈ (R∨q)2 that encrypts a plaintext b ∈ Rp with respect to
s satisfies the decryption relation

c0 + c1 · s = e (mod qR∨) (8)

for some sufficiently short e ∈ R∨ such that t · e = b (mod ∗)pR. (Recall that
R∨ = t−1R for some t ∈ R, so t·e ∈ R.) We refer to e as the noise of the ciphertext.
Throughout this work we implicitly assume that the modulus q is large enough
relative to ‖e‖, so that [c0 + c1 · s]q = e ∈ R∨ (see Section 2.1.4 above). Therefore,
the decryption algorithm can simply compute e and output t ·e mod pR. As shown
in [4,3,16], this system (augmented by some additional public values, for greater
efficiency) supports additive and multiplicative homomorphisms.

3. The Field-Switching Procedure

Our procedure performs the following operation. Given a big-field ciphertext
c ∈ (R∨q)2 that encrypts a plaintext b ∈ Rp with respect to a big-ring secret key
s ∈ R, and a description of an R′-linear function L : Rp → R′p to apply to the
plaintext (where recall that p and p′ are the radicals of p in R and R′, respectively),
it outputs a small-field ciphertext c′ ∈ (R′∨q)2 that encrypts b′ = L(b) ∈ R′p′
with respect to some small-ring secret key s′ ∈ R′. (Recall that Corollary 2.5
characterizes how L corresponds to the induced function L̄ : Ff → F′f ′ that is
applied to the vector of finite field elements encoded by b.)

The procedure consists of the following three steps:

1. Switch to a small-ring secret key. We use the key-switching method from [5,
3,16] to produce a ciphertext which is still over the big field K and encrypts
the same plaintext b ∈ Rp, but with respect to a secret key s′ ∈ R′ ⊆ R
belonging to the small subring.

2. Multiply by an appropriate (short) scalar. We multiply the components of
the resulting ciphertext by a short element r ∈ R that corresponds to the
desired R′-linear function to be applied to the input plaintext b.

3. Map to the small field. We map the resulting big-field ciphertext (over R∨q)
to a small-field ciphertext (over R′∨q) simply by taking the trace TrK/K′ of
its two components. The resulting ciphertext will still be with respect to the
small-ring secret key s′ ∈ R′, but will encrypt the plaintext b′ = L(b) ∈ R′p′ .

Note that Steps 2 and 3 can be repeated multiple times on the same ciphertext
(from Step 1), to apply several different R′-linear functions. In this way, the entire
input plaintext can be preserved, but in a decomposed form.

192

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

3.1. Step 1: Switching to a Small-Ring Secret Key

To switch to a small-field secret key, we publish a “key-switching hint,” which
essentially encrypts the big-ring secret key s ∈ R under the small-ring key s′ ∈ R′,
using ciphertexts over the big field. Note that encrypting s under a small-ring
secret key s′ has security implications, since the dimension of the underlying
RLWE problem is smaller. In our case, though, the ultimate goal is to switch to
a ciphertext over the smaller field, so we will not lose any additional security by
publishing the hint. Indeed, we show below that assuming the hardness of the
decision RLWE problem in the small field, the key-switching hint reveals nothing
about the big-ring secret key. The essence of that claim is Lemma 3.1 below, which
says (informally) that RLWE in the big field, with secret chosen in the small ring
R′ ⊆ R, is no easier than RLWE in the small field.

Ring-LWE. The ring-LWE (RLWE) problem [15] (in K) with continuous error
is parameterized by a modulus q, a “secret distribution” υ over R, and an “error
distribution” ψ over K, which is usually a Gaussian (in the canonical embedding)
and is therefore concentrated on short elements.7 For s ∈ R, define the distribution
As,ψ that is sampled by choosing α ∈ R∨q uniformly at random, choosing ε← ψ,
and outputting the pair (α, β = α ·s+ ε mod qR∨) ∈ R∨q ×K/qR∨. One equivalent
form of the (average-case) decision RLWEq,ψ,υ problem (in K) is, given some `
pairs (αi, βi) ∈ R∨q ×K/qR∨, distinguish between the following two cases: in one
case, the pairs are chosen independently from As,ψ for a random s ← υ (which
remains the same for all samples); in the other case, the pairs are all independent
and uniformly random over R∨q ×K/qR∨. For appropriate parameters q, ψ, υ and
`, solving this decision problem with non-negligible distinguishing advantage is as
hard as approximating the shortest vector problem on ideal lattices in R, via a
quantum reduction. See [15,16] for precise statements and further details.

Let~b ∨ = (b∨j)j∈[n/n′] be any R′∨-basis of R∨, and hence a K ′-basis of K. Then
for any error distribution ψ′ over K ′, we can define an error distribution ψ over K
as ψ = 〈ψ′(n/n′),~b ∨〉, i.e., a sample from ψ is generated by choosing independent
εj ← ψ′ (for j ∈ [n/n′]) and outputting ε =

∑
j εjb

∨
j ∈ K.

Lemma 3.1. Let ψ′ be an error distribution over K ′, and let ψ = 〈ψ′(n/n′),~b ∨〉
be the error distribution over K as described above. If the decision RLWEq,ψ′,υ′
problem (in K ′) is hard for some distribution υ′ over R′ ⊆ R, then the decision
RLWEq,ψ,υ′ problem (in K) is also hard.

Although the lemma holds for any R′∨-basis of R∨, it is most useful with a
basis having “good geometric properties.” Specifically, in our case we need the
property that if ψ′ is concentrated on short elements of K ′, then ψ is similarly
concentrated on short elements of K. Such a basis ~b ∨ is constructed in Lemma 2.6
of Section 2.1.5. For example, if ψ′ is a continuous (spherical) Gaussian with
parameter s and r = rad(m)/ rad(m′) = 1, then ψ′ is a spherical Gaussian with
parameter s

√
m′/m = s

√
n′/n.8

7Again, to be completely formal, a Gaussian should be defined over KR; see Footnote 6.
8Note that the factor

p
n′/n ≤ 1 does not really amount to any effective decrease in the noise,

because the “sparsity” of R′∨ versus R∨ is greater by a corresponding factor.

193

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Proof. It suffices to give an efficient, deterministic reduction that takes n/n′

pairs (αj , βj) ∈ R′∨q ×K ′/qR′∨ and outputs a single pair (α, β) ∈ R∨ ×K/qR∨,
with the following properties: if the pairs (αj , βj) are i.i.d. according to As′,ψ′

for some s′ ∈ R′, then (α, β) is distributed according to As,ψ; and if the pairs
(αj , βj) are independent and uniformly random, then (α, β) is uniformly random.
The reduction simply outputs (α = 〈~α,~b ∨〉, β = 〈~β,~b ∨〉), where ~α = (αj)j and
~β = (βj)j .

Since ~b ∨ is an R′∨-basis of R∨ and hence an R′∨q -basis of R∨q , it is immediate
that the reduction maps the uniform distribution to the uniform distribution. On
the other hand, if the samples (αjβj) are drawn from As′,ψ′ , i.e, βj = αj · s′ +
εj mod qR′∨ for εj ← ψ, then α is still uniformly random, and

β = 〈~β,~b ∨〉 = 〈~α,~b ∨〉 · s′ + 〈~ε,~b ∨〉 = α · s′ + ε (mod qR∨),

where ~ε = (εj)j and ε has distribution ψ. This completes the proof.

Key switching. In [5,3,16] it is shown how, given an s ∈ R and sufficiently many
RLWE samples (over K) with short noise and any secret s′ ∈ R, it is possible to
generate a “key-switching hint” with the following functionality: given the hint
and any valid ciphertext c (over K) encrypted under s and with sufficiently short
noise, it is possible to efficiently generate a ciphertext c′ (also over K) with short
noise encrypted under s′. Moreover, the hint is indistinguishable from uniformly
random over its domain (even given s), assuming that the RLWE samples are.

For our transformation, we apply Lemma 3.1 using the “good basis” ~b ∨

from Lemma 2.6, thus obtaining RLWE samples over K relative to the secret
s′ ∈ R′ ⊆ R, with noise distribution ψ which is concentrated on short vectors,
and with security based on the hardness of RLWEq,ψ′,υ′ problem in K ′. We
then construct the key-switching hint from these samples as described in [16,
Section 8.3],

3.2. Steps 2 and 3: Mapping to the Small Field

Our goal now is to transform a valid big-field ciphertext c = (c0, c1) ∈ (R∨q)2,
which encrypts some b ∈ Rp with respect to some secret key s′ ∈ R′ ⊆ R, into
a small-field ciphertext c′ = (c′0, c

′
1) ∈ (R′∨q)2 that encrypts the related plaintext

b′ = L(b) with respect to the same secret key s′, where L : Rp → R′p′ is any desired
R′-linear function.

The process works as follows:

1. Since L is R′-linear, by the discussion at the end of Section 2.1.3 and in
Section 2.1.4, we can find some r∨ ∈ t′R∨ such that L(a) = TrK/K′(r∨ ·
a) mod p′.

2. We then find a short representative r ∈ (t/t′)r∨ + pR ∈ Rp, using a “good”
basis of pR (i.e., one that has small singular values under σ, e.g., the
“powerful” basis as constructed in Section 2.1.5).
The chosen r defines the R′-linear function L∨ : R∨ → R′∨ of the form
L∨(a∨) = TrK/K′(r · a∨), whose induced function from R∨p to R′∨p′ satisfies

194

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

t′ · L∨(a∨) = L(t · a∨) (mod p′). (9)

3. We obtain our small-field ciphertext by applying L∨ (or more precisely, the
induced function from R∨q to R′∨q) to c0, c1, setting

c′i = L∨(ci) = TrK/K′(r · ci) ∈ R′∨q , i = 0, 1.

Lemma 3.2. The ciphertext c′ = (c′0, c
′
1) is an encryption of b′ = L(b) ∈ R′p′ under

secret key s′ ∈ R′, with noise e′ = L∨(e) ∈ R′∨ of length ‖e′‖ ≤ ‖e‖·‖r‖∞ ·
√
n/n′,

where e is the noise in the original ciphertext c.

We note that the factor
√
n/n′ in the bound on ‖e′‖ does not actually amount

to any effective increase in the noise, because the dimension has decreased by a
corresponding factor, and hence the size of e′ relative to R′∨ remains the same as
that of e relative to R∨. More precisely, the original ciphertext c decrypts correctly
if q > 2

√
n‖e‖, whereas c′ decrypts correctly if q > 2

√
n′‖e′‖ (see Section 2.1.4).

Therefore, the only practical increase in the noise is due solely to ‖r‖∞.

Proof. We need to show three things: that ‖e′‖ is bounded as claimed, that
c′0 + c′1 · s = e′ (mod ∗)qR′∨, and that t′ · e′ = b′ = L(b) (mod ∗)p′.

1. The first claim follows immediately by Corollary 2.2 and the inequality
‖r · e‖ ≤ ‖r‖∞ · ‖e‖.

2. For the second claim, recall that c0 + c1 · s = e (mod ∗)qR∨. Then because
the induced function L∨ : R∨q → R′∨q is R′-linear and s′ ∈ R′, we have

c′0 + c′1 · s′ = L∨(c0 + c1 · s′) = L∨(e) = e′ (mod R′∨q).

3. For the last claim, because t · e = b mod pR and by Equation (9), we have

t′ · e′ = t′ · L∨(e) = L(t · e) = L(b) (mod p′).

3.3. Applying the Field-Switching Procedure

A typical application of the field-switching procedure during homomorphic evalua-
tion of some circuit will begin with a big-field ciphertext that encrypts an array of
plaintext values in the subfield F′, as embedded in F.9 The above procedure is then
applied to decompose the ciphertext into a number of small-field ciphertexts, each
encrypting a subset of the plaintext values. Since big-field ciphertexts have room
for f plaintext elements, but small-field ciphertexts can only hold f ′ elements, we
may need up to f/f ′ small-field ciphertexts to hold all the plaintext values that
we are interested in. That is, we apply our field-switching transformation using
the f ′-fold concatenations L̄f

′

i of the F′-linear selection functions L̄i : Ff/f ′ → F′,
i ∈ [f/f ′], where L̄i just selects the ith value (in F′).10

9For example, when evaluating AES homomorphically, we would have plaintext values from
F28 even though F may be a larger field such as F216 or F224 , etc.

10More precisely, L̄i(~a) = TrF/F′(ρ · ai) for some ρ ∈ F such that TrF/F′(ρ) = 1, so that

L̄i(~a) = ai for any ai ∈ F′, by F′-linearity.

195

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Referring to Figure 1 for an example, the big-field ciphertext holds (up to)
six plaintext values, and each small-field ciphertext can hold two values, with
the big-field plaintext “slots” corresponding to p1, p15, p22 lying over the small-
field plaintext slot of p′1, and the big-field slots corresponding to p3, p17, p31 lying
over the small-field plaintext slot of p′3. Then we can produce three small-field
ciphertexts, using the three selection functions

(x1, x15, x22, x3, x17, x31) 7→ (x1 , x3),
(x1, x15, x22, x3, x17, x31) 7→ (x15 , x17),
(x1, x15, x22, x3, x17, x31) 7→ (x22 , x31).

Acknowledgments

The first and second authors are supported by the Intelligence Advanced Research
Projects Activity (IARPA) via Department of Interior National Business Center
(DoI/NBC) contract number D11PC20202. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation thereon. Disclaimer: The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of
IARPA, DoI/NBC, or the U.S. Government.

The third author is supported by the National Science Foundation under
CAREER Award CCF-1054495, by the Alfred P. Sloan Foundation, and by
the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL) under Contract No. FA8750-11-C-0098. The views
expressed are those of the authors and do not necessarily reflect the official policy
or position of the National Science Foundation, the Sloan Foundation, DARPA or
the U.S. Government.

The fourth author is supported by the European Commission through the
ICT Programme under Contract ICT-2007-216676 ECRYPT II and via an ERC
Advanced Grant ERC-2010-AdG-267188-CRIPTO, by EPSRC via grant COED–
EP/I03126X, and by a Royal Society Wolfson Merit Award. The views and
conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed
or implied, of the European Commission or EPSRC.

References

[1] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In CRYPTO’09,

volume 5677 of Lecture Notes in Computer Science, pages 595–618. Springer, 2009.

[2] Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical
GapSVP. In CRYPTO’12, volume 7417 of Lecture Notes in Computer Science. Springer,

2012. Available at http://eprint.iacr.org/2012/078.
[3] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption

without bootstrapping. In Innovations in Theoretical Computer Science (ITCS’12), ACM,

2012. Available at http://eprint.iacr.org/2011/277.

196

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

[4] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In Advances in Cryptology - CRYPTO 2011,
volume 6841 of Lecture Notes in Computer Science, pages 505–524. Springer, 2011.

[5] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS’11. IEEE Computer Society, 2011.

[6] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty Computation

from Somewhat Homomorphic Encryption. In CRYPTO’12, volume 7417 of Lecture Notes
in Computer Science. Springer, 2012. Available at http://eprint.iacr.org/2011/535.

[7] Leo Ducas and Alain Durmus. Ring-LWE in Polynomial Rings. In PKC’12, volume

7293 of Lecture Notes in Computer Science, pages 34–51. Springer, 2012. Available at
http://eprint.iacr.org/2012/235

[8] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In EUROCRYPT’08,

volume 4965 of Lecture Notes in Computer Science, pages 31–51. Springer, 2008.
[9] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,

editor, STOC’09, pages 169–178. ACM, 2009.
[10] Craig Gentry, Shai Halevi, Chris Peikert and Nigel P. Smart. Ring Switching in BGV-Style

Homomorphic Encryption. In SCN’12, volume 7485 of Lecture Notes in Computer Science,
pages 19–37. Springer, 2012. Available at http://eprint.iacr.org/2012/240.

[11] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog

overhead. In EUROCRYPT’12, volume 7237 of Lecture Notes in Computer Science, pages
446-464, 2012. Available at http://eprint.iacr.org/2011/566.

[12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Better bootstrapping for fully homomorphic
encryption. In PKC’12, volume 7293 of Lecture Notes in Computer Science, pages 1–16.

Springer, 2012. Available at http://eprint.iacr.org/2011/680.
[13] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES

circuit. In CRYPTO’12, volume 7417 of Lecture Notes in Computer Science, pages 850–867.
Springer, 2012. Available at http://eprint.iacr.org/2012/099.

[14] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-Fly Multiparty

Computation on the Cloud via Multikey Fully Homomorphic Encryption In STOC’12
Proceedings of the 44th symposium on Theory of Computing, Pages 1219-1234. ACM, 2012.

[15] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with
errors over rings. Journal of the ACM. To appear. Preliminary version in EUROCRYPT’10,
volume 6110 of Lecture Notes in Computer Science, pages 1–23, 2010.

[16] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-LWE cryptography.
In EUROCRYPT’13, volume 7881 of Lecture Notes in Computer Science, pages 35–54,
2013. Available at http://eprint.iacr.org/2013/293.

[17] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption.
In CT-RSA, volume 6558 of Lecture Notes in Computer Science, pages 319–339. Springer,
2011.

[18] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Designs,
Codes and Cryptography. Springer. To appear. DOI 10.1007/s10623-012-9720-4. Available

at http://eprint.iacr.org/2011/133.

[19] Lawrence C. Washington. Introduction to Cyclotomic Fields, volume 83 of Graduate Texts
in Mathematics. Springer, 1996.

197

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Bootstrapping BGV Ciphertexts with a Wider Choice of
p and q

E. Orsini, J. van de Pol and N.P. Smart

Dept. Computer Science,
University of Bristol,

United Kingdom.
{Emmanuela.Orsini,Joop.VandePol}@bristol.ac.uk,

{nigel}@cs.bris.ac.uk

Abstract. We describe a method to bootstrap a packed BGV ciphertext which
does not depend (as much) on any special properties of the plaintext and cipher-
text moduli. Prior “efficient” methods such as that of Gentry et al (PKC 2012)
required a ciphertext modulus q which was close to a power of the plaintext mod-
ulus p. This enables our method to be applied in a larger number of situations.
Also unlike previous methods our depth grows only asO(log p+log log q) as op-
posed to the log q of previous methods. Our basic bootstrapping technique makes
use of a representation of the group Z+

q over the finite field Fp (either based on
polynomials or elliptic curves), followed by polynomial interpolation of the re-
duction mod p map over the coefficients of the algebraic group.
This technique is then extended to the full BGV packed ciphertext space, using a
method whose depth depends only logarithmically on the number of packed ele-
ments. This method may be of interest as an alternative to the method of Alperin-
Sheriff and Peikert (CRYPTO 2013). To aid efficiency we utilize the ring/field
switching technique of Gentry et al (SCN 2012, JCS 2013).

1 Introduction

Since the invention of Fully Homomorphic Encryption (FHE) by Gentry in 2009 [14,15],
one of the main open questions in the field has been how to “bootstrap” a Somewhat
Homomorphic Encryption (SHE) scheme into a FHE scheme. Recall an SHE scheme
is one which can evaluate circuits of a limited multiplicative depth, whereas an FHE
scheme is one which can evaluate circuits of arbitrary depth. Gentry’s bootstrapping
technique is the only known way of obtaining unbounded FHE.

The ciphertexts of all known SHE schemes include some noise to ensure security,
and unfortunately this noise grows as more and more homomorphic operations are per-
formed, until it is so large that the ciphertext will no longer decrypt correctly. In a
nutshell, bootstrapping “refreshes” a ciphertext that can not support any further homo-
morphic operation by homomorphically decrypting it, and obtaining in this way a new
encryption of the some plaintext, but with smaller noise. This is possible if the under-
lying SHE scheme has enough homomorphic capacity to evaluate its own decryption
algorithm. Bootstrapping is computationally very expensive and it represents the main
bottleneck in FHE constructions.

198

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Several SHE schemes, with different bootstrapping procedures, have been proposed
in the past few years [1,2,4,6,7,8,14,15,10,18,19,32]. The most efficient are ones which
allow SIMD style operations, by packing a number of plaintext elements into indepen-
dent “slots” in the plaintext space. The most studied of such “SIMD friendly” schemes
being the BGV scheme [5] based on the Ring-LWE Problem [25].

Prior Work on Bootstrapping. In almost all the SHE schemes supporting bootstrap-
ping, decryption is performed by evaluating some linear function D, dependent on the
ciphertext c, on the secret key sk modulo some integer q, and then reducing the re-
sult modulo some prime p, i.e. dec(c, sk) = ((DC(sk) mod q) mod p). Given an
encryption of the secret key, bootstrapping consists in evaluating the above decryption
formula homomorphically. One can divide the bootstrapping of all efficient currently
known SHE schemes into three distinct sub-problems.

1. The first problem is to homomorphically evaluate the reduction (mod p)-map on
the group Z+

q (see Fig. 1), where for the domain one takes representatives centered
around zero. To do this the group Z+

q is first mapped to a set G in which one can
perform operations native to the homomorphic cryptosystem. In other words we
first need to specify a representation, rep : Z+

q −→ G, which takes an integer in
the range (−q/2, . . . , q/2] and maps it to the set G. The group operation on Z+

q

needs to induce a group operation on G which can be evaluated homomorphically
by the underlying SHE scheme. Then we describe the induced map red : G −→ Zp
as a algebraic operation, which can hence be evaluated homomorphically.

2. The second problem is to encode the secret key in a way that one can publicly,
using a function dec-eval (decryption evaluation), create a set of ciphertexts which
encrypt the required input to the function red.

3. And thirdly one needs a method to extend this to packed ciphertexts.

Z+
q G

Zp

rep

(mod p) red

Fig. 1.

To solidify ideas we now expand on these problems in the context of the BGV scheme
[5]. Recall for BGV we have a set of L + 1 moduli, corresponding to the levels of the
scheme, q0 < q1 < . . . < qL, and a (global) ring R, which is often the ring of integers
of a cyclotomic number field. We let p denote the (prime) plaintext modulus, i.e. the
plaintexts will be elements in Rp (the localisation of R at the prime p), and to ease

199

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

notation we set q = q0. The secret key sk is a small element in R. A “fresh” ciphertext
encrypting µ′ ∈ Rp is an element ct′ = (c′0, c

′
1) in R2

qL
such that

(c′0 + sk · c′1 (mod qL)) (mod p) = µ′.

After the evaluation of L levels of multiplication one obtains a ciphertext ct = (c0, c1)
in R2

q , encrypting a plaintext µ, such that

(c0 + sk · c1 (mod q)) (mod p) = µ.

At this point to perform further calculations one needs to bootstrap, or recrypt, the
ciphertext to one of a higher level.

Assume for the moment that each plaintext only encodes a single element of Zp, i.e.
each plaintext is a constant polynomial in polynomial basis for Rp. To perform boot-
strapping we need to place a “hint” in the public key pk (usually an encryption of sk at
level L), which allows the following operations. Firstly, we can evaluate homomorphi-
cally a function dec-eval which takes ct and the “hint”, and outputs a representation of
the Zq element corresponding to the constant term of the element c0 + sk · c1 (mod q).
This representation is an encryption of an element in G, i.e. dec-eval also evaluates the
rep map as well as the decryption map. Then we apply, homomorphically, the function
red to this representation to obtain a fresh encryption of the plaintext. Since to homo-
morphically evaluate red we need the input to red to be defined over the plaintext space,
this means the representation of Zq must be defined over Fp. One is then left with the
task of extending such a procedure to packed ciphertexts.

In the original bootstrapping technique of Gentry [15], implemented in [16], the
function dec-eval is obtained from a process of bit-decomposition. Thus the represen-
tation G of Zq is the bit-representation of an integer in the range (−q/2, . . . , q/2], i.e.
we use a representation defined over F2. The function to evaluate red is then the circuit
which performs reduction modulo p. The extension of this technique to packed cipher-
texts, in the context of the Smart–Vercauteren SIMD optimisations [29] of Gentry’s
SHE scheme, was given in [30]. Due to the use of bit-decomposition techniques this
method is mainly suited to the case of p = 2, although one can extend it to other primes
by applying a p-adic decomposition and then using an arithmetic circuit to evaluate the
reduction modulo p map.

In [18] the authors present a bootstrapping technique, primarily targeted at the BGV
scheme, which does away with the need for evaluating the “standard” circuit for the re-
duction modulo pmap. This is done by choosing q close to a power of p, i.e. one selects
q = pt ± a for some t and a small value of a, typically a ∈ {−1, 1}. The paper [18]
expands on this idea for the case of p = 2, but the authors mention it can be clearly
extended to arbitrary p. The advantage is that the mapping red can now be expressed
as algebraic formulae; in fact formulae of multiplicative depth log2 q. The operation
dec-eval obtains the required representation for Zq by mapping it into Zpt+1 . The re-
sulting technique requires the extension of the modulus of the plaintext ring to pt+1

(for which all the required properties of Rp carry over, assuming that p does not ram-
ify). The extension to packed ciphertexts is performed using an elaborate homomorphic
evaluation of the Fourier Transform.

200

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

To enable the faster evaluation of this Fourier Transform step from [18], a method
for ring/field switching is presented in [17]. The technique of ring/field switching also
enables general improvements in efficiency as ciphertext noise grows. This enables the
ring R to be changed to a sub-ring S (both for the ciphertext and plaintext spaces). In
[1] this use of field switching is combined with the red map from [18] to obtain an
asymptotically efficient bootstrapping method for BGV style SHE schemes; although
the resulting technique does not fully map to our blueprint, as q = pv for some value of
v. In [28] this method is implemented, with surprisingly efficient runtimes, for the case
of plaintext space F2; i.e. p = 2 and no plaintext SIMD-packing is supported.

In another line of work, the authors of [2] and [8] present a bootstrapping technique
for the GSW [21] homomorphic encryption scheme. The GSW scheme is one based
on matrices, and this property is exploited in [2] by taking a matrix representation of
Zq and then expressing the map red via a very simple algebraic relationship on the
associated matrices. In particular the authors represent elements of Zq by matrices (of
some large dimension) over Fp.

Thus we see almost all bootstrapping techniques require us to come up with a rep-
resentation G of Zq for which there is an algebraic method over Fp to evaluate the
induced mapping red, from the said representation of Zq , to Zp. Since SHE schemes
usually homomorphically have add and multiply operations as their basic homomorphic
operations, this implies we are looking for representations of Z+

q as a subgroup of an
algebraic group over Fp.

Our Contribution. We return to consider the Ring-LWE based BGV scheme, and we
present a new bootstrapping technique with small depth growth, compared with previ-
ous methods, and which supports a larger choice of p and q. Instead of concentrating
on the case of plaintext moduli p such that a power of p is close to q, we look at a much
larger class of plaintext moduli. Recall the most efficient prior technique, based on [1]
and [18], requires a method whose multiplicative depth is O(log q), and for which q is
close to a power of p. As p increases the ability to select a suitable modulus q which is
both close to a power of p, is of the correct size for most efficient implementation (i.e.
the smallest needed to ensure security), and has other properties related to efficiency
(i.e. the ring Rq has a double-CRT representation as in [20]) diminishes.

To allow a wider selection for p we utilize two “new” (for bootstrapping) represen-
tations of the ring Zq , in much the same way as [2] used an Fp-matrix representation
(a.k.a. a linear algebraic group) of Z+

q . The first one, used for much of this paper for
ease of presentation, is based on a polynomial representation for Z+

q over Fp, the sec-
ond one (which is less efficient but allows a greater freedom in selecting q) is based
on a representation via elliptic curves. The evaluation of the mapping red using these
representations can then be done in expected multiplicative depth O(log p+ log log q),
i.e. a much shallower circuit than used in prior works, using polynomial interpolation
of the red map over the coefficients of the algebraic group.

To ensure this method works, and is efficient, we do not have completely free reign
in selecting q for the first polynomial representation. Whilst [18] required q = pt ± a,
for a small value of a, we instead will require that q divides

lcm
(
pk1 − 1, . . . , pkt − 1

)
,

201

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

for some pairwise co-prime values ki. Even with this restriction, the freedom on select-
ing q is much greater than for the method in [18], especially for large values of p. In
the second representation, described in Section 7, we simply need to find elliptic curves
over Fpki whose group order is divisible by ei where

∏
ei = q. For the elliptic curve

based version we do not need pairwise co-prime values of ki. Indeed on setting t = 1
we simply need one curve E(Fpk1) whose group order is divisible by q, which is highly
likely to exist, since p � q, by the near uniform distribution of elliptic curve group
orders in the Hasse interval.

Note also that, in the polynomial representation, one does not have complete free-
dom on selecting the ki values. If we let E =

∑
ki and M = 1

2

∑
ki · (ki + 1) then the

depth of the circuit (which is approximately log2 log2 q − log2 log2E) to evaluate red
will decrease as E grows, but the number of multiplications required, which is a mono-
tonically increasing function of M , will increase. Note, we can asymptotically make
M = O(

∑
ki · log ki) using FFT techniques, or M = O(

∑
k1.58
i) using Karatsuba

based techniques, but in practice the ki will be too small to make such optimization
fruitful. For the elliptic curve based version we replace the above E by E + 1 and we
replace M by a constant multiple of M . However, the depth required by our elliptic
curve based version increases.

Our method permits to bootstrap a certain number of packed ciphertexts in parallel,
using a form of p-adic decomposition and a matrix representation of the ciphertext ring,
combined with ring switching. The resulting depth depends only logarithmically on the
number of packed ciphertexts.

Overview and paper organization. Here we give a brief overview of the paper. In
Section 2 and 3 we recall the basic algebraic background required for our construction,
and the BGV SHE scheme from [5], respectively. Typically, the main technical difficult
in bootstrapping is to homomorphically evaluate in a efficient way the (mod p)-map
on the group Z+

q . In Section 4 we describe a simple way to evaluate the (mod p)-map
using a polynomial representation of the group G in Fig. 1. In Section 5 we prepare to
bootstrap packed ciphertexts and we show how to homomorphically evaluate a product
of powers of SIMD vectors. In particular we calculate the depth and the number of
multiplications required to compute this operation. Finally, in Section 6 we show how
to bootstrap BGV ciphertexts. We use a matrix representation of the product of two
elements in a ring and a single ring switching step in such a way that we can bootstrap
a number, say C, of packed ciphertexts in one step. We describe the homomorphic
evaluation of the decryption equation using the SIMD evaluation of the maps red and
rep. Using the calculation of Section 5, we can compute the depth and the number of
multiplications necessary to bootstrap C packed ciphertexts in parallel. In Section 7 we
give a different instantiation of our method using elliptic curves.

2 Preliminaries

Throughout this work vectors are written using bold lower-case letters, whereas bold
upper-case letters are used for matrices. We denote by Ma×b(K) the set of a × b di-
mensional matrices with entries in K. For an integer modulus q, we let Zq = Z/qZ

202

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

denote the quotient ring of integers modulo q, and Z+
q its additive group. This notation

naturally extends to the localisation Rq of a ring R at q.

2.1 Algebraic Background

Let m be a positive integer we define the mth cyclotomic field to be the field K =
Q[X]/Φm(X), where Φm(X) is the mth cyclotomic polynomial. Φm(X) is a monic
irreducible polynomial over the rational, and K is a field extension of degreeN = φ(m)
over Q since Φm(X) has degree N . Let ζm be an abstract primitive mth roots of
unity, we have that K ∼= Q(ζm) by identifying ζm with X . In the same way, let
us denote by R the mth cyclotomic ring Z[ζm] ∼= Z[X]/Φm(X), with “power ba-
sis” {1, ζm, . . . , ζN−1

m }. The complex embeddings of K are σi : K → C, defined by
σi(X) = ζim, i ∈ Z∗m. In particular K is Galois over Q and Gal(Q(ζm)/Q) ∼= Z∗m. As
a consequence we can define the Q-linear (field) trace TrK/Q : K → Q as the sum of
the embeddings σi, i.e. TrK/Q(a) =

∑
i∈Z∗m

σi(a) ∈ Q. Concretely, these embeddings
map ζm into each of its conjugates, and they are the only field homomorphisms from
K to C that fix every element of Q. The canonical embedding σ : K → CN is the
concatenation of all the complex embeddings, i.e. σ(a) = (σi(a))i∈Z∗m , a ∈ K.

Looking ahead, we will use the ring R and its localisation Rq , for some modulus q.
Given a polynomial a ∈ R, we denote by ‖a‖∞ = max0≤j≤N−1 |aj | the standard l∞-
norm. All estimates of noise are taken with respect to the canonical embedding norm
‖a‖can∞ = ‖σ(a)‖∞, a ∈ R. When considering short elements in Rq , we define short in
terms of the following quantity:

|a|canq = min{‖a′‖can∞ : a′ ∈ R and a′ ≡ a mod q}.

To map from norms in the canonical embedding to norms on the coefficients of the
polynomial defining the elements of R, we have ‖a‖∞ ≤ cm · ‖a‖can∞ , where cm is the
ring constant. For more details about cm see [13]. Note, if the dual basis techniques
of [26] are used, then one can remove the dependence on cm. However, for ease of
exposition we shall use only polynomial basis in this work.

Let m′ be a positive integer such that m′|m. As before we define K′ ∼= Q(ζm′) and
S ∼= Z[ζm′], such that K′ has degree n = φ(m′) over Q and Gal(K′/Q) ∼= Z∗m′ . It is
trivial to show that K and R are a field and a ring extension of K′ and R′, respectively,
both of dimension N/n. In particular we can see S as a subring of R via the ring
embedding that maps ζm′ 7→ ζ

m/m′

m .
It is a standard fact that if Q ⊆ K′ ⊆ K is a tower of number field, then TrK/Q(a) =

TrK′/Q(TrK/K′(a)), and that all the K′-linear maps L : K→ K′ are exactly the maps of
the form TrK/K′(r · a), for some r ∈ K.

2.2 Plaintext Slots

Let p be a prime integer, coprime to m, and Rp the localisation of R at p. The polyno-

mial Φm(X) factors modulo p into `(R) irreducible factors, i.e. Φm(X) ≡
∏`(R)

i=1 Fi(X)
(mod p). Each Fi(X) has degree d(R) = φ(m)/`(R), where d(R) is the multiplicative

203

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

order of p in Z∗m. Looking ahead, each of these `(R) factors corresponds to a “plaintext
slot”, i.e.

Rp ∼= Zp[X]/F1(X)× · · · × Zp[X]/F`(R)(X) ∼= (F
pd(R))`

(R)
.

More precisely, we have `(R) isomorphismsψi : Zp[X]/Fi(X)→ F
pd(R) , i = 1, . . . , `(R),

that allow to represent `(R) plaintext elements of Fp(d) as a single element in Rp. By
the Chinese Remainder Theorem, addition and multiplication correspond to SIMD op-
erations on the slots and this allows to process `(R) input values at once.

2.3 Ring Switching

As mentioned in the introduction, our technique uses a method for ring/field switching
from [17] so as to aid efficiency. We use two different cyclotomic rings R and S such
that S ⊆ R. This procedure permits to transform a ciphertext ct ∈ (Rq)2 corresponding
to a plaintext µ ∈ Rp with respect to a secret key sk ∈ R, into a ciphertext ct′ ∈ (Sq)2

corresponding to a plaintext µ′ ∈ Sp with respect to a secret key sk′ ∈ S. The security
of this method relies on the hardness of the ring-LWE problem in S ([25]). At a high
level the ring switching consists of three steps. Given an input ciphertext ct ∈ (Rq)2:

– First, it switches the secret key; it uses the “classical” key-switching ([6],[5]), get-
ting a ciphertext c̄t ∈ (Rq)2, still encrypting µ ∈ Rp, but with respect to a secret
key sk′ ∈ S.

– Second, it multiplies c̄t by a fixed element r ∈ R, which is determined by a S-
linear function L : Rp → Sp corresponding to the induced projection function
P : (F

pd(R))`
(R) → (F

pd(S))`
(S)

(see [17] for details).

– Finally, it applies to c̄t the trace function TrR/S : R→ S. In such a way the output
of the ring-switching is a ciphertext ct ∈ S with respect to the secret key sk′ and
encrypting the plaintext µ′ = L(µ).

We conclude this section noting that, while big-ring ciphertexts correspond to `(R)

plaintext slots, small-ring ciphertexts only correspond to `(S) ≤ `(R) plaintext slots.
The input ciphertexts to our bootstrapping procedure are defined over (Sq)2, and so
are of degree n and contain `(S) slots. We take `(R)/n of these ciphertexts and use the
dec-eval map to encode the coefficients of the plaintext polynomials in the slots of a
single big-ring ciphertext. Eventually, via ring switching and polynomial interpolation,
we return to `(R)/n ciphertexts which have been bootstrapped and are at level one
(or more). These fresh ciphertexts may be defined over the big ring or the small ring
(depending when ring switching occurs). However, our parameter estimates imply that
ring switching is best performed at the lowest level possible, and so our bootstrapped
ciphertexts will be in the big ring. We could encode all of the slots of the bootstrapped
ciphertexts in a big-ring single ciphertext, or not, depending on the application, since
slot manipulation is a linear operation.

204

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

3 The BGV Somewhat Homomorphic Encryption Scheme

In this section we outline what we need about the BGV SHE scheme [5]. As anticipated
in Section 2, we present the scheme with the option of utilizing two rings, and hence at
some point we will make use of the ring/field switching procedure from [17]. We first
define two rings R = Z[X]/F (X) and S = Z[X]/f(X), where F (X) (resp. f(x))
is an irreducible polynomial over Z of degree N (resp. n). In practice both F (X) and
f(X) will likely be cyclotomic polynomials. We assume that n dividesN , and so here is
an embedding ι : S −→ R which maps elements in S to their appropriate equivalent in
R. The map ι can be expressed as a linear mapping on the coefficients of the polynomial
representation of the elements in S, to the coefficients of the polynomial representation
of the elements in R. In this way we can consider S to be a subring of R.

Let Rq (resp. Sq) denote the localisation of R (resp S) at q, i.e. Zq[X]/F (X) (resp.
Zq[X]/f(X)), which can be constructed for any positive integer q. Let p be a prime
number, which does not ramify in either R or S. Since the rings are Galois, the ring Rp
(resp. Sp) splits into `(R) (resp. `(S)) “slots”; with each slot being a finite field extension
of Fp of degree d(R) = N/`(R) (resp. d(S) = n/`(S)). We make the assumption that n
divides `(R). This is not strictly necessary but it ensures that we can perform bootstrap-
ping of a single ciphertext with the smallest amount of memory. In fact our method will
support the bootstrapping of `(R)/n ciphertexts in parallel.

There will be two secret keys for our scheme; depending on whether the cipher-
texts/plaintexts are associated with the ring R or the ring S. We denote these secret
keys by sk(R) and sk(S), which are “small” elements in the ring R (resp. S). The mod-
ulus q = q0 = p0 will denote the smallest modulus in the set of BGV levels. Fresh
ciphertexts are defined for the modulus Q = qL =

∏L
i=0 pi and live in the ring R2

Q

(thus at some point we not only perform modulus switching but also ring switching).
We assume L1 levels are associated with the big ring R and L2 levels are associated
with the small ring S, hence L1+L2 = L (level zero is clearly associated with the small
ring S, but we do not count it in the number of levels in L2). Thus we encrypt at level
L; perform standard homomorphic operations down to level zero, with a single field
switch at level L2 +1. For ease of analysis we assume no multiplications are performed
at level L2 + 1. This means that we can evaluate a depth L− 1 circuit.

A ciphertext at level i > L2, encrypting a message µ ∈ Rp, is a pair ct = (c0, c1) ∈
R2
qi

, where qi =
∏i
j=0 pj , such that

(
c0 + sk(R) · c1 (mod qi)

)
(mod p) = µ.

We let Encpk(µ) denote the encryption of a message µ ∈ Rp, this produces a ciphertext
at level L. A similar definition holds for ciphertexts at level i < L2, for messages
in Sp and secret keys/ciphertexts elements in Sqi

. When performing a ring switching
operation between levels L2 + 1 and L2, the `(R) plaintext slots, associated with the
input ciphertext at level L2 + 1, become associated with `(R)/`(S) distinct ciphertexts
at level L2.

205

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

We want to “bootstrap” a set of BGV ciphertexts. Each of these ciphertexts is a pair
ctj = (c(j)0 , c

(j)
1) ∈ S2

q , for j = 1, . . . , `(R)/n, such that(
c
(j)
0 + sk(S) · c(j)1 (mod q)

)
(mod p) = µj , for j = 1, . . . , `(R)/n.

4 Evaluating the Map red ◦ rep : Z+
q −→ Fp (Simple Version)

As explained in the introduction at the heart of most bootstrapping procedures is a
method to evaluate the induced mapping red ◦ rep : Z+

q −→ Fp. In this section we
present our simpler technique for doing this based on polynomials over Fp, in Section
7 we present a more general (and complicated in terms of depth) technique based on
elliptic curves. The key, in this and in all techniques, is to find a representation G for
Z+
q for which the reduction modulo p map can be evaluated algebraically over Fp. This

means that the representation of Zq must defined over Fp. Prior work has looked at the
bit-representation (when p = 2), the p-adic representation and a matrix representation;
we use a polynomial representation.

We select a coprime factorization q =
∏t
i=1 ei (with the ei not necessarily prime,

but pairwise coprime), such that ei divides pki − 1 for some ki. Since F∗
pki

is cyclic
we know that F∗

pki
has a subgroup of order ei. We fix a polynomial representation of

Fpki , i.e. an irreducible polynomial fi(x) of degree ki such that Fpki = Fp[x]/fi(x).
Let gi ∈ Fpki denote a fixed element of order ei in Fpki .

By the Chinese Remainder Theorem we therefore have a group embedding

rep :
{

Z+
q −→ G =

∏t
i=1 F∗

pki

a 7−→ (ga1
1 , . . . , gat

t)
(1)

where ai = a (mod ei). Without loss of generality we can assume that the ki are
also coprime, by modifying the decomposition of q into coprime eis. Given this group
representation of Z+

q in G, addition in Z+
q translates into multiplication in G. With one

addition in Z+
q translating into M = 1

2

∑t
i=1 ki · (ki + 1) multiplications in Fp (and a

comparable number of additions; assuming school book multiplication is used). Each
element in the image of rep requires E =

∑t
i=1 ki elements in Fp to represent it.

There will be a map red : G → Fp, such that red ◦ rep is the reduction modulo p
map; and red can be defined by algebraically from the coefficient representation of G
to Fp. Here algebraically refers to algebraic operations over Fp. An arbitrary algebraic
expression onE variables of degree dwill contain d+ECd terms. Thus, by interpolating,
we expect the degree d of the map red to be the smallest d such that d+ECd > q, which
means we expect we expect d ≈ E · (2log(q)/E − 1). Thus the larger E is, the smaller
d will be. This interpolating function needs to be created once and for all for any given
set of parameters, thus we ignore the cost in generating it in our analysis.

The algebraic circuit which implements the map red can hence be described as a
circuit of depth dlog2 de which requires D(E, d) = E+dCd − (E + 1) multiplications
(corresponding to the number of distinct monomials in E variables of degree between
two and d). In particular, by approximating E ≈ log2(q)/ log2(p), we obtain that the

206

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

circuit implementing the map red has depth dlog2 de = log2(p− 1) + log2(log2(q))−
log2(log2(p))).

We pause to note the following. By selecting a large finite field it would appear at
first glance that one can reduce our degree d even further. This however comes at the
cost of having more terms, i.e. a larger value of E. This in turn increases the overall
complexity of the method (i.e. the number of multiplications needed) but not the depth.

5 A Product of Powers of SIMD Vectors

Before proceeding with our method to turn the above methodology for reduction mod-
ulo p into a bootstrapping method for our set of BGV ciphertexts, we first examine how
to homomorphically compute the following function

v ·
λ∏
k=0

vMk

k ,

where each v and vk, k = 0, . . . , λ, represents a set of E ciphertexts, each of which
encode (in a SIMD manner) `(R) elements in Fp. The multiplication of two such sets
of E ciphertexts is done with respect to the multiplication operation in G, and thus
requires M homomorphic multiplications (this is for our simple variation of red, for
the variant based on elliptic curve the number of ciphertexts and the complexity of the
group operation in G increase a little). The values Mk are matrices in M`(R)×`(R)(Fp).
By the notation u = vM, where M = (mi,j), we mean the vector with components

ui =
`(R)∏
j=1

v
mi,j

j , i ∈ {1, . . . , `(R)}.

Notice that each ui and vj is a vector of E elements in Fp representing a single element
in G. In what follows we divide this operation into three sub-procedures and compute
the number of multiplications, and the depth required, to evaluate the function.

5.1 SIMD Raising of an Encrypted Vector to the Power of a Public Vector
The first step is to take a vector v which is the SIMD encryption of E sets of `(R)

elements in Fp, i.e. it represents `(R) elements in G. We then raise v to the power of
some public vector c = (c1, . . . , c`(R)), i.e. we want to compute

x = vc.

In particular v actually consists of E vectors each with `(R) components in their slots.
We write

v = (v1,0, . . . ,v1,k1−1, . . . ,vt,0, . . . ,vt,kt−1).
Note, multiplying such a vector by another vector of the same form requires M homo-
morphic multiplications and depth 1. We first write

c = c0 + 2 · c1 + . . .+ 2dlog2 pe · cdlog2 pe,

where ci ∈ {0, 1}`
(R)

. We let c∗i denote the bitwise complement of ci. Thus to compute
x = vc we use the following three steps:

207

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Step 1: Compute v2i

for i = 1, . . . , dlog2 pe, by which we mean every element in v
is raised to the power 2i. This requires dlog2 pe ·M homomorphic multiplications and
depth dlog2 pe.

Step 2: For i ∈ {0, . . . , dlog2 pe}, j ∈ {1, . . . , t} and k = {0, . . . , kt − 1} compute,

w(i)
j,k =

Encpk(ci) · v2i

j,k k 6= 0,

Encpk(ci) · v2i

j,k + Encpk(c∗i) k = 0.

Where Encpk(ci) means encrypt the vector ci so that the jth component of ci is mapped
to the jth plaintext slot of the ciphertext. The above procedure selects the values which
we want to include in the final product. This involves a homomorphic multiplication
by a constant in {0, 1} and the homomorphic addition of a constant in {0, 1} for each
entry, and so is essentially fast (and moderately bad on the noise, so we will ignore this
and call it depth 1/2).

Step 3: We now compute x as

x =
dlog2 pe∏
i=0

w(i),

where we think of w(i) as a vector of E SIMD encryptions. This step (assuming a
balanced multiplication tree) requires depth dlog2dlog2 pee and M · dlog2 pe multipli-
cations.

Executing all three steps above therefore requires a depth of 1
2+dlog2 pe+dlog2dlog2 pee,

and 2 ·M · dlog2 pe multiplications.

5.2 Computing u = vM

Given the previous subsection, we can now evaluate ui =
∏`(R)

j=1 v
mi,j

j , i = 1, . . . , `(R),
where v is a SIMD vector consisting of E vectors encoding `(R) elements, as is the
output u. For this we use a trick for systolic matrix-vector multiplication in [22], but
converted into multiplicative notation.

We write the matrix M as `(R) SIMD vectors di, for i = 1, . . . , `(R), so that di,j =
mj,(j+i−1) (mod `(R)) for j = 1, . . . , `(R). We let v ≪ i denote the SIMD vector v
rotated left i positions (with wrap around). Since v actually consists ofE SIMD vectors
this can be performed using time proportional toE multiplications, but with no addition
to the overall depth (it is an expensive in terms of time, but cheap in terms of noise. See
the operations in Table 1 of [22]).

208

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Step 1: First compute, for i = 1, . . . , `(R),

xi = (v ≪ (i− 1))di

using the method previously described in Subsection 5.1. This requires a depth of 1
2 +

dlog2 pe+ dlog2dlog2 pee, and essentially `(R) · (E + 2 ·M · dlog2 pe) multiplications.

Step 2: All we need now do is compute

u =
`(R)∏
i=1

xi.

This requires (assuming a balanced multiplication tree) a depth of dlog2 `
(R)e and `(R)

multiplications in G.

Thus far, for the operations in Subsection 5.1 and this subsection we have used a total
depth of 1

2 + dlog2 `
(R)e+ dlog2 pe+ dlog2dlog2 pee and a cost of `(R) · (M +E + 2 ·

M · dlog2 pe) multiplications.

5.3 Computing v ·
∏λ
k=0 vMk

k

To evaluate our required output we need to execute the above steps λ times, in order to
obtain the elements which we then multiply together. Thus in total we have a depth of

1
2

+ dlog2 `
(R)e+ dlog2 pe+ dlog2dlog2 pee+ dlog2 λe

and a cost of
λ ·
(
M + `(R) · (M + E + 2 ·M · dlog2 pe)

)
multiplications.

6 Bootstrapping a Set of Ciphertexts

To perform our bootstrapping operation we introduce another representation, this time
more standard. This is the matrix representation of the ring Sq . Since Sq can be con-
sidered a vector space over Zq by the usual polynomial embedding, we can associate
an element a to its coefficient vector a. We can also associate an element b to a n × n
matrix Mb over Zq such that the vector

c = Mb · a

is the coefficient vector of c where c = a · b. This representation, which associates an
element in Sq to a matrix, is called the matrix representation.

Recall we want to bootstrap `(R)/n ciphertexts in one go. We also recall the maps
red and rep from Section 4 and define τ = red ◦ rep to be the reduction modulo p map

209

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

on Z+
q . To do this we can first extend rep and τ to the whole of S+

q by linearity, with

images in Gn and Fnp respectively. Similarly, we can extend rep and τ to S`
(R)/n
q to

obtain maps rep : (S+
q)`

(R)/n −→ G`(R)
and τ : (S+

q)`
(R)/n −→ F`(R)

p , as in Section
4. Again this induces a map red, which is just the SIMD evaluation of red on the image
of rep in G`(R)

. We let repj,i denote the restriction of rep to the (i− 1)th coefficient of
the j-th Sq component, for 1 ≤ i ≤ n and 1 ≤ j ≤ `(R)/n.

We can then rewrite the decryption equation of our `(R)/n ciphertexts as

((
c
(j)
0 + sk(S) · c(j)1 (mod q)

)
(mod p))`

(R)/n
j=1

= red
(
rep
(
c
(1)
0 + sk(S) · c(1)1 , . . .

. . . , c
(`(R)/n)
0 + sk(S) · c(`

(R)/n)
1

))
= red (rep (x)) ,

where x is the vector consisting of Sq elements c(j)0 +sk(S) ·c(j)1 , for j = 1, . . . , `(R)/n.
Thus, if we can compute rep(x), then to perform the bootstrap we need only evaluate (in
`(R)-fold SIMD fashion) the arithmetic circuit of multiplicative depth dlog2 de repre-
senting red. Since we have enough slots, `(R), in the large plain text ring, we are able to
do this homomorphically on fully packed ciphertexts. The total number of monomials
in the arithmetic circuit (i.e. the multiplications we would need to evaluate red) being
D(E, d).

6.1 Homomorphically Evaluating rep(x)

We wish to homomorphically evaluate rep(x) such that the output is a set of E cipher-
texts and if we took the i+ (j− 1) · `(R)/nth slot of each plaintext we would obtain the
E values which represent repj,i(x). Let λ = dlog q/ log pe. We add to the public key of
the SHE scheme the encryption of rep(pk ·sk(S), . . . , pk ·sk(S)) for k = 0, . . . , λ (where
each component is copied `(R)/n times). For a given k this is a set of E ciphertexts,
such that if we took the i + (j − 1) · `(R)/nth slot of each plaintext we would obtain
the E values which represent repj,i(pk · sk

(S)). Let the resulting vector of ciphertexts
be denoted ctk, for k = 1, . . . , λ, where ctk is a vector of length E.

Let M
c
(j)
1

be the matrix representation of the second ciphertext component c(j)1 of
the j-th ciphertext that we want to bootstrap. We write

M
c
(j)
1

=
λ∑
k=0

pk ·M(j,k)
1

210

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

where M(j,k)
1 is a matrix with coefficients in {0, . . . , p− 1}. We then have that

c
(j)
0 + sk(S) · c(j)1 = c

(j)
0 +

λ∑
k=0

(
pk ·M(j,k)

1 · sk(S)
)

= c
(j)
0 +

λ∑
k=0

(
M(j,k)

1 · (pk · sk(S))
)
,

where sk(S) is the vector of coefficients of the secret key sk(S).

We let M(k)
1 =

⊕`(R)/n
j=1 M(j,k)

1 = diag(M(1,k)
1 , . . . ,M(`(R)/n,k)

1). We now apply
rep to both sides, which means we need to compute homomorphically the ciphertext
which represents

rep
(
c
(1)
0 , . . . , c

(`(R)/n)
0

)
·
λ∏
k=0

rep
(
pk · sk(S), . . . , pk · sk(S)

)M
(k)
1
.

We are thus in the situation described in Section 5. Thus the homomorphic evaluation
of rep(x) requires a depth of

1
2

+ dlog2 `
(R)e+ dlog2 pe+ dlog2dlog2 pee+ dlog2 λe

and
λ ·
(
M + `(R) · (M + E + 2 ·M · dlog2 pe)

)
multiplications.

6.2 Repacking

At this point in the bootstrapping procedure (assuming for simplicity that a ring switch
has not occured) we have a single ciphertext ct whose `(R) slots encode the coefficients
(over the small ring) of the `(R)/n ciphertexts that we are bootstrapping. Our task is
now to extract these coefficients to produce a ciphertext (or set of ciphertexts) which
encode the same data. Effectively this is the task of performing `(R)/n inverse Fourier
transforms (a.k.a interpolations) over S in parallel, and then encoding the result as ele-
ments in R via the embedding ι : S −→ R.

There are a multitude of ways of doing this step (bar performing directly an in-
verse FFT algorithm), for example the general method of Alperin-Sheriff and Peikert
[1] could be applied. This makes the observation that the FFT to a vector of Fourier
coefficients x is essentially applying a linear operation, and hence we can compute it
by taking the trace of a value α · x for some fixed constant α.

We select a more naive, and simplistic approach. Suppose x is the vector which is
encoded by the input ciphertext. We first homomorphically compute

b1, . . . ,b`(R) = replicate(x).

211

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Where replicate(x) is the Full Replication algorithm from [22]. This produces `(R)

ciphertexts, the ith of which encodes the constant polynomial over Rp equal to the i
slot in x. In [22] this is explained for the case where `(R) = N , but the method clearly
works when `(R) < N . The method requires time O(`(R)) and depth O(log log `(R)).

Given the output b1, . . . ,b`(R) , which encode the coefficients of the `(R)/n original
plaintext vectors, we can now apply ι (which recall is a linear map) to obtain any linear
function of the underlying plaintexts. For example we could produce `(R)/n ciphertexts
each of which encodes one of the original plaintexts, or indeed a single ciphertext which
encodes all of them.

So putting all of the sub-procedures for bootstrapping together, we find that we can
bootstrap `(R)/n ciphertexts in parallel using a procedure of depth of

dlog2 de+
1
2

+ dlog2 `
(R)e+ dlog2 pe+ dlog2dlog2 pee+ dlog2 λe+O(log2 log2 `

(R))

and a cost of

D(E, d) + λ ·
(
M + `(R) · (M + E + 2 ·M · dlog2 pe)

)
+O(`(R))

multiplications, where d ≈ (log2 q) · (p − 1)/(log2 p), E =
∑t
i=1 ki and M = 1

2 ·∑t
i=1 ki · (ki + 1).

7 Elliptic Curves Based Variant

We now extend our algorithm from representations in finite fields to representations in
elliptic curve groups. Recall we need to embed Z+

q into a group defined over Fp whose
operations can be expressed in terms of the functionality of the homomorphic encryp-
tion scheme. This means that the range of the representation should be an algebraic
group. We have already seen linear algebraic groups (a.k.a. matrix representations) used
in this context in work of Alperin-Sherriff and Peikert, thus as it is natural (to anyone
who has studied algebraic groups) to consider algebraic varieties. The finite field case
discussed in the previous sections corresponds to the genus zero case, thus the next
natural extension would be to examine the genus one case (a.k.a. elliptic curves).

The reason for doing this is the value of q from Table 2 compared to the estimated
values from Table 1 are far from optimal. This is because we have few possible group
orders of F∗

pki
. The standard trick in this context (used for example in the ECM fac-

torization method, the ECPP primality prover, or even indeed in all of elliptic curve
cryptography) is to replace the multiplicative group of a finite field by an elliptic curve
group.

Just as before we select a coprime factorization q =
∏t
i=1 ei (with the ei not nec-

essarily prime, but pairwise coprime). But now we require that ei divides the order of
an elliptic curve Ei defined over pki . Since the group orders of elliptic curves are dis-
tributed roughly uniformly within the Hasse interval it is highly likely that there are
such elliptic curves. Determining such curves may however be a hard problem for a
fixed value of q; a problem which arose previously in cryptography in [3]. However,

212

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

since we have some freedom in selecting q in our scheme we can select q and the Ei
simultaneously, and hence finding the elliptic curves will not be a problem.

Again, we fix a polynomial representation of Fpki , i.e. an irreducible polynomial
fi(x) of degree ki such that Fpki = Fp[x]/fi(x), and now we let Gi ∈ Ei(Fpki)
denote a fixed point on the elliptic curve of order ei. We now can translate our method
into this new setting. For example Equation (1) translates to

rep :
{

Z+
q −→ G =

∏t
i=1Ei(Fpki)

a 7−→ ([a1]G1, . . . , [at]Gt)
(2)

where ai = a (mod ei).
Homomorphic calculations in G are then performed using Jacobian Projective co-

ordinates. This means that general point addition can be performed with multiplicative
depth five andM ′ = 16·M homomorphic multiplications. Our method then proceeds as
before, except we replace homomorphic multiplication in F∗

pki
with Jacobian projective

point addition in Ei(Fpki).
The computation of red is then performed as follows. We first homomorphically

map the projective points in G into an affine point. Each such conversion, in component
i, requires an Fpki -field inversion and three Fpki -field multiplications. If we let DInvi
(resp. MInvi) denote the depth (resp. number of multiplications in Fp) of the circuit to
invert in the field Fpki . This implies that the conversion of a set of projective points in
G to a set of affine points requires depth 3 + maxti=1 DInvi and 4 ·M +

∑t
i=1 MInvi

homomorphic multiplications over Fp.
Given this final conversion to affine form, we have effectively E′ = E + t, as

opposed to E, variables defining the elements in G. The extra t variables coming from
the y-coordinate; it is clear we only need to store t such variables as opposed to E such
variables as each x coordinate corresponds to at most two y-coordinates and hence a
naive form of homomorphic point compression can be applied.

This means the map red (after the conversion to affine coordinates so as to reduce
the multiplicative complexity of the interpolated polynomial) can be expressed as a
degree d′ map; where we expect d′ to be the smallest d′ such that E

′+d′Cd′ > q, which
means we expect d′ ≈ E′ ·(2log(q)/ log(E′)−1). This means, as before, that the resulting
depth will be dlog2 d

′e and the number of multiplications will be D(E′, d′).
So putting all of the sub-procedures for bootstrapping together, we find that we can

use the elliptic curve variant of our bootstrapping method to bootstrap `(R)/n cipher-
texts in parallel using a procedure of depth of

dlog2 d
′e+ 5 ·

(
1
2

+ dlog2 `
(R)e+ ·dlog2 pe+ ·dlog2dlog2 pee+ dlog2 λe

)
+ 3 +

t
max
i=1

DInvi +O(log2 log2 `
(R))

and

D(E′, d′) + λ ·
(
M ′ + `(R) · (M ′ + 3 · E + 2 ·M ′ · dlog2 pe)

)
+ 4 ·M +

t∑
i=1

MInvi +O(`(R))

213

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

multiplications, where d′ ≈ log q/ logE′, E′ =
∑t
i=1(ki + 1), M =

∑t
i=1 ki · (ki +

1)/2 and M ′ = 16 ·M . Note the 3 · E term comes from needing to rotate the three
projective coordinates.

However, the ability to use arbitrary q comes at a penalty; the depth required has
dramatically increased due to the elliptic curve group operations. For example if we
consider a prime p of size roughly 216 and k = 2, then we need about 200 levels, as
opposed to 56 with the finite field variant. This then strongly influences the required
value of N , pushing it up from around 85, 000 to 220, 000. Thus in practice the elliptic
curve variant is unlikely to be viable.

8 Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-267188-
CRIPTO, by EPSRC via grant EP/I03126X, by the European Commission under the
H2020 project HEAT and by the Defense Advanced Research Projects Agency (DARPA)
and the Air Force Research Laboratory (AFRL) under agreement number FA8750-11-
2-00791.

References

1. J. Alperin-Sheriff and C. Peikert. Practical bootstrapping in quasilinear time. In CRYPTO,
volume 8042 of Lecture Notes in Computer Science, pages 1–20, 2013.

2. J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial error. In CRYPTO,
volume 8616 of Lecture Notes in Computer Science, pages 297–314, 2014.

3. D. Boneh and R.J. Lipton. Algorithms for black-box fields and their application to cryptog-
raphy (extended abstract). In CRYPTO, volume 1109 of Lecture Notes in Computer Science,
pages 283–297, 1996.

4. Z. Brakerski. Fully homomorphic encryption without modulus switching from classical
gapsvp. In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 868–886,
2012.

5. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In ITCS, pages 309–325. ACM, 2012.

6. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS, pages 97–106. IEEE, 2011.

7. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and se-
curity for key dependent messages. In CRYPTO, volume 6841 of Lecture Notes in Computer
Science, pages 505–524, 2011.

8. Z. Brakerski and V. Vaikuntanathan. Lattice-based FHE as secure as PKE. In ITCS, pages
1–12, 2014.

9. Y. Chen and P.Q. Nguyen. BKZ 2.0: Better lattice security estimates. In ASIACRYPT, volume
7073 of Lecture Notes in Computer Science, pages 1–20, 2011.

1 The US Government is authorized to reproduce and distribute reprints for Government pur-
poses notwithstanding any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of Defense Advanced Research
Projects Agency (DARPA) or the U.S. Government.

214

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

10. Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède Lepoint,
Mehdi Tibouchi, and Aaram Yun. Batch fully homomorphic encryption over the integers. In
EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages 315–335, 2013.

11. A. Choudhury, J. Loftus, E. Orsini, A. Patra, and N.P. Smart. Between a rock and a hard
place: Interpolating between MPC and FHE. In ASIACRYPT, volume 8270 of Lecture Notes
in Computer Science, pages 221–240, 2013.

12. I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical covertly
secure MPC for dishonest majority – or: Breaking the SPDZ limits. In ESORICS, volume
8134 of Lecture Notes in Computer Science, pages 1–18, 2013.

13. I. Damgård, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty computation from somewhat
homomorphic encryption. In CRYPTO, volume 7417 of Lecture Notes in Computer Science,
pages 643–662, 2012.

14. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.
crypto.stanford.edu/craig.

15. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178.
ACM, 2009.

16. C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic encryption scheme. In
EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 129–148, 2011.

17. C. Gentry, S. Halevi, C. Peikert, and N.P. Smart. Field switching in BGV-style homomorphic
encryption. Journal of Computer Security, 21(5):663–684, 2013.

18. C. Gentry, S. Halevi, and N. P. Smart. Better bootstrapping in fully homomorphic encryption.
In Public Key Cryptography, volume 7293 of Lecture Notes in Computer Science, pages 1–
16, 2012.

19. C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog overhead.
In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 465–482, 2012.

20. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In
CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 850–867, 2012.

21. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, volume 8042 of
Lecture Notes in Computer Science, pages 75–92, 2013.

22. S. Halevi and V. Shoup. Algorithms in HElib. Cryptology ePrint Archive, Report 2014/106,
2014.

23. T. Lepoint and M. Naehrig. A comparison of the homomorphic encryption schemes FV and
YASHE. In AFRICACRYPT, volume 8469 of Lecture Notes in Computer Science, pages
318–335, 2014.

24. R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In
CT-RSA, volume 6558 of Lecture Notes in Computer Science, pages 319–339, 2011.

25. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over
rings. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 1–23,
2010.

26. V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-lwe cryptography. In EURO-
CRYPT, volume 7881 of Lecture Notes in Computer Science, pages 35–54, 2013.

27. D. Micciancio and O. Regev. Lattice-based cryptography. In Post-quantum cryptography,
pages 147–191. Springer, 2009.

28. K. Rohloff and D.B. Cousins. A scalable implementation of fully homomorphic encryption
built on NTRU. In Finanical Cryptography, volume 8438 of Lecture Notes in Computer
Science, pages 221–234, 2014.

29. N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key
and ciphertext sizes. In PKC, volume 6056 of Lecture Notes in Computer Science, pages
420–443, 2010.

215

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

30. N.P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Designs, Codes and
Cryptography, 71:57–81, 2014.

31. J. van de Pol and N.P. Smart. Estimating key sizes for high dimensional lattice-based sys-
tems. In IMA Int. Conf., volume 8308 of Lecture Notes in Computer Science, pages 290–303,
2013.

32. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic
encryption over the integers. In EUROCRYPT, volume 6110 of Lecture Notes in Computer
Science, pages 24–43, 2010.

A Parameter Calculation

In [20] a concrete set of parameters for the BGV SHE scheme was given for the case of
binary message spaces, and arbitrary L. In [12] this was adapted to the case of message
space Rp for 2-power cyclotomic rings, but only for the schemes which could support
one level of multiplication gates (i.e. for L = 1). In [11] these two approaches were
combined, for arbitrary L and p, and the analysis was (slightly) modified to remove
the need for a modulus switching upon encryption. In this section we modify again the
analysis of [11] to present an analysis which includes a step of field switching from [17].
We assume in this section that the reader is familiar with the analysis and algorithms
from [20,11,17].

Our analysis will make extensive use of the following fact: If a ∈ R be chosen from
a distribution such that the coefficients are distributed with mean zero and standard
deviation σ, then if ζm is a primitive mth root of unity, we can use 6 ·σ to bound a(ζm)
and hence the canonical embedding norm of a. If we have two elements with variances
σ2

1 and σ2
2 , then we can bound the canonical norm of their product with 16 · σ1 · σ2.

Ensuring We Can Evaluate the Required Depth: Recall we have two rings R and
S of degree N and n respectively. The ring S is a subring of R and hence n divides
N . We require a chain of moduli q0 < q1 . . . < qL corresponding to each level of
the scheme. We assume (for sake of simplicity) that qi/qi−1 = pi are primes. Thus
qL = q0 ·

∏i=L
i=1 pi. Also note, that as in [11], we apply a SHE.LowerLevel (a.k.a.

modulus switch) algorithm before a multiplication operation. This often leads to lower
noise values in practice (which a practical instantiation can make use of). In addition it
eliminates the need to perform a modulus switch after encryption, which happened in
[20].

We utilize the following constants described in [12], which are worked out for the
case of message space defined modulo p (the constants in [12] make use of an additional
parameter, arising from the key generation procedure. In our case we can take this
constant equal to one). In the following h is the Hamming weight of the secret keys
sk(R) and sk(S).

BClean =N · p/2 + p · σ ·
(

16 ·N√
2

+ 6 ·
√
N + 16 ·

√
h ·N

)
B

(R)
Scale =p ·

√
3 ·N ·

(
1 +

8
3
·
√
h

)

216

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

B
(S)
Scale =p ·

√
3 · n ·

(
1 +

8
3
·
√
h

)
B

(R)
Ks =p · σ ·N ·

(
1.49 ·

√
h ·N + 2.11 · h+ 5.54 ·

√
h+ 1.96

√
N + 4.62

)
B

(S)
Ks =p · σ · n ·

(
1.49 ·

√
h · n+ 2.11 · h+ 5.54 ·

√
h+ 1.96

√
n+ 4.62

)
As in [20] we define a small “wiggle room” ξ which we set to be equal to eight; this
is set to enable a number of additions to be performed without needing to individually
account for them in our analysis. These constants arise in the following way:

– A freshly encrypted ciphertext at level L has noise bounded by BClean.
– In the worst case, when applying SHE.LowerLevel to a (big ring) ciphertext at level

l > L2 + 1 with noise bounded by B′ one obtains a new ciphertext at level l − 1
with noise bounded by

B′

pl
+B

(R)
Scale.

– In the worst case, when applying SHE.LowerLevel to a (small ring) ciphertext at
level l ≤ L2 + 1 with noise bounded by B′ one obtains a new ciphertext at level
l− 1 with noise bounded by

B′

pl
+B

(S)
Scale.

– When applying the tensor product multiplication operation to (big ring) ciphertexts
of a given level l > L2 + 1 of noise B1 and B2 one obtains a new ciphertext with
noise given by

B1 ·B2 +
B

(R)
Ks · ql
PR

+B
(R)
Scale,

where PR is a value to be determined later.
– When applying the tensor product multiplication operation to (small ring) cipher-

texts of a given level l ≤ L2 of noise B1 and B2 one obtains a new ciphertext with
noise given by

B1 ·B2 +
B

(S)
Ks · ql
PS

+B
(S)
Scale,

where again PS is a value to be determined later.

A general evaluation procedure begins with a freshly encrypted ciphertext at level
L with noise BClean. When entering the first multiplication operation we first apply a
SHE.LowerLevel operation to reduce the noise to a universal bounds.B(R), whose value
will be determined later. We therefore require

ξ ·BClean

pL
+B

(R)
Scale ≤ B

(R),

i.e.
pL ≥

8 ·BClean

B(R) −B(R)
Scale

. (3)

217

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

We now turn to dealing with the SHE.LowerLevel operations which occurs before a
multiplication gate at level l ∈ {1, . . . , L− 1} \ {L2 + 1}. In what follows we assume
l > L2 + 1, to obtain the equations for l ≤ L2 one simply replaces the R-constants
by their equivalent S-constants. We perform a worst case analysis and assume that
the input ciphertexts are at level l. We can then assume that the input to the tensoring
operation in the previous multiplication gate (just after the previous SHE.LowerLevel)
was bounded byB(R), and so the output noise from the previous multiplication gate for
each input ciphertext is bounded by (B(R))2 + B

(R)
Ks · ql/PR + B

(R)
Scale. This means the

noise on entering the SHE.LowerLevel operation is bounded by ξ times this value, and
so to maintain our invariant we require

ξ · (B(R))2 + ξ ·B(R)
Scale

pl
+
ξ ·B(R)

Ks · ql
PR · pl

+B
(R)
Scale ≤ B

(R).

Rearranging this into a quadratic equation in B(R) we have

ξ

pl
· (B(R))2 −B(R) +

(
ξ ·B(R)

Scale

pl
+
ξ ·B(R)

Ks · ql−1

PR
+B

(R)
Scale

)
≤ 0.

We denote the constant term in this equation by Rl−1. We now assume that all primes
pl are of roughly the same size (for the ring R), and noting the we need to only satisfy
the inequality for the largest modulus l = L− 1 (resp. l = L2 for the ring S). We now
fix RL−2 by trying to ensure that RL−2 is close to B(R)

Scale · (1 + ξ/pL−1) ≈ B
(R)
Scale, so

we set RL−2 = (1− 2−3) ·B(R)
Scale · (1 + ξ/pL−1), and obtain

PR ≈ 8 ·
ξ ·B(R)

Ks · qL−2

B
(R)
Scale

, (4)

since B(R)
Scale · (1 + ξ/pL−1) ≈ B(R)

Scale. Similarly for the small ring we find

PS ≈ 8 ·
ξ ·B(S)

Ks · qL2−1

B
(S)
Scale

, (5)

To ensure we have a solution we require 1 − 4 · ξ · RL−2/pL−1 ≥ 0, (resp. 1 − 4 · ξ ·
RL2−1/pL2 ≥ 0) which implies we should take, for i = 2, . . . , L− 1,

pi ≈

{
4 · ξ ·RL−2 ≈ 32 ·B(R)

Scale = pR For i = L2 + 2, . . . , L− 1,
4 · ξ ·RL2−1 ≈ 32 ·B(S)

Scale = pS For i = 1, . . . , L2.
(6)

We now examine what happens at levelL2+1 when we perform a ring switch operation.
Following Lemma 3.2 of [17] we know the noise increases by a factor of (p/2)·

√
N/n.

The noise output from the previous multiplication gate is bounded by (B(R))2 +B
(R)
Ks ·

218

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

qL2+2/PR +B
(R)
Scale. Note that

B
(R)
Ks · qL2+2

PR
≈
B

(R)
Ks · qL2+2 ·B(R)

Scale

8 · ξ ·B(R)
Ks · qL−2

≈
B

(R)
Scale

8 · ξ · pL1−4
R

Thus the we know that the noise after the ring switch operation is bounded by

BRingSwitch =
p

2
·
√
N/n ·

(
(B(R))2 +

B
(R)
Scale

8 · ξ · pL1−4
R

+B
(R)
Scale

)
.

We now modulus switch down to level L2, and obtain a ciphertext (over the ring S)
with noise bounded by

BRingSwitch

pL2+1
+B

(S)
Scale.

We would like this to be less than the universal bound B(S), which implies

pL2+1 ≥
BRingSwitch

B(S) −B(S)
Scale

. (7)

We now need to estimate the size of p0. Due to the above choices the ciphertext to which
we apply the bootstrapping has norm bound by B(S). This means that we require

q0 = p0 ≥ 2 ·B(S) · cm′ , (8)

to ensure a valid decryption/bootstrapping procedure. Recall cm′ is the ring constant for
the polynomial ring S and it depends only on m′ (see [13] for details).

Ensuring We Have Security: The works before [31,23], such as Lindner and Peikert
[24], did not include the rank of the lattice into account when estimating the cost of the
attacker. The reason is that the lattice rank appears to be only a second order term in
the cost of the attack. However, for applications such as FHE, the dimension is usually
very big, e.g. 216, and lattice algorithms are often polynomial in the rank. Therefore,
even as a second order term it can contribute significantly to the cost of the attack.
The largest modulus used in our big ring (resp. small ring) key switching matrices, i.e.
the largest modulus used in an LWE instance, is given by QL−1 = PR · qL−1 (resp.
QL2 = PS · qL2).

We recall the approach of [31,23] here. First, fix some security level as measured
in enumeration nodes, e.g. 2128. Now, use estimates by Chen and Nguyen [9] are used
to determine the cost of running BKZ 2.0 for various block sizes β. Combining this
with the security level gives an upper bound on the rounds an attacker can perform,
depending on β. Then, for various lattice dimensions r, the BKZ 2.0 simulator by Chen
and Nguyen is used to determine the quality of the vector as measured by the root-
Hermite factor δ(β, r) = (‖b‖/vol(L)1/r)1/r. Now, the best possible root-Hermite
factor achievable by the attacker is given by δ(r) = minβ δ(β, r)

219

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

In LWE, the relevant parameters for the security are the ring dimension n (resp.N),
the modulus Q = QL2 (resp. Q = QL−1) and the standard deviation σ. Note that in
most scenarios, an adversary can choose how many LWE samples he uses in his attack.
This number r is equal to the rank of the lattice. The distinguishing attack against LWE
uses a short vector in the dual SIS lattice to distinguish the LWE distribution from the
uniform distribution. More precisely, an adversary can distinguish between these two
distributions with distinguishing advantage ε if the shortest vector he can obtain (in
terms of its root-Hermite factor) satisfies

δ(r)r ·Qn/r−1 · σ <
√
− log(ε)/π.

It follows that in order for our system to be secure against the previously described
adversary, we need that

log2(Q) ≤ min
r>n

r2 · log2(δ(r)) + r · log2(σ/α)
r − n

, (9)

where α =
√
− log(ε)/π. See also[27,24,23] for more information. For every nwe can

now compute an upper bound on log2(q) by iterating the right hand side of Equation (9)
over m and selecting the minimum.

Putting it all together As in [20,12], we set σ = 3.2, B(R) = 2 · B(R)
Scale and B(S) =

2 · B(S)
Scale. From our equations (3), (4), (5), (6), (7), and (8) we obtain equations for pi

for i = 0, . . . , L, PR and PS in terms of n, N , L, h and the security level κ.

B Example Parameters

In Appendix A we present a calculation of suitable parameters for our scheme, and
the resulting complexity of the polynomial representation of red, here we work out a
concrete set of parameters for various plaintext moduli p.

We target κ = 128-bits of security, and set the Hamming weight h of the secret key
sk to be 64 as in [20,12]. On inputN and n the to the formulae in Appendix A we obtain
an upper bounds on log(QL−1) and log(QL2). We now use equations (3)-(8) from the
Appendix for different values of the plaintext modulus p to obtain a lower bound on
log(QL−1) and log(QL2). Then, we increase N and n until the lower bound on QL−1

and QL2 from the functionality is below the upper bound from the security analysis. In
this way we obtain lower bounds for N and n.

In Table 1 we consider four different values of p; for simplicity we also set t = 1 in
(1), i.e. G = F∗pk , for a suitable choice of k. After finding approximate values for N , n
and q we can then search for exact values ofN , n and q. More precisely, we are looking
for cyclotomic rings R and S such that the degree N = φ(m) of F (X) = Φm(X) and
n = φ(m′) of f(x) = Φm′(X) are larger than the bounds above and n divides both N
and `(R) (the number of plaintext slots associated with R). In addition we require that
q divides pk − 1. See Table 2 for some values.

Notice that the value of q is strongly influenced by the ring constant cm′ . In Table 1
we set cm′ = 1.28 (i.e. we assume the best case of m′ being prime), whereas in Table 2

220

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Table 1. Lower bounds on N and n

p κ c = `(R)/n n ≈ N ≈ q ≈
2 128 1 860 23100 11637

2 24100

≈ 28 128 1 1040 51800 1635087
2 53100

3, 4, 56000
[5, . . . , 10] 57600

≈ 216 128 1 1300 96000 467989106
2, 3 98500

[4, . . . , 10] 103000

≈ 232 128 1 1750 181000 3.558467651 · 1013

2 183000
[3, . . . , 10] 185000

Table 2. A concrete set of cyclotomic rings with an estimation of the number of multiplications
and the depth required to perform our bootstrapping step

p m N = φ(m) m′ n = φ(m′) cm′ `
(R)/n k L # Mults q

2 31775 24000 1271 1200 3.93 1 16 23 ≈ 8.3 · 106 65535
32767 27000 1057 900 2.69 2 15 23 ≈ 1.02 · 107 32767

28 + 1 62419 51840 1687 1440 2.72 1 3 40 ≈ 4.6 · 106 4243648
91149 58080 1321 1320 1.28 1 3 39 ≈ 2.3 · 106 2121824
137384 63360 1321 1320 1.28 4 3 41 ≈ 3.5 · 106 2121824

216 + 1 113993 100800 2651 2400 2.9 1 2 56 ≈ 1.5 · 109 2147549184
160977 102608 2333 2332 1.28 2 2 58 ≈ 6.3 · 108 715849728
272200 108800 1361 1360 1.28 4 2 57 ≈ 4.8 · 108 536887296

232 + 15 198203 183040 2227 2080 3.6 1 2 79 ≈ 1.1 · 1014 414161297767368
202051 199872 2083 2082 1.28 4 2 79 ≈ 3.9 · 1013 50637664608480
352317 190512 2649 1764 1.81 6 2 82 ≈ 5.1 · 1014 50637664608480

we compute the actual value of the ring constant for each cyclotomic ring we consider.
For example for p = 2, in Table 1 we obtain an approximate value q ≈ 11637, but in
Table 2 we need a larger value due to the additional condition that q divides pk− 1, and
the ring constant, which is bigger than 1.27 for m′ = 1271 and m′ = 1057.

221

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Multiparty Computation from Somewhat Homomorphic
Encryption

Ivan Damg̊ard1, Valerio Pastro1, Nigel Smart2, and Sarah Zakarias1

1 Department of Computer Science, Aarhus University
2 Department of Computer Science, Bristol University

Abstract. We propose a general multiparty computation protocol secure against an active adversary
corrupting up to n−1 of the n players. The protocol may be used to compute securely arithmetic circuits
over any finite field Fpk . Our protocol consists of a preprocessing phase that is both independent of the
function to be computed and of the inputs, and a much more efficient online phase where the actual
computation takes place. The online phase is unconditionally secure and has total computational (and
communication) complexity linear in n, the number of players, where earlier work was quadratic in n.
Moreover, the work done by each player is only a small constant factor larger than what one would
need to compute the circuit in the clear. We show this is optimal for computation in large fields. In
practice, for 3 players, a secure 64-bit multiplication can be done in 0.05 ms. Our preprocessing is based
on a somewhat homomorphic cryptosystem. We extend a scheme by Brakerski et al., so that we can
perform distributed decryption and handle many values in parallel in one ciphertext. The computational
complexity of our preprocessing phase is dominated by the public-key operations, we need O(n2/s)
operations per secure multiplication where s is a parameter that increases with the security parameter
of the cryptosystem. Earlier work in this model needed Ω(n2) operations. In practice, the preprocessing
prepares a secure 64-bit multiplication for 3 players in about 13 ms.

1 Introduction

A central problem in theoretical cryptography is that of secure multiparty computation (MPC).
In this problem n parties, holding private inputs x1, . . . , xn, wish to compute a given function
f(x1, . . . , xn). A protocol for doing this securely should be such that honest players get the correct
result and this result is the only new information released, even if some subset of the players is
controlled by an adversary.

In the case of dishonest majority, where more than half the players are corrupt, unconditionally
secure protocols cannot exist. Under computational assumptions, it was shown in [8] how to con-
struct UC-secure MPC protocols that handle the case where all but one of the parties are actively
corrupted. The public-key machinery one needs for this is typically expensive so efficient solutions
are hard to design for dishonest majority. Recently, however, a new approach has been proposed
making such protocols more practical. This approach works as follows: one first designs a general
MPC protocol in the preprocessing model, where access to a “trusted dealer” is assumed. The dealer
does not need to know the function to be computed, nor the inputs, he just supplies raw material
for the computation before it starts. This allows the “online” protocol to use only cheap information
theoretic primitives and hence be efficient. Finally, one implements the trusted dealer by a secure
protocol using public-key techniques, this protocol can then be run in a preprocessing phase. The
current state of the art in this respect are the protocols in Bendlin et al., Damg̊ard/Orlandi and
Nielsen et al. [5, 13, 25]. The “MPC-in-the-head” technique of Ishai et al. [18, 17] has similar overall
asymptotic complexity, but larger constants and a less efficient online phase.

Recently, another approach has become possible with the advent of Fully Homomorphic En-
cryption (FHE) by Gentry [15]. In this approach all parties first encrypt their input under the

222

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

FHE scheme; then they evaluate the desired function on the ciphertexts using the homomorphic
properties, and finally they perform a distributed decryption on the final ciphertexts to get the
results. The advantage of the FHE-based approach is that interaction is only needed to supply
inputs and get output. However, the low bandwidth consumption comes at a price; current FHE
schemes are very slow and can only evaluate small circuits, i.e., they actually only provide what
is known as somewhat homomorphic encryption (SHE). This can be circumvented in two ways;
either by assuming circular security and implementing an expensive bootstrapping operation, or
by extending the parameter sizes to enable a “levelled FHE” scheme which can evaluate circuits of
large degree (exponential in the number of levels) [6]. The main cost, much like other approaches, is
in terms of the number of multiplications in the arithmetic circuit. So whilst theoretically appealing
the approach via FHE is not competitive in practice with the traditional MPC approach.

1.1 Contributions of this paper.

Optimal Online Phase. We propose an MPC protocol in the preprocessing model that computes
securely an arithmetic circuit C over any finite field Fpk . The protocol is statistically UC-secure
against active and adaptive corruption of up to n− 1 of the n players, and we assume synchronous
communication and secure point-to-point channels. Measured in elementary operations in Fpk the
total amount of work done is O(n · |C|+n3) where |C| is the size of C. All earlier work in this model
had complexity Ω(n2 · |C|). A similar improvement applies to the communication complexity and
the amount of data one needs to store from the preprocessing. Hence, the work done by each player
in the online phase is essentially independent of n. Moreover, it is only a small constant factor
larger than what one would need to compute the circuit in the clear. This is the first protocol in
the preprocessing model with these properties3.

Finally, we show a lower bound implying that w.r.t the amount of data required from the
preprocessing, our protocol is optimal up to a constant factor. We also obtain a similar lower
bound on the number of bit operations required, and hence the computational work done in our
protocol is optimal up to poly-logarithmic factors.

All results mentioned here hold for the case of large fields, i.e., where the desired error probability
is (1/pk)c, for a small constant c. Note that many applications of MPC need integer arithmetic,
modular reductions, conversion to binary, etc., which we can emulate by computing in Fp with p
large enough to avoid overflow. This naturally leads to computing with large fields. As mentioned,
our protocol works for all fields, but like earlier work in this model it is less efficient for small fields
by a factor of essentially d sec

log pk
e for error probability 2−Θ(sec), see Appendix A.4 for details.

Obtaining our result requires new ideas compared to [5], which was previously state of the art
and was based on additive secret sharing where each share in a secret is authenticated using an
information theoretic Message Authentication Code (MAC). Since each player needs to have his
own key, each of the n shares need to be authenticated with n MACs, so this approach is inherently
quadratic in n. Our idea is to authenticate the secret value itself instead of the shares, using a
single global key. This seems to lead to a “chicken and egg” problem since one cannot check a
MAC without knowing the key, but if the key is known, MACs can be forged. Our solution to this

3 With dishonest majority, successful termination cannot be guaranteed, so our protocols simply abort if cheating is
detected. We do not, however, identify who cheated, indeed the standard definition of secure function evaluation
does not require this. Identification of cheaters is possible but we do not know how to do this while maintaining
complexity linear in n.

223

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

involves secret sharing the key as well, carefully timing when values are revealed, and various tricks
to reduce the amortized cost of checking a set of MACs.

Efficient use of FHE for MPC. As a conceptual contribution we propose what we believe is “the
right” way to use FHE/SHE for computationally efficient MPC, namely to use it for implementing
a preprocessing phase. The observation is that since such preprocessing is typically based on the
classic circuit randomization technique of Beaver [3], it can be done by evaluating in parallel many
small circuits of small multiplicative depth (in fact depth 1 in our case). Thus SHE suffices, we do
not need bootstrapping, and we can use the SHE SIMD approach of [28] to handle many values in
parallel in a single ciphertext.

To capitalize on this idea, we apply the SIMD approach to the cryptosystem from [7] (see also
[16] where this technique is also used). To get the best performance, we need to do a non-trivial
analysis of the parameter values we can use, and we prove some results on norms of embeddings
of a cyclotomic field for this purpose. We also design a distributed decryption procedure for our
cryptosystem. This protocol is only robust against passive attacks. Nevertheless, this is sufficient for
the overall protocol to be actively secure. Intuitively, this is because the only damage the adversary
can do is to add a known error term to the decryption result obtained. The effect of this for the
online protocol is that certain shares of secret values may be incorrect, but this will caught by
the check involving the MACs. Finally we adapt a zero-knowledge proof of plaintext knowledge
from [5] for our purpose and in particular we improve the analysis of the soundness guarantees it
offers. This influences the choice of parameters for the cryptosystem and therefore improves overall
performance.

An Efficient Preprocessing Protocol. As a result of the above, we obtain a constant-round prepro-
cessing protocol that is UC-secure against active and static corruption of n − 1 players assuming
the underlying cryptosystem is semantically secure, which follows from the polynomial (PLWE)
assumption. UC-security for dishonest majority cannot be obtained without a set-up assumption.
In this paper we assume that a key pair for our cryptosystem has been generated and the secret
key has been shared among the players.

Whereas previous work in the preprocessing/online model [5, 13] use Ω(n2) public-key opera-
tions per secure multiplication, we only need O(n2/s) operations, where s is a number that grows
with the security parameter of the SHE scheme (we have s ≈ 12000 in our concrete instantiation
for computing in Fp where p ≈ 264). We stress that our adapted scheme is exactly as efficient as the
basic version of [7] that does not allow this optimization, so the improvement is indeed “genuine”.

In comparison to the approach mentioned above where one uses FHE throughout the protocol,
our combined preprocessing and online phase achieves a result that is incomparable from a theo-
retical point of view, but much more practical: we need more communication and rounds, but the
computational overhead is much smaller – we need O(n2/s · |C|) public key operations compared
to O(n · |C|) for the FHE approach, where for realistic values of n and s, we have n2/s � n.
Furthermore, we only need a low depth SHE which is much more efficient in the first place. And
finally, we can push all the work using SHE into a, function independent, preprocessing phase.

Performance in practice. Both the preprocessing and online phase have been implemented and
tested for 3 players on up-to-date machines connected on a LAN. The preprocessing takes about
13 ms amortized time to prepare one multiplication in Fp for a 64-bit p, with security level corre-
sponding roughly to 1024 bit RSA and an error probability of 2−40 for the zero-knowledge proofs

224

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

(the error probability can be lowered to 2−80 by repeating the ZK proofs which will at most double
the time). This is 2-3 orders of magnitude faster than preliminary estimates for the most efficient
instantiation of [5]. The online phase executes a secure 64-bit multiplication in 0.05 ms amortized
time. These rough orders of magnitude, and the ability to deal with a non-trivial number of players,
are born out by a recent implementation of the protocols described in this paper [11].

Concurrent Related Work. In recent independent work [24, 2, 16], Meyers at al., Asharov et al.
and Gentry et al. also use an FHE scheme for multiparty computation. They follow the pure FHE
approach mentioned above, using a threshold decryption protocol tailored to the specific FHE
scheme. They focus primarily on round complexity, while we want to minimize the computational
overhead. We note that in [16], Gentry et al. obtain small overhead by showing a way to use the
FHE SIMD approach for computing any circuit homomorphically. However, this requires full FHE
with bootstrapping (to work on arbitrary circuits) and does not (currently) lead to a practical
protocol.

In [25], Nielsen et al. consider secure computing for Boolean Circuits. Their online phase is
similar to that of [5], while the preprocessing is a clever and very efficient construction based on
Oblivious Transfer. This result is complementary to ours in the sense that we target computations
over large fields which is good for some applications whereas for other cases, Boolean Circuits are the
most compact way to express the desired computation. Of course, one could use the preprocessing
from [25] to set up data for our online phase, but current benchmarks indicate that our approach
is faster for large fields, say of size 64 bits or more.

We end the introduction by covering some basic notation which will be used throughout this
paper. For a vector x = (x1, . . . , xn) ∈ Rn we denote by ‖x‖∞ := max1≤i≤n |xi|, ‖x‖1 :=

∑
1≤i≤n |xi|

and ‖x‖2 :=
√∑

|xi|2. We let ε(κ) denote an unspecified negligible function of κ. If S is a set we
let x← S denote assignment to the variable x with respect to a uniform distribution on S; we use
x ← s for a value s as shorthand for x ← {s}. If A is an algorithm x ← A means assign to x the
output of A, where the probability distribution is over the random coins of A. Finally x := y means
“x is defined to be y”.

2 Online Protocol

Our aim is to construct a protocol for arithmetic multiparty computation over Fpk for some prime
p. More precisely, we wish to implement the ideal functionality FAMPC, presented in Figure 15 in
Appendix Ethe full version. Our MPC protocol is structured in a preprocessing (or offline) phase
and an online phase. We start out in this section by presenting the online phase which assumes
access to an ideal functionality FPREP (Figure 16 of Appendix E). In Section 5 we show how to
implement this functionality in an independent preprocessing phase.

In our specification of the online protocol, we assume for simplicity that a broadcast channel
is available at unit cost, that each party has only one input, and only one public output value
is to be computed. In Appendix A.3 we explain how to implement the broadcasts we need from
point-to-point channels and lift the restriction on the number of inputs and outputs without this
affecting the overall complexity.

Before presenting the concrete online protocol we give the intuition and motivation behind
the construction. We will use unconditionally secure MACs to protect secret values from being
manipulated by an active adversary. However, rather than authenticating shares of secret values as

225

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

in [5], we authenticate the shared value itself. More concretely, we will use a global key α chosen
randomly in Fpk , and for each secret value a, we will share a additively among the players, and we
also secret-share a MAC αa. This way to represent secret values is linear, just like the representation
in [5], and we can therefore do secure multiplication based on multiplication triples à la Beaver [3]
that we produce in the preprocessing.

An immediate problem is that opening a value reliably seems to require that we check the MAC,
and this requires players know α. However, as soon as α is known, MACs on other values can be
forged. We solve this problem by postponing the check on the MACs (of opened values) to the
output phase (of course, this may mean that some of the opened values are incorrect). During the
output phase players generate a random linear combination of both the opened values and their
shares of the corresponding MACs; they commit to the results and only then open α (see Figure
1). The intuition is that, because of the commitments, when α is revealed it is too late for corrupt
players to exploit knowledge of the key. Therefore, if the MAC checks out, all opened values were
correct with high probability, so we can trust that the output values we computed are correct and
can safely open them.

Protocol ΠOnline

Initialize: The parties first invoke the preprocessing to get the shared secret key [[α]], a sufficient number of
multiplication triples (〈a〉, 〈b〉, 〈c〉), and pairs of random values 〈r〉, [[r]], as well as single random values [[t]], [[e]].
Then the steps below are performed in sequence according to the structure of the circuit to compute.

Input: To share Pi’s input xi, Pi takes an available pair 〈r〉, [[r]]. Then, do the following:
1. [[r]] is opened to Pi (if it is known in advance that Pi will provide input, this step can be done already

in the preprocessing stage).
2. Pi broadcasts ε← xi − r.
3. The parties compute 〈xi〉 ← 〈r〉+ ε.

Add: To add two representations 〈x〉, 〈y〉,the parties locally compute 〈x〉+ 〈y〉.
Multiply: To multiply 〈x〉, 〈y〉 the parties do the following:

1. They take two triples (〈a〉, 〈b〉, 〈c〉), (〈f〉, 〈g〉, 〈h〉) from the set of the available ones and check that indeed
a · b = c.
– Open a representation of a random value [[t]].
– partially open t · 〈a〉 − 〈f〉 to get ρ and 〈b〉 − 〈g〉 to get σ
– evaluate t · 〈c〉 − 〈h〉 − σ · 〈f〉 − ρ · 〈g〉 − σ · ρ, and partially open the result.
– If the result is not zero the players abort, otherwise go on with 〈a〉, 〈b〉, 〈c〉.

Note that this check could in fact be done as part of the preprocessing. Moreover, it can be done for all
triples in parallel, and so we actually need only one random value t.

2. The parties partially open 〈x〉−〈a〉 to get ε and 〈y〉−〈b〉 to get δ and compute 〈z〉 ← 〈c〉+ε〈b〉+δ〈a〉+εδ
Output: We enter this stage when the players have 〈y〉 for the output value y, but this value has been not been

opened (the output value is only correct if players have behaved honestly). We then do the following:
1. Let a1, . . . , aT be all values publicly opened so far, where 〈aj〉 = (δj , (aj,1, . . . , aj,n), (γ(aj)1, . . . , γ(aj)n)).

Now, a random value [[e]] is opened, and players set ei = ei for i = 1, . . . , T . All players compute
a←

P
j ejaj .

2. Each Pi calls FCom to commit to γi ←
P
j ejγ(aj)i. For the output value 〈y〉, Pi also commits to his

share yi, and his share γ(y)i in the corresponding MAC.
3. [[α]] is opened.
4. Each Pi asks FCom to open γi, and all players check that α(a+

P
j ejδj) =

P
i γi. If this is not OK, the

protocol aborts. Otherwise the players conclude that the output value is correctly computed.
5. To get the output value y, the commitments to yi, γ(y)i are opened. Now, y is defined as y :=

P
i yi and

each player checks that α(y + δ) =
P
i γ(y)i, if so, y is the output.

Fig. 1. The online phase.

226

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Representation of values and MACs. In the online phase each shared value a ∈ Fpk is represented
as follows

〈a〉 := (δ, (a1, . . . , an), (γ(a)1, . . . , γ(a)n))

where a = a1 + · · ·+an and γ(a)1 + · · ·+γ(a)n = α(a+ δ). Player Pi holds ai, γ(a)i and δ is public.
The interpretation is that γ(a)← γ(a)1 + · · ·+γ(a)n is the MAC authenticating a under the global
key α.

Computations. Using the natural component-wise addition of representations, and suppressing
the underlying choices of ai, γ(a)i for readability, we clearly have for secret values a, b and public
constant e that

〈a〉+ 〈b〉 = 〈a+ b〉 e · 〈a〉 = 〈ea〉, and e+ 〈a〉 = 〈e+ a〉,

where e+〈a〉 := (δ−e, (a1 +e, a2, . . . , an), (γ(a)1, . . . , γ(a)n)). This possibility to easily add a public
value is the reason for the “public modifier” δ in the definition of 〈·〉. It is now clear that we can
do secure linear computations directly on values represented this way.

What remains is multiplications: here we use the preprocessing. We would like the preprocessing
to output random triples 〈a〉, 〈b〉, 〈c〉, where c = ab. However, our preprocessing produces triples
which satisfy c = ab+∆, where ∆ is an error that can be introduced by the adversary. We therefore
need to check the triple before we use it. The check can be done by “sacrificing” another triple
〈f〉, 〈g〉, 〈h〉, where the same multiplicative equality should hold (see the protocol for details). Given
such a valid triple, we can do multiplications in the following standard way: To compute 〈xy〉 we
first open 〈x〉 − 〈a〉 to get ε, and 〈y〉 − 〈b〉 to get δ. Then xy = (a + ε)(b + δ) = c + εb + δa + εδ.
Thus, the new representation can be computed as

〈x〉 · 〈y〉 = 〈c〉+ ε〈b〉+ δ〈a〉+ εδ.

An important note is that during our protocol we are actually not guaranteed that we are
working with the correct results, since we do not immediately check the MACs of the opened
values. During the first part of the protocol, parties will only do what we define as a partial
opening, meaning that for a value 〈a〉, each party Pi sends ai to P1, who computes a = a1 + · · ·+an
and broadcasts a to all players. We assume here for simplicity that we always go via P1, whereas
in practice, one would balance the workload over the players.

As sketched earlier we postpone the checking to the end of the protocol in the output phase.
To check the MACs we need the global key α. We get α from the preprocessing but in a slightly
different representation:

[[α]] := ((α1, . . . , αn), (βi, γ(α)i1, . . . , γ(α)in)i=1,...,n)),

where α =
∑

i αi and
∑

j γ(α)ji = αβi. Player Pi holds αi, βi, γ(α)i1, . . . , γ(α)in. The idea is that
γ(α)i ←

∑
j γ(α)ji is the MAC authenticating α under Pi’s private key βi. To open [[α]] each Pj

sends to each Pi his share αj of α and his share γ(α)ji of the MAC on α made with Pi’s private
key and then Pi checks that

∑
j γ(α)ji = αβi. (To open the value to only one party Pi, the other

parties will simply send their shares only to Pi, who will do the checking. Only shares of α and αβi
are needed.)

Finally, the preprocessing will also output n pairs of a random value r in both of the presented
representations 〈r〉, [[r]]. These pairs are used in the Input phase of the protocol.

227

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The full protocol for the online phase is shown in Figure 1. It assumes access to a commitment
functionality FCom that simply receives values to commit to from players, stores them and reveals
a value to all players on request from the committer. Such a functionality could be implemented
efficiently based, e.g., on Paillier encryption or the DDH assumption [12, 19]. However, we show
in Appendix A.3 that we can do ideal commitments based only on FPREP and with cost O(n2)
computation and communication.

Complexity. The (amortized) cost of a secure multiplication is easily seen to be O(n) local elemen-
tary operations in Fpk , and communication of O(n) field elements. Linear operations have the same
computational cost but require no communication. The input stage requires O(n) communication
and computation to open [[r]] to Pi and one broadcast. Doing the output stage requires opening
O(n) commitments. In fact, the total number of commitments used is also O(n), so this adds an
O(n3) term to the complexity. In total, we therefore get the complexity claimed in the introduction:
O(n · |C|+ n3) elementary field operations and storage/communication complexity O(n · |C|+ n3)
field elements.

We can now state the theorem on security of the online phase, and its proof is in Appendix A.3.

Theorem 1. In the FPREP,FCom-hybrid model, the protocol ΠOnline implements FAMPC with sta-
tistical security against any static4 active adversary corrupting up to n− 1 parties.

Based on a result from [29], we can also show a lower bound on the amount of preprocessing
data and work required for a protocol. The proof is in Appendix B.

Theorem 2. Assume a protocol π is the preprocessing model can compute any circuit over Fpk of
size at most S, with security against active corruption of at most n − 1 players. We assume that
the players supply roughly the same number of inputs (O(S/n) each), and that any any player may
receive output. Then the preprocessing must output Ω(S log pk) bits to each player, and for any
player Pi, there exists a circuit C satisfying the conditions above, where secure computation of C
requires Pi to execute an expected number of bit operations that is Ω(S log pk).

It is easy to see that our protocol satisfies the conditions in the the theorem and that it meets the
first bound up to a constant factor and the second up to a poly-logarithmic factor (as a function
of the security parameter).

3 The Abstract Somewhat Homomorphic Encryption Scheme

In this section we specify the abstract properties we need for our cryptosystem. A concrete instan-
tiation is found in Section 6.

We first define the plaintext space M . This will be given by a direct product of finite fields
(Fpk)s of characteristic p. Componentwise addition and multiplication of elements in M will be
denoted by + and ·. We assume there is an injective encoding function encode which takes elements
in (Fpk)s to elements in a ring R which is equal ZN (as a Z-module) for some integer N . We also
assume a decode function which takes arbitrary elements in ZN and returns an element in (Fpk)s.
We require that for all m ∈ M that decode(encode(m)) = m and that the decode operation is
compatible with the characteristic of the field, i.e. for any x ∈ ZN we have decode(x) = decode(x

4 The protocol is in fact adaptively secure, here we only show static security since our preprocessing is anyway only
statically secure.

228

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

(mod p)). And finally that the encoding function produces “short” vectors. More precisely, that for
all m ∈ (Fpk)s ‖encode(m)‖∞ ≤ τ where τ = p/2.

The two operations in R will be denoted by + and ·. The addition operation in R is assumed
to be componentwise addition, whereas we make no assumption on multiplication. All we require
is that the following properties hold, for all elements m1,m2 ∈M ;

decode(encode(m1) + encode(m2)) = m1 + m2,

decode(encode(m1) · encode(m2)) = m1 ·m2.

From now on, when we discuss the plaintext space M we assume it comes implicitly with the encode
and decode functions for some integer N . If an element in M has the same component in each of
the s-slots, then we call it a “diagonal” element. We let Diag(x) for x ∈ Fpk denote the element
(x, x, . . . , x) ∈ (Fpk)s.

Our cryptosystem consists of a tuple (ParamGen,KeyGen,KeyGen∗,Enc,Dec) of algorithms de-
fined below, and parametrized by a security parameter κ.
ParamGen(1κ,M): This parameter generation algorithm outputs an integer N (as above), definitions
of the encode and decode functions, and a description of a randomized algorithm Dd

ρ, which outputs
vectors in Zd. We assume that Dd

ρ outputs r with ‖r‖∞ ≤ ρ, except with negligible probability.
The algorithm Dd

ρ is used by the encryption algorithm to select the random coins needed during
encryption. The algorithm ParamGen also outputs an additive abelian group G. The group G also
possesses a (not necessarily closed) multiplicative operator, which is commutative and distributes
over the additive group of G. The group G is the group in which the ciphertexts will be assumed to
lie. We write � and � for the operations on G, and extend these in the natural way to vectors and
matrices of elements of G. Finally ParamGen outputs a set C of allowable arithmetic SIMD circuits
over (Fpk)s, these are the set of functions which our scheme will be able to evaluate ciphertexts
over. We can think of C as a subset of Fpk [X1, X2, . . . , Xn], where we evaluate a function f ∈
Fpk [X1, X2, . . . , Xn] a total of s times in parallel on inputs from (Fpk)n. We assume that all other
algorithms take as implicit input the output P ← (1κ, N, encode, decode,Dd

ρ, G,C) of ParamGen.
KeyGen(): This algorithm outputs a public key pk and a secret key sk.
Encpk(x, r): On input of x ∈ ZN , r ∈ Zd, this deterministic algorithm outputs a ciphertext c ∈ G.
When applying this algorithm one would obtain x from the application of the encode function,
and r by calling Dd

ρ. This is what we mean when we write Encpk(m), where m ∈ M . However,
it is convenient for us to define Enc on the intermediate state, x = encode(m). To ease notation
we write Encpk(x) if the value of the randomness r is not important for our discussion. To make
our zero-knowledge proofs below work, we will require that addition of V “clean” ciphertexts (for
“small” values of V), of plaintext xi in ZN , using randomness ri, results in a ciphertext which
could be obtained by adding the plaintexts and randomness, as integer vectors, and then applying
Encpk(x, r), i.e.

Encpk(x1 + · · ·+ xV , r1 + · · ·+ rV) = Encpk(x1, r1) � · · ·� Encpk(xV , rV).

Decsk(c): On input the secret key and a ciphertext c it returns either an element m ∈ M , or the
symbol ⊥.

We are now able to define various properties of the above abstract scheme that we will require. But
first a bit of notation: For a function f ∈ C we let n(f) denote the number of variables in f , and we

229

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

let f̂ denote the function on G induced by f . That is, given f , we replace every + operation with a
�, every · operation is replaced with a � and every constant c is replaced by Encpk(encode(c),0).
Also, given a set of n(f) vectors x1, . . . ,xn(f), we define f(x1, . . . ,xn(f)) in the natural way by
applying f in parallel on each coordinate.
Correctness: Intuitively correctness means that if one decrypts the result of a function f ∈ C
applied to n(f) encrypted vectors of variables, then this should return the same value as applying
the function to the n(f) plaintexts. However, to apply the scheme in our protocol, we need to
be a bit more liberal, namely the decryption result should be correct, even if the ciphertexts we
start from were not necessarily generated by the normal encryption algorithm. They only need to
“contain” encodings and randomness that are not too large, such that the encodings decode to legal
values. Formally, the scheme is said to be (Bplain, Brand, C)-correct if

Pr [P ← ParamGen(1κ,M), (pk, sk)← KeyGen(), for any f ∈ C,
any xi, ri, with ‖xi‖∞ ≤ Bplain, ‖ri‖∞ ≤ Brand, decode(xi) ∈ (Fpk)s,

i = 1, . . . , n(f), and ci ← Encpk(xi, ri), c← f̂(c1, . . . , cn(f)) :

Decsk(c) 6= f(decode(x1), . . . , decode(xn(f)))] < ε(κ).

We will say that a ciphertext is (Bplain, Brand, C)-admissible if it can be obtained as the ciphertext
c in the above experiment, i.e., by applying a function from C to ciphertexts generated from (legal)
encodings and randomness that are bounded by Bplain and Brand.
KeyGen∗(): This is a randomized algorithm that outputs a meaningless public key p̃k. We require
that an encryption of any message Encfpk

(x) is statistically indistinguishable from an encryption of 0.

Furthermore, if we set (pk, sk)← KeyGen() and p̃k← KeyGen∗(), then pk and p̃k are computationally
indistinguishable. This implies the scheme is IND-CPA secure in the usual sense.
Distributed Decryption: We assume, as a set up assumption, that a common public key has been
set up where the secret key has been secret-shared among the players in such a way that they can
collaborate to decrypt a ciphertext. We assume throughout that only (Bplain, Brand, C)-admissible
ciphertexts are to be decrypted, this constraint is guaranteed by our main protocol.

We note that some set-up assumption is always required to show UC security which is our goal
here. Concretely, we assume that a functionality FKeyGen is available, as specified in Figure 2. It
basically generates a key pair and secret-shares the secret key among the players using a secret-
sharing scheme that is assumed to be given as part of the specification of the cryptosystem. Since
we want to allow corruption of all but one player, the maximal unqualified sets must be all sets of
n− 1 players.

Functionality FKeyGen

1. When receiving “start” from all honest players, run P ← ParamGen(1κ,M), and then, using the parameters
generated, run (pk, sk)← KeyGen() (recall P , and hence 1κ, is an implicit input to all functions we specify).
Send pk to the adversary.

2. We assume a secret sharing scheme is given with which sk can be secret-shared. Receive from the adversary
a set of shares sj for each corrupted player Pj .

3. Construct a complete set of shares (s1, . . . , sn) consistent with the adversary’s choices and sk. Note that this
is always possible since the corrupted players form an unqualified set. Send pk to all players and si to each
honest Pi.

Fig. 2. The Ideal Functionality for Distributed Key Generation

230

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

We note that it is possible to make a weaker set-up assumption, such as a common reference
string (CRS), and using a general UC secure multiparty computation protocol for the CRS model
to implement FKeyGen. While this may not be very efficient, one only needs to run this protocol
once in the life-time of the system.

We also want our cryptosystem to implement the functionality FKeyGenDec in Figure 3, which
essentially specifies that players can cooperate to decrypt a (Bplain, Brand, C)-admissible ciphertext,
but the protocol is only secure against a passive attack: the adversary gets the correct decryption
result, but can decide which result the honest players should learn.

Functionality FKeyGenDec

1. When receiving “start” from all honest players, run ParamGen(1κ,M), and then, using the parameters
generated, run (pk, sk)← KeyGen(). Send pk to the adversary and to all players, and store sk.

2. Hereafter on receiving “decrypt c” for (Bplain, Brand, C)-admissible c from all honest players, send c and
m ← Decsk(c) to the adversary. On receiving m′ from the adversary, send “Result m′” to all players, Both
m and m′ may be a special symbol ⊥ indicating that decryption failed.

3. On receiving “decrypt c to Pj” for admissible c, if Pj is corrupt, send c,m ← Decsk(c) to the adversary. If
Pj is honest, send c to the adversary. On receiving δ from the adversary, if δ 6∈ M , send ⊥ to Pj , if δ ∈ M ,
send Decsk(c) + δ to Pj .

Fig. 3. The Ideal Functionality for Distributed Key Generation and Decryption

We are now finally ready to define the basic set of properties that the underlying cryptosystem
should satisfy, in order to be used in our protocol. Here we use an “information theoretic” security
parameter sec that controls the errors in our ZK proofs below.

Definition 1. (Admissible Cryptosystem.) Let C contain formulas of form (x1 + · · · + xn) ·
(y1 + · · · + yn) + z1 + · · · + zn, as well as all “smaller” formulas , i.e., with a smaller number of
additions and possibly no multiplication. A cryptosystem is admissible if it is defined by algorithms
(ParamGen,KeyGen,KeyGen∗,Enc, Dec) with properties as defined above, is (Bplain, Brand, C)-correct,
where

Bplain = N · τ · sec2 · 2(1/2+ν)sec, Brand = d · ρ · sec2 · 2(1/2+ν)sec;

and where ν > 0 can be an arbitrary constant. Finally there exist a secret sharing scheme as
required in FKeyGen and a protocol ΠKeyGenDec with the property that when composed with FKeyGen

it securely implements the functionality FKeyGenDec.

The set C is defined to contain all computations on ciphertext that we need in our main protocol.
Throughout the paper we will assume that Bplain, Brand are defined as here in terms of τ, ρ and sec.
This is because these are the bounds we can force corrupt players to respect via our zero-knowledge
protocol, as we shall see.

4 Zero-Knowledge Proof of Plaintext Knowledge

This section presents a zero-knowledge protocol that takes as input sec ciphertexts c1, . . . , csec
generated by one of the players in our protocol, who will act as the prover. If the prover is honest
then ci = Encpk(xi, ri), where xi has been obtained from the encode function, i.e. ‖xi‖∞ ≤ τ , and ri

231

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

has been generated from Dd
ρ (so we may assume that ‖ri‖∞ ≤ ρ). Our protocol is a zero-knowledge

proof of plaintext knowledge (ZKPoPK) for the following relation:

RPoPK = { (x,w)| x = (pk, c), w = ((x1, r1), . . . , (xsec, rsec)) :
c = (c1, . . . , csec), ci ← Encpk(xi, ri),
‖xi‖∞ ≤ Bplain, decode(xi) ∈ (Fpk)s, ‖ri‖∞ ≤ Brand } .

The zero-knowledge and completeness properties hold only if the ciphertexts ci satisfy ‖xi‖∞ ≤ τ
and ‖ri‖∞ ≤ ρ.

In our preprocessing protocol, players will be required to give such a ZKPoPK for all ciphertexts
they provide. By admissibility of the cryptosystem, this will imply that every ciphertext occurring
in the protocol will be (Bplain, Brand, C)-admissible and can therefore be decrypted correctly. The
ZKPoPK can also be called with a flag diag which will modify the proof so that it additionally
proves that decode(xi) is a diagonal element.

The protocol is not meant to implement an ideal functionality, but we can still use it and prove
UC security for the main protocol, since we will always generate the challenge e by calling the FRand

ideal functionality (see Appendix E). Hence the honest-verifier ZK property implies straight-line
simulation5. As for knowledge extraction, the UC simulator we construct in our security proof will
know the secret key for the cryptosystem and can therefore extract a dishonest prover’s witness
simply by decrypting. In the reduction to show that the simulator works, we do not know the secret
key, but here we are allowed to do extraction by rewinding.

The protocol and its proof of security are given in Appendix A.1, Figure 9 and its computational
complexity per ciphertext is essentially the cost of a constant number of encryptions. In Appendix
A.1, we also give a variant of the ZK proof that allows even smaller values for Bplain, Brand, namely
Bplain = N · τ · sec2 · 2sec/2+8, Brand = d · ρ · sec2 · 2sec/2+8, and hence improves performance further.
This variant is most efficient when executed using the Fiat-Shamir heuristic (although it can also
work without random oracles), and we believe this variant is the best for a practical implementation.

5 The Preprocessing Phase

In this section we construct the protocol ΠPREP which securely implements the functionality FPREP

(specified in Figure 16) in the presence of functionalities FKeyGenDec (Figure 3) and FRand (Figure
14). The preprocessing uses the above abstract cryptosystem with M = (Fpk)s, but the online
phase is designed for messages in Fpk . Therefore, we extend the notation 〈·〉 and [[·]] to messages in
M : since addition and multiplication on M are componentwise, for m = (m1, . . . ,ms), we define
〈m〉 = (〈m1〉, . . . , 〈ms〉) and similarly for [[m]]. Conversely, once a representation (or a pair, triple)
on vectors is produced in the preprocessing, it will be disassembled into its coordinates, so that it
can be used in the online phase. In Figures 4,5 and 6, we introduce subprotocols that are accessed
by the main preprocessing protocol in several steps. Note that the subprotocols are not meant to
implement ideal functionalities: their purpose is merely to summarize parts of the main protocol
that are repeated in various occasions. Theorem 3 below is proved in Appendix A.5.

5 FRand can be implemented by standard methods, and the complexity of this is not significant for the main protocol
since we may use the same challenge for many instances of the proof, and each proof handles sec ciphertexts.

232

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Theorem 3. The protocol ΠPREP (Figure 7) implements FPREP with computational security against
any static, active adversary corrupting up to n−1 parties, in the FKeyGen,FRand-hybrid model when
the underlying cryptosystem is admissible6.

Protocol Reshare
Usage: Input is em, where em = Encpk(m) is a public ciphertext and a parameter enc, where enc =

NewCiphertext or enc = NoNewCiphertext. Output is a share mi of m to each player Pi; and if enc =
NewCiphertext, a ciphertext e′m. The idea is that em could be a product of two ciphertexts, which Reshare
converts to a “fresh” ciphertext e′m. Since Reshare uses distributed decryption (that may return an incorrect
result), it is not guaranteed that em and e′m contain the same value, but it is guaranteed that

P
imi is the

value contained in e′m.
Reshare(em, enc) :

1. Each player Pi samples a uniform fi ∈ (Fpk)s. Define f :=
Pn
i=1 fi.

2. Each player Pi computes and broadcasts efi ← Encpk(fi).
3. Each player Pi runs ΠZKPoPK acting as a prover on efi . The protocol aborts if any proof fails.
4. The players compute ef ← ef1 � · · ·� efn , and em+f ← em � ef .
5. The players invoke FKeyGenDec to decrypt em+f and thereby obtain m + f .
6. P1 sets m1 ←m + f − f1, and each player Pi (i 6= 1) sets mi ← −fi.
7. If enc = NewCiphertext, all players set e′m ← Encpk(m + f) � ef1 � · · · � efn , where a default value for

the randomness is used when computing Encpk(m + f).

Fig. 4. The sub-protocol for additively secret sharing a plaintext m ∈ (Fpk)s on input a ciphertext em = Encpk(m).

Protocol PBracket
Usage: On input shares v1, . . . ,vn privately held by the players and public ciphertext ev, this protocol generates

[[v]]. It is assumed that
P
i vi is the plaintext contained in ev.

PBracket(v1, . . . ,vn, ev) :
1. For i = 1, . . . , n

(a) All players set eγi ← eβi � ev (note that eβi is generated during the initialization process, and
known by every player)

(b) Players generate (γ1
i , . . . γ

n
i) ← Reshare(eγi ,NoNewCiphertext), so each player Pj gets a share γji of

v · βi.
2. Output the representation [[v]] = (v1, . . . ,vn, (βi, γ

i
1, . . . , γ

i
n)i=1,...,n).

Fig. 5. The sub-protocol for generating [[v]].

Protocol PAngle
Usage: On input shares v1, . . . ,vn privately held by the players and public ciphertext ev, this protocol generates
〈v〉. It is assumed that

P
i vi is the plaintext contained in ev.

PAngle(v1, . . . ,vn, ev) :
1. All players set ev·α ← ev � eα (note that eα is generated during the initialization process, and known

by every player)
2. Players generate (γ1, . . . , γn)← Reshare(ev·α,NoNewCiphertext), so each player Pi gets a share γi of α ·v.
3. Output representation 〈v〉 = (0,v1, . . . ,vn, γ1, . . . , γn).

Fig. 6. The sub-protocol for generating 〈v〉.

6 The definition of admissible cryptosystem demands a decryption protocol that implements FKeyGenDec based on
FKeyGen, hence the theorem only assumes FKeyGen.

233

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Protocol ΠPREP

Usage: The Triple-step is always executed sec times in parallel. This ensures that when calling ΠZKPoPK, we can
always give it the sec ciphertexts it requires as input. In addition both ΠZKPoPK and ΠPREP can be executed
in a SIMD fashion, i.e. they are data-oblivious bar when they detect an error. Thus we can execute ΠZKPoPK

and ΠPREP on the packed plaintext space (Fpk)s. Thereby, we generate s · sec elements in one go and then
buffer the generated triples, outputting the next unused one on demand.

Initialize: This step generates the global key α and “personal keys” βi.
1. The players call “start” on FKeyGenDec to obtain the public key pk
2. Each player Pi generates a MAC-key βi ∈ Fpk

3. Each player Pi generates αi ∈ Fpk . Let α :=
Pn
i=1 αi

4. Each player Pi computes and broadcasts eαi ← Encpk(Diag(αi)), eβi ← Encpk(Diag(βi))
5. Each player Pi invokes ΠZKPoPK (with diag set to true) acting as prover on input (eαi , . . . , eαi) and on

input (eβi , . . . , eβi), where eαi , eβi are repeated sec times, which is the number of ciphertexts ΠZKPoPK

requires as input. (This is not very efficient, but only needs to be done once for each player.)
6. All players compute eα ← eα1 � · · · � eαn , and generate [[Diag(α)]] ←

PBracket(Diag(α1), . . . ,Diag(αn), eα)
Pair: This step generates a pair [[r]], 〈r〉, and can be used to generate a single value [[r]], by not performing the

call to Pangle
1. Each player Pi generates ri ∈ (Fpk)s. Let r :=

Pn
i=1 ri

2. Each player Pi computes and broadcasts eri ← Encpk(ri). Let er = er1 � · · ·� ern

3. Each player Pi invokes ΠZKPoPK acting as prover on the ciphertext he generated
4. Players generate [[r]]← PBracket(r1, . . . , rn, er), 〈r〉 ← PAngle(r1, . . . , rn, er)

Triple: This step generates a multiplicative triple 〈a〉, 〈b〉, 〈c〉
1. Each player Pi generates ai,bi ∈ (Fpk)s. Let a :=

Pn
i=1 ai, b :=

Pn
i=1 bi

2. Each player Pi computes and broadcasts eai ← Encpk(ai), ebi ← Encpk(bi)
3. Each player Pi invokes ΠZKPoPK acting as prover on the ciphertexts he generated.
4. The players set ea ← ea1 � · · ·� ean and eb ← eb1 � · · ·� ebn

5. Players generate 〈a〉 ← PAngle(a1, . . . ,an, ea), 〈b〉 ← PAngle(b1, . . . ,bn, eb).
6. All players compute ec ← ea � eb
7. Players set (c1, . . . , cn, e

′
c)← Reshare(ec,NewCiphertext).

8. Players generate 〈c〉 ← PAngle(c1, . . . , cn, e
′
c).

Fig. 7. The protocol for constructing the global key [[α]], pairs [[r]], 〈r〉 and multiplicative triples 〈a〉, 〈b〉, 〈c〉.

6 Concrete Instantiation of the Abstract Scheme based on LWE

We now describe the concrete scheme, which is based on the somewhat homomorphic encryption
scheme of Brakerski and Vaikuntanathan (BV) [7]. The main differences are that we are only
interested in evaluation of circuits of multiplicative depth one, we are interested in performing
operations in parallel on multiple data items, and we require a distributed decryption procedure.
In this section we detail the scheme and the distributed decryption procedure; in Appendix D we
discuss security of the scheme, and present some sample parameter sizes and performance figures.

ParamGen(1κ,M): Recall the message space is given by M = (Fpk)s for two integers k and s, and a
prime p, i.e. the message space is s copies of the finite field Fpk . To map this to our scheme below,
one first finds a cyclotomic polynomial F (X) := Φm(X) of degree N := φ(m), where N is lower
bounded by some function of the security parameter κ. The polynomial F (X) needs to be such
that modulo p the polynomial F (X) factors into l′ irreducible factors of degree k′ where l′ ≥ s and
k divides k′. We then define an algebra Ap as Ap := Fp[X]/F (X) and we have an embedding of M
into Ap, φ : M → Ap. By “lifting” modulo p we see that there is a natural inclusion ι : Ap → ZN ,
which maps the polynomial of degree less than N with coefficients in Fp into the integer vector
of length N with coefficients in the range (−p/2, . . . , p/2]. The encode function is then defined by

234

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ι(φ(m)) for m ∈ (Fpk)s, with decode defined by φ−1(x (mod p)) for x ∈ ZN . It is clear, by choice
of the natural inclusion ι, that ‖encode(m)‖∞ ≤ p/2 = τ .

We pick a large integer q, whose size we will determine later, and definedAq := (Z/qZ)[X]/F (X),
i.e. the ring of integer polynomials modulo reduction by F (X) and q. In practice we consider the
image of encode to lie in Aq, and thus we abuse notation, by writing addition and multiplication
in Aq by + and ·. Note, that this means that applying decode to elements obtained from encode
followed by a series of arithmetic operations may not result in the value in M which one would
expect. This corresponds to where our scheme can only evaluate circuits from a given set C.

The ciphertext space G is defined to be A3
q , with addition � defined componentwise. The

multiplicative operator � is defined as follows

(a0,a1, 0) � (b0,b1, 0) := (a0 · b0,a1 · b0 + a0 · b1,−a1 · b1),

i.e. multiplication is only defined on elements whose third coefficient is zero.
We define Dd

ρ as follows: The discrete Gaussian DZN ,s, with Gaussian parameter s, is defined to
be the random variable on ZNq (centered around the origin) obtained from sampling x ∈ RN , with
probability proportional to exp(−π · ‖x‖2/s2), and then rounding the result to the nearest lattice
point and reducing it modulo q. Note, sampling from the distribution with probability density
function proportional to exp(−π · ‖x‖2/s2), means using a normal variate with mean zero, and
standard deviation r := s/

√
2 · π. In our concrete scheme we set d := 3 · N and define Dd

ρ to be
the distribution defined by (DZN ,s)3. Note, that in the notation Dd

ρ the implicit dependence on q
has been suppressed to ease readability. The determining of q and r as functions of all the other
parameters, we leave until we discuss security of the scheme.

KeyGen(): We will use the public key version of the Brakerski–Vaikuntanathan scheme [7]. Given
the above set up, key generation proceeds as follows: First one samples elements a ← Aq and
s, e ← DZN ,s. Then treating s and e as elements of Aq one computes b ← (a · s) + (p · e). The
public and private key are then set to be pk← (a,b) and sk← s.
Encpk(x, r): Given a message x← encode(m) where m ∈M , and r ∈ Dd

ρ, we proceed as follows: The
element r is parsed as (u,v,w) ∈ (ZN)3. Then the encryptor computes c0 ← (b · v) + (p ·w) + x
and c1 ← (a · v) + (p · u). Finally returning the ciphertext (c0, c1, 0).
Decsk(c): Given a secret key sk = s and a ciphertext c = (c0, c1, c2) this algorithm computes
the element in Aq satisfying t = c0 − (s · c1) − (s · s · c2). On reduction by q the value of ‖t‖∞
will be bounded by a relatively small constant B; assuming of course that the “noise” within a
ciphertext has not grown too large. We shall refer to the value t mod q as the “noise”, despite it
also containing the message to be decrypted. At this point the decryptor simply reduces t modulo
p to obtain the desired plaintext in Aq, which can then be decoded via the decode algorithm.
KeyGen∗(): This simply samples â, b̂← Aq and returns p̂k := (â, b̂).

Following the discussion in [7] we see that with this fixed ciphertext space, our scheme is some-
what homomorphic. It can support a relatively large number of addition operations, and a single
multiplication.

Distributed Version We now extend the scheme above to enable distributed decryption. We first set
up the distributed keys as follows. After invoking the functionality for key generation, each player
obtains a share ski = (si,1, si,2), these are chosen uniformly such that the master secret is written

235

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

as
s = s1,1 + · · ·+ sn,1, s · s = s1,2 + · · ·+ sn,2.

As remarked earlier this one-time setup procedure can be accomplished by standard UC-secure
multiparty computation protocols such as that described in [5]. The following theorem is proved in
Appendix A.6. It depends on the constant B defined above. In Appendix D we compute the value
of B when the input ciphertext is (Bplain, Brand, C)-admissible, and show how to choose parameters
for the cryptosystem such that the required bound on B is satisfied.

Theorem 4. In the FKeyGen-hybrid model, the protocol ΠDDec (Figure 8) implements FKeyGenDec

with statistical security against any static active adversary corrupting up to n − 1 parties if B +
2sec ·B < q/2.

Protocol ΠDDec

Initialize: Each party Pi on being given the ciphertext c = (c0, c1, c2), and an upper bound B on the infinity
norm of t above, computes

vi ←

c0 − (si,1 · c1)− (si,2 · c2) if i = 1
−(si,1 · c1)− (si,2 · c2) if i 6= 1

and sets ti ← vi + p · ri where ri is a random element with infinity norm bounded by 2sec ·B/(n · p).
Public Decryption: All the players are supposed to learn the message.

– Each party Pi broadcasts ti
– All players compute t′ ← t1 + · · ·+ tn and obtain a message m′ ← decode(t′ mod p).

Private Decryption: Only player Pj is supposed to learn the message.
– Each party Pi sends ti to Pj
– Pj computes t′ ← t1 + · · ·+ tn and obtain a message m′ ← decode(t′ mod p).

Fig. 8. The distributed decryption protocol.

7 Acknowledgements

The first, second and fourth author acknowledge support from the Danish National Research Foun-
dation and The National Science Foundation of China (under the grant 61061130540) for the Sino-
Danish Center for the Theory of Interactive Computation, within which [part of] this work was
performed; and also from the CFEM research center (supported by the Danish Strategic Research
Council) within which part of this work was performed.

The third author was supported by the European Commission through the ICT Programme
under Contract ICT-2007-216676 ECRYPT II and via an ERC Advanced Grant ERC-2010-AdG-
267188-CRIPTO, by EPSRC via grant COED–EP/I03126X, the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory (AFRL) under agreement number
FA8750-11-2-0079, and by a Royal Society Wolfson Merit Award. The US Government is autho-
rized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation hereon. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of DARPA, AFRL, the U.S. Government, the European Commission or EPSRC.

The authors would like to thank Robin Chapman, Henri Cohen and Rob Harley for various
discussions whilst this work was carried out.

236

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

References

1. S. Arora and R. Ge. New algorithms for learning in presence of errors. In L. Aceto, M. Henzinger, and J. Sgall,
editors, ICALP (1), volume 6755 of Lecture Notes in Computer Science, pages 403–415. Springer, 2011.

2. G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Multiparty computation with
low communication, computation and interaction via threshold fhe. In Pointcheval and Johansson [26], pages
483–501.

3. D. Beaver. Efficient multiparty protocols using circuit randomization. In J. Feigenbaum, editor, CRYPTO,
volume 576 of Lecture Notes in Computer Science, pages 420–432. Springer, 1991.

4. E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-linear unconditionally-secure multiparty computation with a
dishonest minority. IACR Cryptology ePrint Archive, 2011:629, 2011.

5. R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multiparty computation.
In EUROCRYPT, pages 169–188, 2011.

6. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryption without bootstrapping. Elec-
tronic Colloquium on Computational Complexity (ECCC), 18:111, 2011.

7. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-lwe and security for key dependent
messages. In P. Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 505–524.
Springer, 2011.

8. R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally composable two-party and multi-party secure
computation. In STOC, pages 494–503, 2002.

9. Y. Chen and P. Q. Nguyen. Bkz 2.0: Better lattice security estimates. In D. H. Lee and X. Wang, editors,
ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages 1–20. Springer, 2011.

10. R. Cramer, I. Damg̊ard, and V. Pastro. On the amortized complexity of zero knowledge protocols for multiplica-
tive relations. In ICITS, 2012. To appear.

11. I. Damg̊ard, M. Keller, E. Larraia, C. Miles, and N. P. Smart. Implementing aes via an actively/covertly secure
dishonest-majority mpc protocol. IACR Cryptology ePrint Archive, 2012:262, 2012.

12. I. Damg̊ard and J. B. Nielsen. Perfect hiding and perfect binding universally composable commitment schemes
with constant expansion factor. In M. Yung, editor, CRYPTO, volume 2442 of Lecture Notes in Computer
Science, pages 581–596. Springer, 2002.

13. I. Damg̊ard and C. Orlandi. Multiparty computation for dishonest majority: From passive to active security at
low cost. In CRYPTO, pages 558–576, 2010.

14. N. Gama and P. Q. Nguyen. Predicting lattice reduction. In N. P. Smart, editor, EUROCRYPT, volume 4965
of Lecture Notes in Computer Science, pages 31–51. Springer, 2008.

15. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher, editor, STOC, pages 169–178.
ACM, 2009.

16. C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog overhead. In Pointcheval
and Johansson [26], pages 465–482.

17. Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure multiparty computation. In
D. S. Johnson and U. Feige, editors, STOC, pages 21–30. ACM, 2007.

18. Y. Ishai, M. Prabhakaran, and A. Sahai. Founding cryptography on oblivious transfer - efficiently. In D. Wagner,
editor, CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages 572–591. Springer, 2008.

19. Y. Lindell. Highly-efficient universally-composable commitments based on the ddh assumption. In EUROCRYPT,
pages 446–466, 2011.

20. R. Lindner and C. Peikert. Better key sizes (and attacks) for lwe-based encryption. In A. Kiayias, editor,
CT-RSA, volume 6558 of Lecture Notes in Computer Science, pages 319–339. Springer, 2011.

21. V. Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and factoring-based signatures. In M. Matsui,
editor, ASIACRYPT, volume 5912 of Lecture Notes in Computer Science, pages 598–616. Springer, 2009.

22. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings. 2011.
Manuscript.

23. D. Micciancio and O. Regev. Lattice-based cryptography, 2008.
24. S. Myers, M. Sergi, and abhi shelat. Threshold fully homomorphic encryption and secure computation. IACR

Cryptology ePrint Archive, 2011:454, 2011.
25. J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to practical active-secure two-party

computation. IACR Cryptology ePrint Archive, 2011:91, 2011.
26. D. Pointcheval and T. Johansson, editors. Advances in Cryptology - EUROCRYPT 2012 - 31st Annual Inter-

national Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19,
2012. Proceedings, volume 7237 of Lecture Notes in Computer Science. Springer, 2012.

237

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

27. M. Püschel and J. M. F. Moura. Algebraic signal processing theory: Cooley-tukey type algorithms for dcts and
dsts. IEEE Transactions on Signal Processing, 56(4):1502–1521, 2008.

28. N. P. Smart and F. Vercauteren. Fully homomorphic simd operations. IACR Cryptology ePrint Archive, 2011:133,
2011.

29. S. Winkler and J. Wullschleger. On the efficiency of classical and quantum oblivious transfer reductions. In
CRYPTO, pages 707–723, 2010.

A Proofs

A.1 Zero-Knowledge Proof

Construction of the Protocol. We will give two versions of the protocol. The first is a standard
3-move protocol, the second uses an “abort” technique to optimize the parameter values, this one
is best suited for use with the Fiat-Shamir heuristic, and may be the best option for a practical
implementation.

For the protocol, we will need that τ = p/2, so that ‖encode(m)‖∞ ≤ τ = p/2. This means that
each entry in encode(m) corresponds to a uniquely determined residue mod p (or equivalently an
element in Zp) and conversely each such residue is uniquely determined by m. We did not ask for
this in the abstract description, but the concrete instantiation satisfies this. Note that one problem
we need to address in the protocol is that not all vectors in the input domain of decode will give
us results in Fpk . However, if an input is equivalent mod p to encode(m) for some m then this is
indeed the case, since then decode will return m. Therefore the verifier explicitly checks whether
the encodings the prover sends him decode to legal values, this will imply that the ciphertexts in
question also decode to legal values.

We let R denote the matrix in Zsec×d whose ith row is ri. It makes use of a matrix Me defined
as follows. Let V := 2 · sec − 1. For e ∈ {0, 1}sec we define Me ∈ ZV×sec to be the matrix whose
(i, k)-th entry is given by ei−k+1, for 1 ≤ i− k + 1 ≤ sec and 0 otherwise.

Protocol ΠZKPoPK

– For i = 1, . . . , V , the prover sets yi ← ZN and si ← Zd, such that ‖yi‖∞ ≤ N · τ · sec2 · 2νsec−1 and
‖si‖∞ ≤ d · ρ · sec2 · 2νsec−1. For yi, this is done as follows: choose a random message mi ∈ (Fpk)s and set
yi = encode(mi) + ui, where each entry in ui is a multiple of p, chosen uniformly at random, subject to
‖yi‖∞ ≤ N · τ · sec2 · 2νsec−1. If diag is set to true, then the mi are chosen to be diagonal elements.

– The prover computes ai ← Encpk(yi, si), for i = 1, . . . , V , and defines S ∈ ZV×d to be the matrix whose ith
row is si and sets y← (y1, . . . ,yV), a← (a1, . . . , aV).

– The prover sends a to the verifier.
– The verifier selects e ∈ {0, 1}sec and sends it to the prover.
– The prover sets z← (z1, . . . , zV), such that zT = yT +Me ·xT, and T = S+Me ·R. The prover sends (z, T)

to the verifier.
– The verifier computes di ← Encpk(zi, ti), for i = 1, . . . , V , where ti is the ith row of T and sets d ←

(d1, . . . , dV).
– The verifier checks that decode(zi) ∈ Fspk and whether the following three conditions hold; he rejects if not

dT = aT �
“
Me � cT

”
, ‖zi‖∞ ≤ N · τ · sec2 · 2νsec−1, ‖ti‖∞ ≤ d · ρ · sec2 · 2νsec−1.

– If diag is set to true the verifier also checks whether decode(zi) is a diagonal element, and rejects if it is not.

Fig. 9. The ZKPoPK Protocol, interactive version.

238

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Theorem 5. The protocol ΠZKPoPK (Appendix A.1, Figure 9) is an honest-verifier zero-knowledge
proof of knowledge for the relation RPoPK .

Proof (Theorem 5).

Completeness: Assume the prover is honest. For i = 1, . . . , V the verifier checks if Encpk(zi, ti)
equals ai �Me,i · cT, since Me,i is a scalar matrix we write multiplication with · as opposed to �.
The check passes because of the following relation:

ai �
(
Me,i · cT

)
= Encpk(yi, si) �sec

k=1 (Me,i,k · ck)

= Encpk(yi, si) �sec
k=1 (Me,i,k · Encpk(xk, rk))

= Encpk

(
yi +

sec∑
k=1

Me,i,k · xk, si +
sec∑
k=1

Me,i,k · rk

)
= Encpk

(
yi +Me,i · xT, si +Me,i · rT

)
= Encpk(zi, ti).

Moreover, given that zi = yi +Me,i · xT and that all ciphertexts in c are (τ, ρ)-ciphertexts, we get
that each single coordinate in Me,i · xT is numerically at most sec · τ . Each coordinate of yi was
chosen from an interval that is a factor N · sec · 2νsec−1 larger. By a union bound bound over the
N · sec coordinates involved, each coordinate in zi fails to be in the required range with probability
exponentially small in sec. A similar argument shows that the check ‖ti‖∞ also fails with negligible
probability. Finally, each yi was constructed to be congruent mod p to the encoding of a value in
Fs
pk

. Since this is also the case for the xi’s if the prover is honest, the same is true for the zi’s, and
they therefore decode to a value in Fs

pk
. If diag was set to true, all xi,yi contain diagonal plaintexts,

and then the same is true for the zi.

Soundness: We consider a prover making a verifier accept both (x,a, e, (z, T)) and (x,a, e′, (z′, T ′))
with e 6= e′. Since both checks dT = aT � (Me · cT) and d′T = aT � (Me′ · cT) passed, one can
subtract the two equalities and obtain

(Me −Me′) � cT =
(
d � d′

)T (1)

In order to find x and R such that ck = Encpk(xk, rk) for k = 1, . . . , sec, we first solve (1) as a linear
system in c. Let j be the highest index such that ej 6= e′j . The sec × sec submatrix of Me −Me′ ,
consisting of the rows of Me −Me′ between j and j + sec − 1 both included, is upper triangular
with entries in {−1, 0, 1} and its diagonal consists of the non-zero value ej − e′j (so it is possible
to find a solution for c). Since the verifier has values zi, ti, z′i, t

′
i such that di = Encpk(zi, ti) and

d′i = Encpk(z′i, t
′
i), and given that ci = Encpk(xi, ri), it is possible to directly solve the linear system

in x and R (since the cryptosystem is additively homomorphic), from the bottom equation to the
one “in the middle” with index sec/2. Since ‖zi‖∞, ‖z′i‖∞ ≤ N · τ · sec2 ·2νsec−1 and ‖ti‖∞, ‖t′i‖∞ ≤
d · ρ · sec2 · 2νsec−1, we conclude that csec−i is a (s · τ · sec2 · 2νsec+i, d · ρ · sec2 · 2νsec+i)-ciphertext
(by induction on i). To solve for c1, . . . csec/2, we consider the lowest index j such that ej 6= e′j ,
construct an lower triangular matrix in a similar way as above, and solve from the first equation
downwards. We conclude that c contains (N · τ · sec2 · 2(1/2+ν)sec, d · ρ · sec2 · 2(1/2+ν)sec)-ciphertexts.

We note that since the verifier accepted, each zi has small norm and decodes to a value in
(Fpk)s. Since we can write xi as a linear combination of the zi, it follows from correctness of the

239

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

cryptosystem that the xi also decode to values in (Fpk)s. Finally, if diag was set to true, the verifier
only accepts if all zi decode to diagonal values. Again, since we can write xi as a linear combination
of the zi, the xi also decode to diagonal values.

Zero-Knowledge: We give an honest-verifier simulator for the protocol that outputs accepting con-
versations. In order to simulate one repetition, the simulator samples e ∈ {0, 1}sec uniformly and
z, T uniformly with the constrain that d contains random ciphertexts satisfying the verifiers check,
i.e., zi, ti are uniform, subject to ‖zi‖∞ ≤ N ·τ ·sec2 ·2νsec−1, ‖ti‖∞ ≤ d·ρ·sec2 ·2νsec−1, where more-
over zi is generated as encode(mi)+ui where mi is a random plaintext (diagonal if diag is set to true)
and ui contains multiples of p that are uniformly random, subject to ‖zi‖∞ ≤ N · τ · sec2 · 2νsec−1.
Finally, a is computed as aT ← dT � (Me · cT). In the real conversation, the provers choice of
values in zi and ti are statistically close to the distribution used by the simulator. This is because
the prover uses the same method to generate these values, except that he adds in some vectors
of exponentially smaller norm which leads to a statistically close distribution. Since e has the
correct distribution and a follows deterministically from the last two messages, the simulation is
statistically indistinguishable.

ut

We now give a protocol that leads to smaller values of the parameters and hence also allows
better parameters for the underlying cryptoystem. This version, however, is better suited for use
with the Fiat-Shamir heuristic. The idea is to let the prover choose his randomness in a smaller
interval, and abort if the last message would reveal too much information. This is an idea from
[21]. When using the Fiat-Shamir heuristic, this is not a problem as he prover only needs to show a
successful attempt to he verifier. We let h be a suitable hash function that outputs sec-bit strings.

Protocol ΠZKPoPK

– For i = 1, . . . , V , the prover generates yi ← ZN and si ← Zd, such that ‖yi‖∞ ≤ 128 · N · τ · sec2 and
‖si‖∞ ≤ 128 · d · ρ · sec2. For yi, this is done as follows: choose a random message mi ∈ (Fpk)s and set
yi = encode(mi) + ui, where each entry in ui is a multiple of p, chosen uniformly at random, subject to
‖yi‖∞ ≤ 128 ·N · τ · sec2. If diag is set to true then the mi are additionally chosen to be diagonal elements.

– The prover computes ai ← Encpk(yi, si), for i = 1, . . . , V , and defines S ∈ ZV×d to be the matrix whose ith
row is si and sets y← (y1, . . . ,yV), a← (a1, . . . , aV).

– The prover sends a to the verifier.
– The prover computes e = h(a, c).
– The prover sets z← (z1, . . . , zV), such that zT = yT +Me · xT, and T = S +Me · R. Let ti be the ith row

of T . If for any i, it is the case that ‖zi‖∞ > 128 ·N · τ · sec2 − τ · sec or ‖ti‖∞ > 128 · d · ρ · sec2 − ρ · sec,
the prover aborts and the protocol is restarted. Otherwise the prover sends (a, z, T) to the verifier.

– The verifier computes e = h(a, c), di ← Encpk(zi, ti), for i = 1, . . . , V , where ti is the ith row of T and sets
d← (d1, . . . , dV).

– The verifier checks decode(zi) ∈ Fspk and whether the following three conditions hold

dT = aT �
“
Me � cT

”
, ‖zi‖∞ ≤ 128 ·N · τ · sec2, ‖ti‖∞ ≤ 128 · d · ρ · sec2.

If diag is set to true the verifier also checks whether decode(zi) is a diagonal element, and rejects if it is not.

Fig. 10. The ZKPoPK Protocol, version for Fiat-Shamir heuristic.

240

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

We claim that the Fiat-Shamir based protocol is a proof of knowledge for the relation in question
in the random oracle model. In this case, however, we can guarantee that the adversarially generated
ciphertexts are (N · τ · sec2 · 2sec/2+8, d · ρ · sec2 · 2sec/2+8)- ciphertexts.

Completeness: Assume the prover is honest. Note first that each yi was constructed to be congruent
mod p to the encoding of a value in (Fpk)s. Since this is also the case for the xi’s if the prover is
honest, the same is true for the zi’s, and they therefore always decode to a value in (Fpk)s. If diag
was set to true, all xi,yi contain diagonal plaintexts, and then the same is true for the zi.

Next, for i = 1, . . . , V the verifier checks if Encpk(zi, ti) equals ai�Me,i ·cT, since Me,i is a scalar
matrix we write multiplication with · as opposed to �. The check passes because of the following
relation:

ai �
(
Me,i · cT

)
= Encpk(yi, si) �sec

k=1 (Me,i,k · ck)

= Encpk(yi, si) �sec
k=1 (Me,i,k · Encpk(xk, rk))

= Encpk

(
yi +

sec∑
k=1

Me,i,k · xk, si +
sec∑
k=1

Me,i,k · rk

)
= Encpk

(
yi +Me,i · xT, si +Me,i · rT

)
= Encpk(zi, ti).

Moreover, given that zi = yi +Me,i · xT and that all ciphertexts in c are (τ, ρ)-ciphertexts, we get
that each single coordinate in Me,i · xT is numerically at most sec · τ . Each coordinate of yi was
chosen from an interval that is a factor 128 · N · sec larger. Therefore each coordinate in zi fails
to be in the required range with probability 1/(128 · N · sec). Note that this probability does not
depend on the concrete values of the coordinates in Me,i · xT, only on the bound on the numeric
value.

By a union bound over the N coordinates of zi we get that ‖zi‖∞ ≤ 128 ·N ·τ · sec2−τ · sec fails
with probability at most 1/(128 ·sec), and by a final union bound over the 2 sec−1 ciphtertexts that
all checks on the zi’s are ok except with probability at most 1/64. A similar argument shows that
the check ‖ti‖∞ ≤ 128 · d · ρ · sec2 − ρ · sec fails also with probability at most 1/64. The conclusion
is that the prover will abort with probability at most 1/32, so we expect to only have to repeat the
protocol once to have success.

Soundness: By a standard argument, a prover who can efficiently produce a valid proof is able to
produce (x,a, e, (z, T)) and (x,a, e′, (z′, T ′)) with e 6= e′ that the verifier would accept. Since both
checks dT = aT � (Me · cT) and d′T = aT � (Me′ · cT) passed, one can subtract the two equalities
and obtain

(Me −Me′) � cT =
(
d � d′

)T (2)

In order to find x and R such that ck = Encpk(xk, rk) for k = 1, . . . , sec, we first solve (2) as a linear
system in c. Let j be the highest index such that ej 6= e′j . The sec × sec submatrix of Me −Me′ ,
consisting of the rows of Me −Me′ between j and j + sec − 1 both included, is upper triangular
with entries in {−1, 0, 1} and its diagonal consists of the non-zero value ej − e′j (so it is possible
to find a solution for c). Since the verifier has values zi, ti, z′i, t

′
i such that di = Encpk(zi, ti) and

d′i = Encpk(z′i, t
′
i), and given that ci = Encpk(xi, ri), it is possible to directly solve the linear system

in x and R (since the cryptosystem is additively homomorphic), from the bottom equation to the
one “in the middle” with index sec/2.

241

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Since ‖zi‖∞, ‖z′i‖∞ ≤ 128 ·N · τ · sec2 and ‖ti‖∞, ‖t′i‖∞ ≤ 128 · d · ρ · sec2, we conclude that csec−i
must be a (256 · N · τ · 2i · sec2, 256 · d · ρ · 2i · sec2)-ciphertext (by induction on i). To solve for
c1, . . . csec/2, we consider the lowest index j such that ej 6= e′j , construct an lower triangular matrix
in a similar way as above, and solve from the first equation downwards. We conclude that c contains
(N · τ · sec2 · 2sec/2+8, d · ρ · sec2 · 2sec/2+8)-ciphertexts.

We note that since the verifier accepted, each zi has small norm and decodes to a value in
(Fpk)s. Since we can write xi as a linear combination of the zi, it follows from correctness of the
cryptosystem that the xi also decode to values (Fpk)s. Finally, if diag was set to true, the verifier
only accepts if all zi decode to diagonal values. Again, since we can write xi as a linear combination
of the zi, the xi also decode to diagonal values.

Zero-Knowledge: We give an honest-verifier simulator for the protocol that outputs an accepting
conversation (that does not abort).

In order to simulate one repetition, the simulator samples e ∈ {0, 1}sec uniformly and z, T
uniformly with the constrain that d contains random (8 ·N · τ · sec2− τ · sec, 8 · d · ρ · sec2− ρ · sec)-
ciphertexts. where moreover zi is generated as encode(mi) + ui where mi is a random plaintext
(a diagonal one if diag is set to true) and ui contains multiples of p that are uniformly random,
subject to ‖zi‖∞ ≤ 8N · τ · sec2− τ · sec. Finally, a is computed as aT ← dT � (Me · cT). Define the
random oracle to output e on input a, c, output (a, e, (z, T)) and stop.

We argue that this simulation is perfect: The distribution of a simulated e is the same as a real
one. Also, it is straightforward to see that in a real conversation, given that the prover does not
abort, the vectors zi, ti will be uniformly random, subject to ‖zi‖∞ ≤ 8 · s · τ · sec2 − τ · sec and
‖ti‖∞ ≤ 8 · d · ρ · sec2 − ρ · sec. So the simulator chooses zi, ti with exactly the right distribution.
Since the value of a follows deterministically from the e, zi, ti, we have what we wanted.

Doing without random oracles. The above protocol can also be executed without using the Fiat-
Shamir heuristic. In this case, the prover will start sec/5 instances of the protocol, computing
a1, . . . ,asec/5. We choose this number of instance because it will ensure that the prover fails on all
of them with probability only (1/32)sec/5 = 2−sec. The prover commits to all these values, which
can be done, for instance, with a Merkle hash tree, in which case the commitment will be very
short, and any of a’s can be opened by sending a piece of information that is only logarithmic in
sec.

The verifier selects e, the prover finds an instance where he would not abort the protocol with
this e, opens the corresponding a and completes that instance.

This is complete and zero-knowledge by the same argument as above plus the hiding property
of the commitment scheme used. Soundness follows from the fact that if the prover succeeds with
probability significantly greater that 2−sec · sec/5 he must be able to answer different challenges
correctly for some fixed instance out of the sec/5 we have. Such answers can be extracted by
rewinding, and then the rest of the argument is the same as above.

A.2 The UC Model

In the following sections, we show that the online and preprocessing phases of our protocol are
secure in the UC model. We briefly recall how this model works: we will use the variant where there
is only one adversarial entity, the environment Z. The environment chooses inputs for the honest
players and gets their outputs when the protocol is done. It also does an attack on the protocol

242

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

which is our case means that it corrupts up to n − 1 of the players and takes control over their
actions. When Z stops, it outputs a bit. This process where Z interacts with the real players and
protocol is called the real process.

To define what it means that the protocol implements functionality F securely we assume there
exists a simulator S that interacts with both F and Z. Towards F , it chooses inputs for the corrupt
players and will get their outputs. Towards Z, it must simulate a view of the protocol that looks
like what Z would see in a real attack. This process is called the ideal process, and here F supplies
Z with the i/o interface of honest players. We say that the protocol implements F securely if Z
outputs 1 with essentially the same probability in the real as in the ideal process. We speak of
computational security if Z is assumed to be poly-time bounded and of statistical security if Z is
unbounded.

A.3 Online Phase

On generating the ei’s Before proving the online protocol UC secure, we compute the probability
of getting away with cheating in step 4 of ‘Output’ and how this depends on the way we generate
the ei’s.

For this purpose we design the following security game:

1. The challenger generates the secret key α and MACs γi ← αmi and sends messages m1, . . . ,mT

to the adversary.
2. The adversary sends back messages m′1, . . . ,m

′
T .

3. The challenger generates random values e1, . . . , eT ← Fpk and sends them to the adversary.
4. The adversary provides an error ∆.
5. Set m←

∑T
i=0 eim

′
i, γ ←

∑T
i=0 eiγi. Now, the challenger checks that αm = γ +∆

The adversary wins the game if there is an i for which m′i 6= mi and the final check goes through.
It is not difficult to see that this game indeed models ‘Output’(up to step 4): The second step

in the game where the adversary sends the m′i’s models the fact that corrupted players can choose
to lie about their shares of values opened during the protocol execution. ∆ models the fact that
the adversary is allowed to introduce errors on the macs when data are sent to FPREP in the initial
part of the protocol and may also modify the shares of macs held by corrupt players. Finally, since
α, γ are secret shared in the protocol, the adversary has no information on α, γ ahead of time in
the protocol, just as in the security game.

Now, let us look at the probability of winning the game if the ei’s are randomly chosen. If
the check goes through, we have that the following equality holds: α

∑T
i=0 ei(m

′
i −mi) = ∆. First

we consider the case where
∑T

i=0 ei(m
′
i − mi) 6= 0, so α = ∆/

∑T
i=0 ei(m

′
i − mi). This implies

that being able to pass the check is equivalent to guessing α. However, since the adversary has no
information about α, this happens with probability only 1/|Fpk |. So what is left is to argue that∑T

i=0 ei(m
′
i − mi) = 0 also happens with very low probability. This can be seen as follows. We

define µi := (m′i − mi) and µ := (µ1, . . . , µT), e := (e1, . . . , eT). Now fµ(e) := e · µ =
∑T

i=0 eiµi
defines a linear mapping, which is not the 0-mapping since at least one µi 6= 0. From linear algebra
we then have the rank-nullity theorem telling us that dim(ker(fµ)) = T − 1. Also since e is random
and the adversary does not know e when choosing the m′i’s, the probability of e ∈ ker(fµ) is
|FT−1
pk
|/|FT

pk
| = 1/|Fpk |. Summing up, the total probability of winning the game is at most 2/|Fpk |.

Since choosing the ei’s uniformly would require an expensive coin-flip protocol, we use a different
way to generate them in the protocol: namely e1 is chosen at random and for i > 1, ei ← ei1.

243

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This has the advantage of adding only a constant number of multiplications in Fpk for a secure
multiplication. On the security side, we still want that

∑T
i=0 eiµi = 0 should happen with small

probability. Viewing fµ as a polynomial of degree T , we know it has at most T roots, so we have
to make sure we have an upper bound on T such that e1 is chosen from a field big enough for T/pk

to be negligible.
An alternative approach would be to use a pseudorandom generator G. We would then have

shared some random seed 〈s〉. By opening 〈s〉 and feeding it to G we can generate T pseudorandom
elements. In the protocol, the parties would commit to their share of the MAC on s, and when α
becomes public, the MAC would be checked. If it is OK, the protocol would go on with the rest
of the checks. With respect to cheating the argument is basically the same; If an adversary A has
a significant probability of choosing m′i’s such that

∑T
i=0 ei(m

′
i − mi) = 0, then the G is a bad

pseudorandom generator, or in other words, we can use A to break G. With this way of generating
the ei’s, we increase the complexity for one secure multiplication by whatever G needs to generate
one pseudorandom element.

Proof (Theorem 1). We construct a simulator SAMPC such that a poly-time environment Z cannot
distinguish between the real protocol system and the ideal. We assume here static, active corrup-
tion. The simulator runs a copy of the protocol ΠOnline and simulates the ideal functionalities for
preprocessing and commitment. It relays messages between parties/FPREP and Z, such that Z will
see the same interface as when interacting with a real protocol. The specification of the simulator
SAMPC is presented in Figure 11.

Simulator SAMPC

Initialize: The simulator creates the desired number of triples by doing the steps in FPREP. Note that here the
simulator will read all data of the corrupted parties specified to the copy of FPREP.

Rand: The simulator runs the copy protocol honestly and calls rand on the ideal functionality FAMPC.
Input: If Pi is not corrupted the copy is run honestly with dummy input, for example 0.

If Pi is corrupted the input step is done honestly and then the simulator waits for Pi to broadcast δ. Given
this, the simulator can compute x′i ← (r+ δ) since it knows (all the shares of) r. This is the supposed input
of Pi, which the simulator now gives to the ideal functionality FAMPC.

Add: The simulator runs the protocol honestly and calls add on the ideal functionality FAMPC.
Multiply: The simulator runs the protocol honestly and calls multiply on the ideal functionality FAMPC.
Output: The output step is run and the protocol is aborted if one of the checks in step 4 does not go through.

Otherwise the simulator calls output on FAMPC and gets the result y back. Now it has to simulate shares
yj of honest parties such that they are consistent with y. Note that the simulator already has shares of
an output value y′ that was computed using the dummy inputs, as well as shares of the MAC for y′. The
simulator now selects an honest party, say Pk and adds y− y′ to his share of y and α(y− y′) to his share of
the MAC. Note that the simulator can compute α(y − y′) since it knows from the beginning (all the shares
of) α. Now it simulates the openings of shares of y towards the environment according to the protocol. If
this terminates correctly, send OK to FAMPC (causing it to output y to the honest players).

Fig. 11. The simulator for FAMPC.

To see that the simulated and real processes cannot be distinguished, we will show that the
view of the environment in the ideal process is statistically indistinguishable from the view in the
real process. This view consists of the corrupt players’ view of the protocol execution as well as the
inputs and outputs of honest players.

We first argue that the view up to the point where the output value is opened (step 5 of the
‘output’ stage of the protocol) has exactly the same distribution in the real and in the simulated

244

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

case: First, the value broadcast by honest players in the input stage are always uniformly random.
Second, when a value is partially opened in a secure multiplication, fresh shares of a random value
are subtracted, so the honest players will always send a set of uniformly random and independent
values. Third, the honest players hold shares in MACs on the opened values, these are random
sharings of a correct MAC with an error added that is determined by the errors specified by the
environment in the initial phase. Therefore, also the MAC and shares revealed in step 4 of ‘output’
have the same distribution in the simulated as in the the real process. Finally note that if the
simulated protocol aborts, the simulator makes the ideal functionality fail, so the environment will
see that honest players generate no output, just as when the real process aborts.

Now, if the real or simulated protocol proceeds to the last step, the only new data that the
environment sees is an output value y, plus some shares of honest players. These are random shares
that are consistent with y and its MAC in both the simulated and real case. In other words, the
environments’ view of the last step has the same distribution in real and simulated case as long as
y is the same.

In the simulation, y is of course the correct evaluation on the inputs matching the shares that
were read from the corrupted parties in the beginning. To finish the proof, it is therefore sufficient
to show that the same happens in the real process with overwhelming probability. In other words,
the event that the real protocol terminates but the output is not correct occurs with negligible
probability.

Incorrect outputs can result either from corrupted parties who during the protocol successfully
cheat with their shares or from having computed with triples where the multiplicative relation does
not hold (even if the revealed shares were correct). For the latter case we argue that with correct
shares the multiplicative relation holds with overwhelming probability, and this follows from the
check on the triples in step 1 of ’Multiply’: It is easy to see that if the triples are correct, the
check will be true. On the other hand, if some triple is not correct, (in spite of correct shares), the
probability of satisfying the check is 1/|Fpk |, since there is only one random challenge t, for which
t ·(c−a ·b) = (h−g ·f). For the former case regarding the checking of shares, we have checks related
to the openings of [[·]]-values (during ’Input and a single one in ’Output’). The rest of the checking is
done in steps 4 and 5 of ’Output’. Being able to cheat during an opening of a [[·]]-value corresponds
to guessing at least one private key βi. Assuming βi is chosen randomly in Fpk , the probability is
at most 1/|Fpk |. Furthermore, as we discussed in the beginning of this section, the probability of a
party being able to cheat in step 4 is (T + 1)/|Fpk | where T is the number of values opened during
secure multiplications. In step 5, only one MAC is checked for each output, so here the probability
of cheating is 1/|Fpk | per check as argued earlier. Since the protocol aborts as soon as a check fails,
the probability that it terminates with an incorrect output is the maximum probability with which
any single check can be cheated, which in our case is (T + 1)/|Fpk |. This is negligible, since we
assume that T is polynomial while pk is exponential in sec. ut

Commitments based on FPREP In the above we assumed access to an ideal functionality for commit-
ments. We can, however, do the commitments needed in our protocol based only on the output of
FPREP as follows. First a random value [[r]] is opened to the committer Pi (This could even be done
in the preprocessing). To commit to a value x, Pi broadcasts c = r + x. To open the commitment,
[[r]] is opened to all the players who can now compute c − r = x. Correctness is still guaranteed
because of the MACs in [[r]]. Furthermore, since to begin with [[r]] is only opened to Pi, we have that
c is indistinguishable from a random value and can thus easily be simulated. To simulate during
’Output’ when Pi is honest and has to open his commitment, the simulator simply changes Pi’s

245

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

share of [[r]] and the shares of the MACs to make it fit with the broadcasted value and the value he
should have committed to. This is possible because the simulator knows all MAC keys. It is easy
to see that this has communication and computational complexity O(n2) per commitment.

Implementing Broadcast and Multiple Inputs/Outputs To implement broadcast based on point-to-
point channels, we first observe that since we do not guarantee termination anyway, the broadcast
does not have to terminate either. Therefore the following very simple protocol for broadcasting
x ∈ Fpk is sufficient:

1. The broadcaster sends x to all players.
2. Each player sends to all players what he received in the previous step.
3. Each player checks that he received the value x from all players. If, so output x, otherwise abort.

This protocol has communication complexity O(n2) field elements for one broadcast. However,
this can be optimized in case we need to broadcast many values. Below, we assume each player
sends one value, say Pi wants to send xi. We also assume that we have a random value [[s]] from the
preprocessing, and that we have an ε-almost universal class of hash functions {hs} for negligible ε,
indexed by values s, taking as input strings of n elements in Fpk and producing output in Fpk . A
simple example is where we view the input F as specifying coefficients of a polynomial of degree
n−1, and hs(F) is the result of evaluating this polynomial in point s. If two inputs F, F ′ are distinct,
their difference has at most n− 1 roots, so the probability that hs(F) = hs(F ′) is (n− 1)/pk. The
protocol goes as follows:

1. Pi sends xi to all players.
2. [[s]] is opened.
3. Each player sends to all players hs(F) where F is the string of values he received in the first

step.
4. Each players checks that he received the same hash value from all players. If, so output x1, . . . , xn

as received in the first step, otherwise abort.

It is clear that if a player sent different data to different honest players, some honest player will
abort, except with probability (n− 1)/pk. This protocol has complexity O(n2), including also the
cost of opening [[s]]. But the cost per value we broadcast is only O(n). This protocol generalizes
easily to a case where one player has n values to broadcast.

In the online protocol we specified before, broadcast is used to give inputs in the first stage.
Here, all players broadcast a value, and this is readily implemented with the optimized broadcast
protocol above, so we get complexity O(n) per input gate. If players have several inputs, we just
execute several instances of this broadcast.

The only other point where broadcast is used is in partial openings where a designated player
P1 broadcasts the value that is be to opened. Here, we can simply buffer the values sent until we
have n of them and then do the check in step 3-4 above that P1 has sent the same values to all
players. Note that even if we allow P1 to send different data to different players for a while, this
does not allow information to leak: the fact observed in the simulation proof above, that in any
partial opening the honest players always send random independent values, still holds even if P1

has sent inconsistent data in previous rounds.

246

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

A.4 Running the online Phase with Small Fields

Suppose we want error probability 2−sec, and log pk is much smaller than sec.
When we consider how to solve this problem, we will at first ignore Step 1 in the Multiply

stage on the online protocol, where one triple is “sacrificed” to check another, as this step could be
done as part of the preprocessing. Nevertheless we do not want to ignore the fact that this step will
have a large error probability 1/pk. We could solve this by sacrificing D = d sec

log pk
e triples instead of

one, but we can do much better, and this is described below in Section “A smaller sacrifice” below.
Going back to the actual online phase, we can compensate for the fact that log pk is much

smaller than sec by setting up the preprocessing so it can work over an extension field K of Fpk of
degree D = d sec

log pk
e, i.e. an element in K is represented as d sec

log pk
e elements from Fpk . All MAC keys

and MACs will be generated in K whereas all values to be computed on will still be in Fpk . The
preprocessing can ensure this because the ZK proof can already force a prover to choose plaintexts
that decode to elements in a subfield of K.

Then error probabilities in the proof of the online phase that were 1/pk before will now be
1/|K| ≤ 2−sec. The computational complexity of the online phase will now be O(n|C|+n3) elemen-
tary operations in K. Asymptotically, this amounts to O((n|C|+ n3)D logD log logD) elementary
operations in Fpk , where the overhead for storage and communication is just D.

It is also possible to get error probability 2−sec while having the preprocessing work only over
Fpk . Here the overhead will be larger namely D2 logD log logD, but this may be the best option
when D is not very large. The idea is to authenticate by doing D MACs in parallel over Fpk for
every authenticated value, using D independent keys.

We will still do the linear combination a =
∑

j ejaj over K, where ej = ej . This can be done
by having the preprocessing generate D random values and thinking of these as an element e ∈ K.
Note, however, that we also have to compute a linear combination of the corresponding shares of
MACs, i.e., γi =

∑
j ejγ(aj)i, and we have D such MACs in parallel. This is why we get a overhead

factor D2 logD log logD for the computational work in this case.

A Smaller Sacrifice. In this section we describe a different method to check the multiplicative
relation on triples 〈a〉, 〈b〉, 〈c〉, where a, b, c ∈ Fpk . The aim is to decrease the (amortized) number
of triples to sacrifice per check. Our approach resembles a technique introduced by Ben-Sasson et
al in [4] and one by Cramer et al in [10].

The first step in our construction is to consider a batch of t + 1 triples 〈ai〉, 〈bi〉, 〈ci〉 for i =
1, . . . , t + 1 at once. There are two main ideas in the construction: the first one is to interpolate
the values and get polynomials A,B,C ∈ Fpk [X] such that A(i) = ai, B(i) = bi, C(i) = ci; if the
triples where correctly generated, one would expect A(x)B(x) = C(x) for all x. The second idea
is to think of A,B,C as polynomials over a field extension K of Fpk , so that one can check the
expected multiplicative relation evaluating A,B,C at a random element z ∈ K; the probability
that the check passes even if some of the triples did not satisfy the relation is inversely proportional
to the size of K. We now present the full construction.

– Let 〈ai〉, 〈bi〉, 〈ci〉, i = 1, . . . , t+ 1, be a batch of triples to check.
– One can think of the values a1, . . . , at+1 (resp. b1, . . . , bt+1) as t + 1 evaluations over Fpk of a

unique polynomial A ∈ Fpk [X] (resp. B ∈ Fpk [X]) of degree t. Concretely, one can define the
polynomial A (resp. B) such that A(i) = ai (resp. B(i) = bi). Since the coefficients of A (resp.

247

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

B) can be computed as a linear combination of the ai’s (resp. bi’s), the players can compute
representations of such coefficients by local computation.

– Players can compute 〈at+2〉, . . . , 〈a2t+1〉 such that A(i) = ai, again by local computation, since
evaluating a polynomial is a linear operation.

– Players can engage in the multiplication step of the online phase with input 〈ai〉, 〈bi〉, and get
〈ci〉 (hopefully ci = aibi) for i = t+ 2, . . . , 2t+ 1. Notice that players call the multiplication step
t times here, so they sacrifice t triples.

– Using only linear computation players can now compute representations of coefficients of the
unique polynomial C ∈ Fpk [X] of degree 2t such that C(i) = ci for i = 1, . . . , 2t+ 1.

– Let K be a field extension of Fpk of degree D. It is possible to think of A,B,C as polynomials
over K, by embedding the coefficients via the natural map Fpk −→ K. Players now evaluate
representations for A(z)B(z), and C(z), where z is a public random element in K, and check if
A(z)B(z) = C(z) by outputting A(z)B(z)−C(z) and checking if the result is zero. This check
can be repeated a number of times in order to lower the error probability. If the check passed
all the times, players consider the original triples as valid; otherwise, they discard the triples
and start again with fresh triples.

Notice that in order to compute A(z)B(z) and C(z), players need to compute at most D2

multiplications over Fpk , since A(z)B(z) can be computed by multiplying aD×D matrix (dependent
of A(z)) with the vector B(z) (over K, multiplication by a fixed element is an endomorphism of K
as a Fpk -vector space). Notice also that we may use the old method of sacrificing more than one
triple per multiplication to get any desired error probability for the multiplications over Fpk . We
analyze below the error probability we must require.

For the analysis of the construction, one sees that if the multiplicative relation was satisfied by
all the original triples, the polynomials AB and C are equal, so the final test passes. In case the
triples did not satisfy the relation, then the polynomials AB and C are different, but since they are
both of degree at most 2t, they can agree in at most 2t points. Therefore, if z is a root of AB −C,
then the test passes, and uniform elements in K are roots of AB − C with probability at most
2t/|K|. If z is not a root of AB − C, the test passes only if the multiplication A(z)B(z) does give
the correct result, so if we make sure this happens with probability at most 2t/|K| (by sacrificing
enough triples in the process), then the error probability of the construction is bounded by 2t/|K|
for a single run of the test. In order to get negligible error probability we reapeat this phase enough
times.

An important fact to notice is that in this construction we need 2t + 1 ≤ Fpk , since otherwise
there are not enough elements to evaluate the polynomials. In order to circumvent this restriction,
one can still apply the above construction but replacing Fpk with an extension Fpk′ with the required
property.

Asymptotically, we see that as we increase the number t+ 1 of triples checked, we always need
to sacrifice t triples, and in addition the number we need to check the multiplication(s) in K. If
we assume that we want to hit the desired error probability with just one iteration of the test, we
have 2−sec = 2t/|K| from which we get log |K| = sec + log 2t. The degree of the extension to K is
log |K|/ log pk, and the number of basic secure multiplications we need is at most the square of this
number, which is (sec + log 2t)2/(log pk)2. For each of these, we need error essentially 2−sec, so the
number of triples we need, say m, satisfies 2−sec = (1/pk)m, so we get m = sec/ log pk. This in total
grows only poly-logarithmically with t, so we conclude that for a given desired error probability,
the number of triples we need to sacrifice to check t+ 1 triples is O(t+ polylog(t)).

248

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Comparing the two Approaches: A Concrete Example. We here compare the above ap-
proaches for checking triples. Suppose p = 2 and k = 8, so Fpk = F28 . Suppose there are also
t+ 1 = 128 triples to check with security level of 2−80.

Using the latter approach, with K = F216 , we need to sacrifice t = 127 triples to generate
〈ct+2〉, . . . , 〈c2t+1〉; moreover we need to perform 4 secure multiplications to check if A(z)B(z) =
C(z), since K is a vector space of dimension 2 over F28 . In order for the multiplications to be
secure enough, we need them to be correct up to error probability (2 · 127)/216 ≈ 2−8 for the entire
multiplication A(z)B(z). This will be the case if for each of the 4 small multiplications we use 3
triples for the multiplication, namely one to do the actual multiplication an two to check the first
one. This gives a total error of at most 4 · 2−16 ≤ 2−8. So since one run of the test leads to an error
probability of ≈ 2−8, we need 10 runs to decrease the error probability to 2−80. Therefore, the total
number of triples to sacrifice is 128 + 4 · 3 · 10 = 248, while with the original approach the number
of triples to sacrifice would have been 128 · 10 = 1280.

A.5 Preprocessing Phase

Proof (Theorem 3).
Recall first that we assume the cryptosystem has an alternative key generation algorithm

KeyGen∗() which is a randomized algorithm that outputs a meaningless public key p̃k with the
property that an encryption of any message Encfpk

(x) is statistically indistinguishable from an en-

cryption of 0. Furthermore, if we set (pk, sk)← KeyGen() and p̃k← KeyGen∗(), then pk and p̃k are
computationally indistinguishable.

We construct a simulator SPREP for ΠPREP. In a nutshell, the simulator will run a copy of the
protocol. Here, it will play the honest players’ part while the environment Z plays for the corrupt
players. The simulator also internally runs copies of FKeyGen and FRand, in order to simulate calls
to these functionalities. Note that in the following we say that the simulator executes or performs
some part of the protocol as shorthand for the simulator going through that part with Z. During
the protocol execution, whenever Z sends ciphertexts on behalf of corrupt players, the simulator
can obtain the plaintexts, since it knows the secret key. These values are then used to generate
input to FPREP. A precise description is provided in Figure 12.

We now need to show that no Z can distinguish between the simulated and the real process. By
contradiction, we assume that there exists Z that can distinguish these two cases with significant
advantage ε. The output of Z is a single bit, thought of a as guess at one of the two cases. Concretely,
we assume

A(Z) := Pr [“Real”← Z(Real process)]− Pr [“Real”← Z(Simulated process)]
≥ ε.

We will show that such Z can be used to distinguish between a normally generated public key and
a meaningless one with basically the same advantage. This leads to a contradiction, since a key
generated by the normal key generator is computationally indistinguishable from a meaningless
one.

More in detail, we construct an algorithm B that takes as input a public key pk∗ (randomly
chosen as either a normal public key or a meaningless one), sets up a copy of Z, goes through the
protocol with Z and uses its output to guess the type of key it got as input. During the process
B uniformly chooses a bit (that can be thought as a switch between “Real” and “Simulation”): in

249

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Simulator SPREP

SReshare(em): This is a subroutine the simulator will use while executing the main steps of the protocol described
below. Any time in ΠPREP, when there is a call to Reshare(em), the simulator proceeds as the protocol, but
it performs the following extra tasks in order to retrieve the quantity ∆m:
– On step 2 the simulator decrypts Encpk(f1), . . . ,Encpk(fn) and obtains the values f1, . . . , fn
– On step 5 the simulator performs step 2 of FKeyGenDec, and thereby obtains m+ f decrypting em+f , and

(m + f)′ from the adversary
– The simulator sets ∆m ← (m + f)′ − (m + f), that is ∆m is the difference between the output chosen

by the adversary for the decryption of em+f and the decryption itself.
– The simulator computes and stores m1 ← (m + f)′ − f1, and mi ← −fi for i 6= 1.

Initialize:
– The simulator performs the initialization steps of ΠPREP. The call to FKeyGenDec in step 1 is simulated

by running KeyGen to generate the key pair (pk, sk). The simulator then sends pk to the players and
stores sk.

– Steps 2–5 are performed according to the protocol, but the simulator decrypts every broadcast ciphertext
and obtains α1, . . . , αn, β1, . . . , βn

– Step 6 is performed according to the protocol, but the simulator gets ∆1 ← SReshare(eγ(α·β1)), . . . ,∆n ←
SReshare(eα·βn)

– The simulator calls Initialize on FPREP with input {αi}i∈A at step 1, {βi}i∈A at step 3 and ∆1, . . . ,∆n

at step 5
Pair:

– The simulator performs step 1 according to the protocol
– Steps 2–3 are performed according to the protocol, but the simulator decrypts every broadcast ciphertext

and obtains r1, . . . , rn
– Step 4 is performed according to the protocol, but the simulator gets ∆ ← SReshare(er·α), ∆1 ←

SReshare(er·β1), . . . ,∆n ← SReshare(er·βn)
– The simulator calls Pair on FPREP with input {ri}i∈A at step 1, and ∆,∆1, . . . ,∆n at step 3

Triple:
– The simulator performs step 1 according to the protocol
– Steps 2–3 are performed according to the protocol, but the simulator decrypts every broadcast ciphertext

and obtains a1, . . . ,an, b1, . . . ,bn
– Steps 4–5 are performed according to the protocol, but the simulator gets ∆a ← SReshare(ea·α), ∆b ←

SReshare(eb·α)
– Steps 6–7 are performed according to the protocol, but the simulator gets c1, . . . cn and δ ← SReshare(ec)
– Step 8 is performed according to the protocol, but the simulator gets ∆c ← SReshare(ec·α)
– The simulator calls Triple on FPREP with input {ai}i∈A, {bi}i∈A at step 1, ∆a,∆b, δ at step 3, {ci}i∈A

in step 5, and ∆c at step 7

Fig. 12. The simulator for FPREP.

case pk∗ is correctly computed, if the bit is set to “Real”, Z’s view is indistinguishable from a real
execution of the protocol, while if the bit is set to “Simulation”, Z’s view is indistinguishable from
a simulated run. However, in case pk∗ is meaningless, both choices of the bit lead to statistically
indistinguishable views. Hence, if Z guesses correctly whether B chose “Real” or “Simulation”, B
guesses that pk∗ was a standard public key; otherwise B guesses that pk∗ was meaningless.

For simplicity we describe the algorithm B for the two-party setting, where there is a corrupt
party P1 and an honest party P2: On input pk∗, where pk∗ is a public key (either meaningless or
standard), B starts executing the protocol ΠPREP, playing for P2, while Z plays for P1. B does
exactly what the simulator would do, with some exceptions:

1. It uses the public key it got as input, instead of generating a key pair initially.
2. B cannot decrypt ciphertexts from P1 since it does not know the secret key (e.g. at step 4

of Initialize, step 2 of Pair, step 2 of Triple, etc.). Instead, B exploits that P1 and P2 ran the

250

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

protocol ΠZKPoPK with P1 as prover. That is, P1 proved that he knows encodings of appropriate
size corresponding to the plaintext inside the ciphertexts broadcast in the previous step. This
means B can use the knowledge extractor of the protocol ΠZKPoPK followed by decoding to
extract the shares from P1 (e.g. αi, βi at step 4 of Initialize, etc). At this point B continues the
protocol as if it had decrypted. Note that the knowledge extractor requires rewinding of the
prover (which here effectively is Z). B can do this as it runs its own copy of Z and since it also
controls the copy of FRand used in the protocol, it can issue challenges of its choice to Z.

3. When P2 gives a ZK proof for a set of ciphertexts, B will simulate the proof. This is done by
running the honest verifier simulator to get a transcript (a, e, (z, T)) and letting the copy of
FRand output e that occurs in the simulate transcript.

In the end B uniformly chooses to generate a real or a simulated view. In the first case, B
outputs to Z exactly those values for P2 that were used in the execution of the protocol. In the
other case, B generates the output for P2 as FPREP would do. That means that P2’s shares a2,b2, c2

of a triple 〈a〉, 〈b〉, 〈c〉 will be determined by choosing a,b at random, setting c ← a · b and then
letting a2 ← a− aReal1 , b2 ← b− bReal1 , c2 ← c− cReal1 .

It can now be seen that if pk∗ is a normal key, then the view generated by B corresponds
statistically to either a real or a simulated execution: if B chooses the simulation case, the only
differences to the actual simulator are 1) the simulator executes the ZK proofs given by P2 according
to the protocol while B simulates them; and 2) the simulator opens the ciphertexts using the secret
key to decrypt, while B uses the extractor for ΠZKPoPK and computes the plaintexts from its results.
As for 1) the ZK proof is statistical ZK so this leads to a statistically indistinguishable distribution.
As for 2), note that for every ciphertext ex generated by P1, the extractor for ΠZKPoPK will, except
with negligible probability, be able to find an encoding x (resp. randomness r) smaller than Bplain
(resp. Brand), with ex = Encpk(x, r). This follows from soundness of ΠZKPoPK and admissibility of
the cryptosystem. Then, by correctness of the cryptosystem, computing the plaintexts as B does,
will indeed give the same result as decrypting, except with negligible probability. If B chooses the
real case, a similar argument shows that we get a view statistically indistinguishable from a real
run of the protocol. Hence if pk∗ is a normal key, Z can guess B’s choice of “Real” or “Simulation”
with advantage essentially ε.

On the other hand if pk∗ is a meaningless key, the encryptions contain statistically no information
about the values inside. Moreover, all messages sent in the zero-knowledge protocols where P2 acts
as prover, do not depend on the specific values that P2 has, since the proofs are simulated. We
conclude that essentially no information on any value held by P2 is revealed. This is the case also
for step 5 of Reshare(em): m+f is retrieved, but no information on m is revealed, since f is uniform.

The view Z sees consists of the view of the corrupt player(s) and the output of the honest
player(s). We just argued that the view of the corrupt player is essentially independent of the
internal values B uses for P2, and hence also independent of whether B chooses the real or the
simulated case. Therefore, the output generated for the honest player(s) seen by Z is in both cases a
set of (essentially) uniformly and independently chosen shares and MAC keys. As a result, if we use
a meaningless key, a real execution and a simulated execution are statistically indistinguishable, and
the guess of Z will equal B’s random choice of “Real” or “Simulation” with probability essentially
1/2.

251

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

An easy calculation now shows that the advantage of B is

A(B) := Pr [“Standard Key”← B(pk)]− Pr
[
“Standard Key”← B(p̃k)

]
≥ A(Z)/2− δ
= ε/2− δ,

for some negligible δ that accounts for the differences between the involved distributions. However,
if ε is non-negligible, then ε/2− δ is also non-negligible, which contradicts the assumption on that
meaningless keys are statistically indistinguishable from standard ones. ut

A.6 Distributed Decryption

Proof (Theorem 4). The requirement B + 2sec · B < q/2 implies that t′ = t mod p, since ‖ri‖∞ <
2sec ·B/(n · p) for i = 1, . . . , n. Therefore the protocol allows players to retrieve the correct message
if all the players are honest.

We now build a simulator SDDec to work on top of FKeyGenDec, such that the adversary cannot
distinguish whether it is playing with the decryption protocol and FKeyGen or the simulator and
FKeyGenDec. We let A denote the set of players controlled by the adversary.

Simulator SDDec

Key Generation: This stage is needed to distribute shares of a secret key.
– Upon “start”, the simulator sends “start” to FKeyGenDec and obtains pk. Moreover, the simulator obtains

(ski)i∈A from the adversary.
– The simulator (internally) sets random (ski)i/∈A such that (ski)i=1,...,n is a full vector of shares of 0.
– The simulator sends pk to A.

Public Decryption: This stage simulates a public decryption.
– Upon “decrypt c,B”, the simulator sends “decrypt c” to FKeyGenDec and obtains m = Decsk(c).
– It then computes the value vi for all players except for an honest player Pj .
– It then samples rj uniformly with infinity norm bounded by 2sec ·B/(n · p) and computes

etj ← −X
i6=j

vi + p · rj + encode(m).

– For each other honest player Pi, it computes ti honestly (using c, ski).
– The simulator broadcasts the values (ti)i/∈A,i6=j ,etj and obtains (t∗i)i∈A from the adversary.

– It then sends m′ ← decode
““etj +

P
i∈A t∗i +

P
i/∈A,i6=j ti

”
mod p

”
to FKeyGenDec so that the ideal func-

tionality sends “Result m′” to all the players.
Private Decryption: This stage simulates a private decryption.

– Upon “decrypt c,B to Pj”, the simulator sends “decrypt c to Pj” to FKeyGenDec.
– If Pj is corrupt, the simulator obtains c,m = Decsk(c) from FKeyGenDec and acts as in the simulated

public decryption.
– If Pj is honest, the simulator receives c from FKeyGenDec, t∗i from each corrupt player Pi and ti from

each honest player.
• The simulator samples rj uniformly with infinity norm bounded by 2sec ·B/(n · p).
• It evaluates etj ← −Pi6=j vi + p · rj .
• It computes ε←

“etj +
P
i∈A t∗i +

P
i/∈A,i6=j ti

”
mod p

• Finally it sends δ ← decode(ε) to FKeyGenDec in order to get Decsk(c) + δ to Pj .

Fig. 13. The simulator for ΠDDec.

252

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

In a simulated decryption the adversary receives pk and (ti)i/∈A,i6=j , t̃j from SDDec. The distri-
bution of pk is the same as in a real conversation, since it was sampled using the same algorithm
as in a real conversation. The distribution of simulated ti, i 6= j is statistically close to the real
one, since ti was computed correctly using shares of a possible secret key. We can therefore focus
on the case where all the players but one are dishonest. We first analyse the simulation of public
decryption, introducing a hybrid machine, and prove its output is statistically indistinguishable
from Pj ’s output (in the real protocol) and perfectly indistinguishable from Pj ’s simulated output.

Hybrid: On input (ski)i=1,...,n, c, reconstruct sk, compute Decsk(c), sample rj uniformly with in-
finity norm bounded by 2sec ·B/(n · p) and output t̃j ← −

∑
i6=j vi + p · rj + encode(m).

Notice that t̃j = vj−t+encode(m)+p ·rj . Now, for a distribution X, define ϕ(X) := p ·X+vj .
Notice that tj = ϕ(U), where U denotes the uniform distribution over vectors of integral entries
bounded with infinity norm 2sec ·B; moreover, since t− encode(m) is a multiple of p, one can write
t̃j = ϕ(U + (encode(m)− t)/p). Since ‖(encode(m)− t)/p‖∞ ≤ (B + 1)/p and U is uniform in an
exponentially larger range, then the distribution U + (encode(m)− t)/p is statistically close to U .
Therefore t̃j is statistically close to tj .

What is left to prove is that the simulation of private decryption to an honest player Pj is
statistically indistinguishable from the real protocol. In the real protocol Pj computes tj and

m′ ← decode

(∑
i∈A

t∗i +
∑
i/∈A

ti

)
.

In that case the error m′ −m introduced by the adversary depends only on the value

ε′ :=

(∑
i∈A

(t∗i − ti)

)
mod p

computed using the actual secret key. In the simulation the error introduced by the adversary is

ε =

t̃j +
∑
i∈A

t∗i +
∑

i/∈A,i6=j

ti

 mod p =

(∑
i∈A

(t∗i − ti)

)
mod p,

computed using secret shares of 0. Since the secret sharing scheme has privacy threshold n and the
sums involve at most n− 1 shares, the quantities ε and ε′ are statistically indistinguishable. ut

B A lower Bound for the Preprocessing

In this section, we show that any preprocessing matching the properties we have, must output the
same amount of data as we do, up to a constant factor. We use the following theorem for 2-party
computation from [29]. It talks about a setting where the parties A,B have access to a functionality
that gives a random variable U to A and V to B with some guaranteed joint distribution PUV of
U, V . Given this, the parties compute securely a function f : X × Y 7→ Z, where A holds x ∈ X ,
and B holds y ∈ Y. This function should have the property that there exists inputs y1, y2 such that
for all x 6= x′, f(x, y1) 6= f(x′, y1); and for all x, x′, f(x, y2) = f(x′, y2). In other words, for some
inputs B learns all of A’s input, but other inputs B learns nothing new.

253

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Theorem 6. Let f : X ×Y 7→ Z be a function with inputs y1, y2 as above. If there exists a protocol
that computes f securely with access to PUV and with error probability ε in the semi-honest model,
then

H(V) ≥ I(U ;V) ≥ log |X | − 7(ε log |X |+ h(ε))

We will also need the following technical lemma

Lemma 1. Let R be a random variable defined over the natural numbers. Then there exists a
constant C such that E(R) ≥ H(R)− 1− C.

Proof (Lemma 1). Let

I :=
{
i | i ≥ log

(
1

Pr[R = i]

)}
.

Under such a definition, one can write H(R) as

H(R) =
∑
i∈I

Pr[R = i] · log
(

1
Pr[R = i]

)
+
∑
i/∈I

Pr[R = i] · log
(

1
Pr[R = i]

)
By the construction of I, one can bound the first summand as follows∑

i∈I
Pr[R = i] · log

(
1

Pr[R = i]

)
≤
∑
i∈I

Pr[R = i] · i

≤
∑
i

Pr[R = i] · i

= E(R).

For the second summand one needs to work a bit more. Let q(i) := log(1/Pr[R = i]). Then∑
i/∈I

Pr[R = i] · log
(

1
Pr[R = i]

)
=
∑
i/∈I

2−q(i) · q(i).

We now claim that
2−q(i) · q(i) ≤ 2i · i, for all 0 6= i /∈ I.

This happens if and only if
2−q(i) · 2log(q(i)) ≤ 2−i · 2log(i).

Taking the logarithm of such relation one gets −q(i) + log(q(i)) ≤ −i+ log(i), which is equivalent
to q(i)− log(q(i)) ≥ i− log(i).
Since q(i) = log(1/Pr[R = i]) ≥ i for all i /∈ I, and i ≥ 1, the latter relation is always satisfied.
Therefore, one can bound the second summand by C +

∑
i≥1 2−i · i, where C = 2−q(0) · q(0).

Moreover
∑

i≥1 2−i · i converges to 1, so the second summand can be bound by 1 + C.
Finally, one can reassemble all the reasoning into one and get∑

i∈I
Pr[R = i] · log

(
1

Pr[R = i]

)
+
∑
i/∈I

Pr[R = i] · log
(

1
Pr[R = i]

)
≤ E(R) + C + 1.

The last inequality implies that H(R) ≤ E(R) + 1 + C ut

254

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

With this result, we can prove the lower bound claimed earlier:

Proof (Theorem 2). Suppose we have an on-line protocol π that satisfies the assumptions in the
theorem. Consider any player Pi and suppose we want to compute the function

fT ((x,x′), y) = yx + (1− y)x′.

Here y ∈ Fpk and x,x′ are vectors over Fpk of length T . Pi will have input y and each Pj , j 6= i will
have as input substrings xj ,x

′
j such that the concatenation of all xj (x′j) is x (x′). Finally, only

Pi learns the output fT ((x,x′), y).
Clearly, fT can be computed using a circuit of size O(T), and this will be the circuit promised

in the theorem. Note that our assumed protocol π can handle circuits of size S and can therefore
compute fT securely where T is Θ(S).

We can now transform π to a two-party protocol π′ for parties A and B. A has input x,x′, B
has input y and B is supposed to learn fT ((x,x′), y). Now, π′ simply consists of running π where B
emulates Pi and A emulates all other players. We give to B whatever Pi gets from the preprocessing
and A gets whatever the other players receive, so this defines the random variables U and V . Since
π is secure if Pi is corrupt and also if all other players are corrupt, this trivially means that π′ is
an actively secure two-party protocol for computing fT .

This implies that π′ also computes fT with passive security. As noted in [29], this is actually not
necessarily the case for all functions. The problem is that if the adversary is passive, then active
security does guarantees that there is a simulator for this case, but such a simulator is allowed to
change the inputs of corrupted parties. A simulator for the passive case is not allowed to do this.
However, [29] observe that for some functions, an active simulator cannot get away with changing
the inputs, as this would make it impossible to simulate correctly. They show this is the case for
Oblivious Transfer which is essentially what fT is after we go to the 2-party case. We may therefore
assume π′ is also passively secure.

Finally, we define f ′T (x, y) = fT ((x,0), y) = yx. Obviously π′ can be used to compute f ′T
securely, A just sets her second input to be 0. Moreover f ′T satisfies the conditions in Theorem
6. So we get that H(V) ≥ log |X | − 7(ε log |X | + h(ε)). If we adopt the standard convention that
the security parameter grows linearly with the input size log |X | then because ε is negligible in the
security parameter, we have that the “error term” 7(ε log |X |+ h(ε)) is o(log |X |).

So we get that H(V) is Ω(log |X |) = Ω(T log pk) = Ω(S log pk), since T is Θ(S). Recalling that
H(V) is actually the entropy of the variable Pi received in the original protocol π, we get the first
conclusion of the Theorem.

For the second conclusion about the computational work done, it is tempting to simply claim
that B has to at least read the information he is given and so H(V) is a lower bound on the
expected number of bit operations. But this is not enough. It is conceivable that in every particular
execution, B might only have to read a small part of the information.

It turns out that this does not happen, however, which can be argued as follows: let B(V) be
the random variable representing the bits of V that B actually reads. By inspection of the proof of
Theorem 6, one sees that if we replace everywhere V by B(V) the same proof still applies. So in fact,
we have H(B(V)) ≥ log |X | − 7(ε log |X | + h(ε)). Now let R be the random variable representing
the number of bits B reads from V .

If we condition on R, then the entropy of B(V) cannot drop by more than H(R), so we have

H(B(V)|R) ≥ H(B(V))−H(R) ≥ log |X | − 7(ε log |X |+ h(ε))−H(R).

255

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Moreover, we also have

H(B(V)|R) =
∑
r

Pr(R = r)H(B(V)|R = r) ≤
∑
r

Pr(R = r)r = E(R)

Putting these two inequalities together, we obtain that

E(R) +H(R) ≥ log |X | − 7(ε log |X |+ h(ε)).

Now, either E(R) ≥ (log |X | − 7(ε log |X |+ h(ε)))/2, or H(R) ≥ (log |X | − 7(ε log |X |+ h(ε)))/2. In
the latter case we have from Lemma 1 that E(R) is much larger than H(R), so we can certainly
conclude that E(R) ≥ (log |X |−7(ε log |X |+h(ε)))/2 in any case. As above, the error term depending
on ε becomes negligible for increasing security parameter, so we get that E(R) is Ω(S log pk) as
desired. ut

C Canonical Embeddings of Cyclotomic Fields

Our concrete instantiation will use some basic results of Cyclotomic fields which we now recap on;
these results are needed for the main result of this Appendix which is a proof of a “folklore” result
about the relationship between norms in the canonical and polynomial embeddings of a cyclotomic
field. This result is used repeatedly in our main construction to produce estimates on the size of
parameters needed.

C.1 Cyclotomic Fields

We first recap on some basic facts about numbers fields, and their canonical embeddings. Focusing
particularly on the case of cyclotomic fields.

Number Fields An algebraic number (resp. algebraic integer) θ ∈ C is the root of a polynomial
(resp. monic polynomial) with coefficients in Q (resp. Z). The minimal polynomial of θ is the unique
monic irreducible f(x) ∈ Q[X] which has θ as a root.

A number field K = Q(θ) is the field obtained by adjoining powers of an algebraic number θ to
Q. If θ has minimal polynomial f(x) of degree N , then K can be considered as a vector space over
Q, of dimension N , with basis {1, θ, . . . , θN−1}. Note that this “coefficient embedding” is relative
to the defining polynomial f(x) Equivalently we have K ∼= Q[X]/f(X), i.e. the field of rational
polynomials with degree less than N , modulo the polynomial f(X). Without loss of generality we
can assume K, from now on, is defined by a monic irreducible integral polynomial of degree N .
The ring of integers OK of K is defined to be the subring of K consisting of all elements whose
minimal polynomial has integer coefficients.

Canonical Embedding There are N field morphisms σi : K −→ C which fix every element of Q.
Such a morphism is called a complex embedding and it takes θ to each distinct complex root of
f(X). The number field K is said to have signature (s1, s2) if the defining polynomial has s1 real
roots and s2 complex conjugate pairs of roots; clearly N = s1 + 2 · s2. The roots are numbered in
the standard way so that σi(θ) ∈ R for 1 ≤ i ≤ s1 and σi+s1+s2(θ) = σi+s1(θ) for 1 ≤ i ≤ s2. We
define σ = (σ1, . . . , σN), which defines the canonical embedding of K into Rs1 × C2·s2 , where the
field operations in K are mapped into componentwise addition and multiplication in Rs1 × C2·s2 .
To ease notation we will often write α(i) = σi(α), for α ∈ K. We will let ‖α‖p for p ∈ [1, . . . ,∞]
denote the p-norm of α in the coefficient embedding (i.e. the p-norm of the vector of coefficients)
and let ‖σ(α)‖p denote norms in the canonical embedding.

256

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Cyclotomic Fields We will mainly be concerned with cyclotomic number fields. The mth cyclotomic
polynomial is given by Φm(X), this is an irreducible polynomial of degree N = φ(m). The number
field defined by Φm(X) is said to be a cyclotomic number field, and is defined by K = Q(ζm), where
ζm is an mth root of unity, i.e. a root of Φm(X). The ring of integers of K is equal to Z[ζm]. The
number field K is Galois, and hence (importantly for us) the polynomial splits modulo p (for any
prime p not dividing m) into a produce of distinct irreducible polynomials all of the same degree.

The key fact is that if Φm(X) has degree d factors modulo the prime p then m divides pd−1. To
see this notice that if Φm(X) factors into N/d factors each of degree d then the finite field Fpd must
contain the mth roots of unity and so m divides pd − 1. In the other direction, if d is the smallest
integer such that m divides pd− 1 then Φm(X) will have a degree d factor since the decomposition
group of the prime p in the Galois group will have order d.

C.2 Relating Norms Between Canonical and Polynomial Embeddings

There is a distinct difference between the canonical and polynomial embeddings of a number field.
In particular notice the following expansions upon multiplication, for x, y ∈ OK ,

‖x · y‖∞ ≤ δ∞ · ‖x‖∞ · ‖y‖∞.
‖σ(x · y)‖p ≤ ‖σ(x)‖∞ · ‖σ(y)‖p.

where

δ∞ = sup
{
‖a(X) · b(X) (mod f(X))‖∞

‖a(X)‖∞ · ‖b(X)‖∞
: a, b ∈ Z[X],deg(a),deg(b) < N

}
.

In this section we show that one can more tightly control the expansion factor of elements in the
polynomial representation; as long as they are drawn randomly with a discrete Gaussian distribu-
tion. In particular we prove the following theorem; this result is well known to people working in
ideal lattice theory, but proofs have not yet appeared in any paper.

Theorem 7. Let K denote a cyclotomic number field then there is a constant Cm, depending only
on m, such that for all α ∈ OK we have

– ‖σ(α)‖∞ ≤ ‖α‖1.
– ‖α‖∞ ≤ Cm · ‖σ(α)‖∞.

We recall some facts about various matrices associated with roots of unity, see [27] and the full
version of [22]. First some notation; for any integer m ≥ 2: We set ζm = exp(2 ·π ·

√
−1/m) to be a

root of unity for an integer m. As usual we let N = φ(m) and we define Z∗m = {am,i : 0 ≤ i < N}
to be a complete set of representatives for Z∗m with 1 ≤ am,i < m. We let A ⊗ B, for matrices A
and B, denote the Kronecker product. We let It denote the t× t identity matrix. All a× b matrices
M in this section will have elements mi,j indexed by 0 ≤ i < a and 0 ≤ j < b; i.e. we index from
zero; this is to make some of the expressions easier to write down. The infinity norm for a matrix
M = (mi,j) is defined by

‖M‖∞ := max

N−1∑
j=0

|mi,j |

N−1

i=0

.

257

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

We define the N ×N CRT matrix as follows:

CRTm :=
(
ζ
am,i·j
m

)
0≤i,j<N

.

Then we define the constant Cm in the above theorem as Cm = ‖CRT−1
m ‖∞. From which the proof

now immediately follows:

Proof (Theorem 7). For a cyclotomic field the canonical embedding is given by the map σ(α) =
CRTm ·α, where α is the vector of the coefficient embedding of α, i.e. α considered as a polynomial
in θ a root of F (X) = Φm(X) and CRTm is the matrix, defined earlier, i.e. it is equal to

CRTm =

1 θ(1) . . . θ(1)N−1

...
...

...
1 θ(N) . . . θ(N)N−1

 .

For the first part of the theorem we note that, on writing α =
∑N−1

i=0 xi · θi, we have

∣∣∣α(i)
∣∣∣ =

∣∣∣∣∣∣
N−1∑
j=0

xj · θ(i)j

∣∣∣∣∣∣ ≤
N−1∑
j=0

|xj | · |θ(i)j | =
N−1∑
j=0

|xj | = ‖x‖1 = ‖α‖1.

For the second part we note that for all β ∈ OK ,

‖β‖∞ = ‖CRT−1
m · σ(β)‖∞ ≤ ‖CRT−1

m ‖∞ · ‖σ(β)‖∞

from which the result follows. ut
The key question then is how large can Cm become. So we now turn to this problem; giving a
partial answer.

The m×m DFT matrix is defined by:

DFTm :=
(
ζi·jm
)
0≤i,j<m .

Let m′ be a divisor of m then for i ∈ {0, . . . ,m− 1} we write i0 = i mod m′ and i1 = (i− i0)/m′.
We then define the m×m “twiddle matrix” to be the diagonal matrix defined by

Tm,m′ := Diag
{
ζi0·i1m

}
i=0,...,m−1

.

Finally we define Lmm′ to be the permutation matrix which fixes the row with index m−1, but sends
all other rows i, for 0 ≤ i < m − 1, to row i ·m′ mod m − 1. Following [27] we use these matrices
to decompose the matrix Dm into D′m and Dk, where m = m′ · k, via the following identity

DFTm = Lmm′ · (Ik ⊗ DFTm′) · Tm,m′ · (DFTk ⊗ Im′) , (3)

This is nothing but the general Cooley-Tukey decomposition of the DFT for composite m. Consider
the Vandermonde matrix

V (x1, . . . , xm) :=

1 x1 x2

1 . . . xm−1
1

1 x2 x2
2 . . . xm−1

2
...

...
...

...
1 xm x2

m . . . xm−1
m

 .

It is clear that DFTm = V (1, ζm, ζ2
m, . . . , ζ

m−1
m).

258

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Lemma 2. We have, for any m,

DFT−1
m =

1
m
· V (1, ζ−1

m , ζ−2
m , . . . , ζ1−m

m)

Proof. Let δi,j be defined so that δi,j = 0 if i 6= j and equal to one otherwise. We have(
V (1, ζm, ζ2

m, . . . , ζ
m−1
m) ·V (1, ζ−1

m , ζ−2
m , . . . , ζ1−m

m)
)
i,j

=
∑

0≤k<m
ζi·kn · ζ−k·jm

=
∑

0≤k<m
ζk·(i−j)m = m · δi,j .

ut

This leads to the following lemma which gives shows that the infinity norm of the inverse of the
DFT matrix is always equal to one.

Lemma 3. For any m we have ‖DFT−1
m ‖∞ = 1.

Proof. If ζm is an m-th root of unity, it is clear that ‖V (1, ζm, ζ2
m, . . . , ζ

m−1
m)‖∞ = m. In addition

we have ψm = 1/ζm is also an m-th root of unity, thus

‖DFT−1
m ‖∞ =

1
m
· ‖V (1, ψm, ψ2

m, . . . , ψ
m−1
m)‖∞ =

m

m
= 1.

ut

Let m = pe11 · · · p
es
k we define r = p1 · · · ps, m1 = m/r; hence N = φ(m) = φ(r) ·m1. In [22] the

authors specialise the decomposition (3) (by selecting appropriate rows and columns) in the case
m′ = m1 and k = r, to show that to show that, upto a permutation of the rows, the matrix CRTm
is equal to (

Iφ(r) ⊗ DFTm1

)
· T ∗m,m1

· (CRTr ⊗ Im1)

where Tm,m1
∗ is another diagonal matrix consisting of roots of unity. We then have that

Lemma 4. For an integer m ≥ 2 such that m = pe11 · · · p
ek
k we write r = p1 · · · pk, we then have

Cm ≤ Cr.

Proof. As above we write m1 = m/r. First note that ‖A ⊗ It‖∞ = ‖Is ⊗ A‖∞ = ‖A‖∞ for any
matrix A and any integers s and t. Then also note that since CRTm is given, upto a permutation
of the rows, by the above decomposition, we have that CRT−1

m is given up to a permutation of the
rows by the decomposition (

CRT−1
r ⊗ Im1

)
· T−1 ·

(
Iφ(r) ⊗ DFT−1

m1

)
.

So we have

‖CRT−1
m ‖∞ = ‖

(
CRT−1

r ⊗ Im1

)
· T−1 ·

(
Iφ(r) ⊗ DFT−1

m1

)
‖∞,

≤ ‖CRT−1
r ⊗ Im1‖∞ · ‖T−1‖∞ · ‖Iφ(r) ⊗ DFT−1

m1
‖∞,

= ‖CRT−1
r ‖∞ · ‖T−1‖∞ · ‖DFT−1

m1
‖∞ = ‖CRT−1

r ‖∞.

ut

259

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This result means that we can bound Cm for infinite families of values of m, by simply deducing a
bound on Cr, where r is the product of all primes dividing m. For example notice that CRTr = (1)
and hence C2e = C2 = 1 for all values of e. Indeed it is relatively straight forward to determine the
exact value of Cp for a prime p:

Lemma 5. If p is a prime then

Cp =
2 · sin(π/p)

p · (cos(π/p)− 1)
.

Proof. 7 First note that it is a standard fact from algebra (by consider inverses of Vandermonde
matrices for example) that the entries of a row of the matrix CRT−1

p are given by the coefficients
of the polynomial

Φp(X)
Φ′p(ζp) · (X − ζp)

, (4)

where each row uses a different root of unity ζp. We then note that

Φ′p(ζp) = (ζp − ζ2
p) · (ζp − ζ3

p) · · · (ζp − ζp−1
p)

= ζ−2
p · (1− ζp) · (1− ζ2

p) · · · (1− ζp−2
p) · (1− ζp−1

p)
(1− 1/ζp)

=
ζ−2
p p

1− 1/ζp
=

p

ζ2
p − ζp

.

Thus the coefficients of the polynomial in (4) are given by ζp · (ζrp −1)/p for r = 1, . . . , p−1. Where
each row of our matrix is given by a different pth root ζp.

Thus to determine the infinity norm of CRT−1
p we simply need to sum the absolute values of

these coefficients, for the first row, since all other rows will be equal:

Cp =
p−1∑
r=1

|ζp(ζrp − 1)/p| = 1
p

p−1∑
r=1

√
2− 2 · cos(2rπ/p)

=
1
p

p−1∑
r=1

2 · sin(rπ/p) =
2 · sin(π/p)

p · (cos(π/p)− 1)

ut

In practice this result means that Cp ≈ 4/π ≈ 1.2732 for all p ≥ 11.
If m is odd then we see that, subject to a permutation of the rows, the matrix CRT2m and

CRTm are identical up to a multiple of −1 for every second column. Thus we have

C2m = Cm for odd values of m.

We find that Cr ≤ 8.6 for squarefree r ≤ 400, which provides a relatively small upper bound on
Cm for an infinite family of cyclotomic fields K. It appears that the size of Cm depends crucially on
the number of prime factors of m. Thus it is an interesting open question to provide a tight upper
bound on Cm. Indeed the growth in Cm seems to be closely related to the growth in the coefficients
of the polynomial Φm(X), which also depends on the number of prime factors of m.

7 This proof was provided to us by Robin Chapman .

260

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

C.3 Application of the above bounds

An immediate consequence of Theorem 7 is to provide an upper bound on the value δ∞ for cyclo-
tomic number fields. Let α ∈ OK then we have, by the standard inequalities between norms, that
‖α‖1 ≤ N · ‖α‖∞. Thus we have, for α, β ∈ OK ,

‖α · β‖∞ ≤ Cm · ‖σ(α · β)‖∞ ≤ Cm · ‖σ(α)‖∞ · ‖σ(β)‖∞
≤ Cm · ‖α‖1 · ‖β‖1
≤ Cm ·N2 · ‖α‖∞ · ‖β‖∞,

i.e. δ∞ ≤ Cm · N2. When m is a power of two, since Cm = 1 we find the bound δ∞ ≤ φ(m)2;
however in this case it is known that δ∞ = φ(m), thus the above bound is not tight.

A more interesting application, for our purposes, is to bound the infinity norm in the polynomial
embedding of the product of two elements which have been selected with a discrete Gaussian. To
demonstrate this result we will first need to introduce the following standard tailbound:

Lemma 6. Let c ≥ 1 and C = c · exp(1−c2
2) < 1 then for any integer N ≥ 1 and real r > 0 we have

Pr
x←DZN,s

[
‖x‖2 ≥ c · s ·

√
N

2 · π

]
≤ CN .

Note that this implies that

Pr
x←DZN,s

[
‖x‖2 ≥ 2 · r ·

√
N
]
≤ 2−N ,

where r = s/
√

2 · π. If we therefore select α, β ∈ DZN ,s, consider them as elements of OK , we then
have, with overwhelming probability that ‖α‖2, ‖β‖2 ≤ 2 · r ·

√
N . We then apply the standard

inequality between the 2- and the 1-norm to deduce ‖α‖1, ‖β‖1 ≤ 2 · r ·N . We then have that

‖α · β‖∞ ≤ Cm · ‖σ(α · β)‖∞ ≤ Cm · ‖σ(α)‖∞ · ‖σ(β)‖∞
≤ Cm · ‖α‖1 · ‖β‖1
≤ 4 · Cm · r2 ·N2.

D Security, Parameter Choice and Performance

In this Appendix we show that our concrete SHE scheme meets all the security requirements
required by our MPC protocol, i.e. that it is an admissible cryptosystem. On the way we derive
parameter settings, and finally we present some implementation results for the core operations.

Recall a cryptosystem is admissible if it meets the following requirements:

– It is IND-CPA secure.
– It has a KeyGen∗ function with the required properties.
– It is (Bplain, Brand, C)-correct, where Bplain = N · τ · sec2 · 2sec/2+8, Brand = d · ρ · sec2 · 2sec/2+8,

and where C, the set of functions we can evaluate on ciphertexts, contains all formulas evaluated
in the protocol ΠPREP’ (including the identity function). Note that here we choose the values
for Bplain, Brand that correspond to the most efficient variant of the ZK proofs.

Recall in the expressions for Bplain and Brand we have d is the dimension of the randomness space,
i.e. d = 3 · N , τ is a bound on the infinity norm of valid plaintexts, i.e. p/2; and ρ is a bound on
the infinity norm of the randomness in validly generated ciphertexts, i.e. ρ ≈ 2 · r ·

√
N , by the

tailbound of Lemma 6.

261

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

IND-CPA and KeyGen∗’s properties: We first turn to discussing security. Since our scheme is
identical (bar the distributed decryption functionality) to that of [7], security can be reduced to
the hardness of the following problem.

Definition 2 (PLWE Assumption). For all sec ∈ N, let f(X) = fsec(X) ∈ Z[X] be a polynomial
of degree N = N(sec), let q = q(sec) ∈ Z be a prime integer, let R = Z[X]/f(X) and R = R/qR,
and let χ denote a distribution over the ring R. The polynomial LWE assumption PLWEf,q,χ states
that for any l = poly(sec) it holds that

{(ai, ai · s+ ei)}i∈[l] ≈ {(ai, ui)}i∈[l]

where s is sampled from the distribution χ, and ai, ui are uniformly random in Rq. We require
computational indistinguishability to hold given only l samples, for some l = poly(sec).

In particular our scheme is semantically secure if the PLWEΦm(X),q0,DNρ (s)-problem is hard. The
hardness of the same problem also implies that the output from KeyGen() is computationally
indistinguishable from that of KeyGen∗().

Thus our first task is to derive relationships between the parameters so as to ensure the first
two properties of being admissible are satisfied, i.e. the PLWE problem is actually hard to solve.
The basic parameters of our scheme are the degree of the associated number field N = φ(m),
the standard deviation r of the used Gaussian distribution, and the modulus q. We first turn to
estimating r; we do this by using the “standard” analysis of the underlying LWE problem.

We first ensure that r is chosen to avoid combinatorial style attacks. Consider the underlying
LWE problem as being given by s ·A+ e = v, where e is the LWE error vector, and A is a random
N × t matrix over Fq. In [1] the authors present a combinatorial attack which breaks LWE in time
2O(‖e‖2∞) with high probability. Since e is chosen by the discrete Gaussian with standard deviation
r, if we pick r large enough then this attack should be prevented. Thus choosing r such that r > 3.2
will ensure that r is large enough to avoid combinatorial attacks, i.e. s ≥ 8.

We now turn to the distinguishing problem, namely given v can we determine whether it arises
from an LWE sample, or from a uniform sample. We determine a lower bound on N . The natural
“attack” against the decision LWE problem is to first find a short vector w in the dual lattice
Λq(AT)∗ and then check whether w · vT is close to an integer. If it is then the input vector is an
LWE sample, if not it is random. Thus to ensure security, following the argument in [23][Section
5.4.1], we require

r ≥ 1.5
‖w‖2

.

Following the work of [14] we can estimate, for t� N , the size of the output of a lattice reduction
algorithm operating on the lattice Λq(AT)∗. In particular if the algorithm tries to find a vector
with root Hermite factor δ (thus δ measures the difficulty in breaking the underlying SHE system,
typically one may select δ ≈ 1.005, but see later for other choices) then we expect to find a vector
w of size

1
q

min(q, δt · qN/t).

Following the analysis of [23] the above quantity is minimized when we select t = t′ :=
√
N log(q)/ log(δ).

This leads us to the deduce the lower bound

r ≥ 1.5 ·max(1 , δ−t
′ · q1−N/t′).

262

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Noise of a Clean Ciphertext: We now turn to determining the bound, in the infinity norm,
of the value obtained in decrypting valid ciphertexts. Consider what happens when we decrypt a
clean ciphertext, encrypted via (c0, c1) = Encpk(x, r), with r = (u,v,w). This looks like a PLWE
sample (c1, c0) where the “noise” term, for a validly generated clean ciphertext, is given by

t = c0 − s · c1

= x + p · (e · v + w + s · u)

By our estimates in Appendix C.3 we can bound the infinity norm of t by

‖t‖∞ ≤
p

2
+ p ·

(
4 · Cm · r2 ·N2 + 2 ·

√
N · r + 4 · Cm · r2 ·N2

)
=: Y.

(Bplain, Brand, C)-correctness: Whilst IND-CPA is about security in relation to validly created
ciphertexts, our distributed decryption functionality must be secure even when some ciphertexts
are not completely valid. This was why we introduced the notion of (Bplain, Brand, C)-correctness.
We need to pick Bplain and Brand so that Bplain ≥ N ·τ ·sec2 ·2sec/2+8 and Brand ≥ d·ρ·sec2 ·2sec/2+8.
Since Bplain � Brand we estimate the noise term associated to such a “clean” ciphertext will be
bounded by Y ′ = (Brand/ρ)2 · Y = 9 ·N2 · sec4 ·2sec+16 · Y . In our MPC protocol we only need to
be able to evaluate functions of the form

(x1 + · · ·+ xn) · (y1 + · · ·+ yn) + (z1 + · · ·+ zn).

We can, via the results in Appendix C.3, crudely estimate the size of B, from Section 6, needed to
ensure valid decryption. Our crude (over-) estimate therefore comes out as

B ≤ δ∞ · (n · Y ′) · (n · Y ′) + (n · Y ′)
≤ Cm ·N2 · n2 · Y ′2 + n · Y ′

≤ Cm ·N2 · n2 · c2sec · Y 2 + n · csec · Y =: Z

where csec = 9 ·N2 · sec4 · 2sec+8. We take Z as the bound, which we then need to scale by 1 + 2sec

to ensure we have sufficient space to enable the distributed decryption algorithm. Hence, the value
of q needs to be selected so that Z · (1 + 2sec) < q/2.

So in summary we need to choose parameters such that

q > 2 · Z · (1 + 2sec),

r > max
{

3.2, 1.5 · δ−t′ · q1−N/t′
}
,

where sec is the statistical security parameter, δ is a measure of how hard it is to break the
underlying SHE scheme, and t′ =

√
N log(q)/ log(δ). This leads to a degree of circularity in the

dependency of the parameters, but valid parameter sets can be found by a simple search technique.

263

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Specific Parameter Sets: To determine parameters for fixed values of (Fpk)s and n we proceed
as follows. There are two interesting cases; one where p is fixed (i.e. p = 2) and one where we only
care that p is larger than some bound (i.e. p > 232, or p > 264). The latter case of p > 264 is more
interesting as such size numbers can be utilized more readily in applications since we can simulate
integer arithmetic without overflow with such numbers. In addition using such a value of p means
we do not need to repeat our ZKPoKs, or replicate the MACs so as to get a cheating probability
of less than 2−40.

Our method in all cases is to first fix p, n, sec and δ, we then search using the above inequalities
for (rough) values of q and N which satisfy the inequalities above. We then search for exact values
of p and N which satisfy our functional requirements on p (i.e. fixed or greater than some bound)
plus N larger than the bound above, such that N is the degree of F (X) = Φm(X) and F (X) splits
into at least s factors of degree divisible by k over Fp.

Given this precise value for N , we then return to the above inequalities to find exact values of
q and r. In all our examples below we pick n = 3, sec = 40, and δ = 1.0052.

Example 1. We first look at p > 232. Our first (approximate) search reveals we need N > 14300,
q ≈ 2430 and r = 3.2 (assuming Cm ≤ 2). We then try to find an optimal value of N ; this is done
by taking increasing primes p > 232 and factoring p− 1. The factors of p− 1 correspond to values
of m such that Φm(X) factors into φ(m) factors modulo p. So we want to find a p such that p− 1
is divisible by an m, so that N = φ(m) > 14300. A quick search reveals candidates of

(p,N,m) = (232 + 32043, 14656, 14657).

Picking m in this way will maximise the value of s = n, and hence allow us to perform more
operations in parallel. In addition since m is prime we know, by Lemma 5, that Cm ≈ 1.2732, thus
justifying our assumption in deriving the bounds of Cm ≤ 2.

Selecting m to be the prime 14657 in addition allows us to evaluate s = p−1 = 14656 runs of the
triple production algorithm in parallel. The message expansion factor, given we require N · log2(q)
bits to represent N elements in Fp is given by

N · log2(q)
N · log2(p)

=
log2(q)
log2(p)

=
430
32
≈ 13.437.

Example 2. Performing the same analysis for a p > 264, our first naive search of parameters reveal
we need an n ≈ 16700 and q ≈ 2500. We then search for specific parameters and find p = 264 + 4867
is pretty near to optimum, which results in a prime value of m of 16729. We find the expansion
factor is given by

log2(q)
log2(p)

=
500
64
≈ 7.81.

Example 3. We now look at the case p = 2 and k = 8, i.e. we are looking for parameters which
would allow us to compute AES circuits in parallel; or more generally circuits over F28 . Our first
approximate search reveals that we need N > 12300, q ≈ 2370 and r = 3.2. So we now need to
determine a value m such that

N = φ(m) > 12100 and 2d ≡ 1 (mod m) and d ≡ 0 (mod 8).

264

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

A quick search reveals candidates of

(m,N) = (17425, 12800)

since Φ17425(X) factors into s = 320 factors of degree d = 40 modulo 2. Thus using this value of m
we are able to work with s = 320 elements of F28 in parallel. The message expansion factor, given
we require N · log2(q) bits to represent 320 elements in F28 is given by

N · log2(q)
8 · s

=
d · 370

8
= 1850.0

For this value of m we find C17425 ≈ 9.414.

We present the following run-times we have achieved. We time the operations for encrypting
and decrypting clean ciphertexts, the time to homomorphically compute (cx�cy)�cz, plus the time
to decrypt the said result. The times are given in seconds, and in brackets we present the amortized
time per finite field element. All timings were performed on an Intel Core-2 6420 running at 2.13
GHz.

Enc Dec (Clean) (cx � cy) � cz Decsk((cx � cy) � cz)
Example Time (s) Time (s) Time (s) Time (s)

1 0.72 {0.00005} 0.35 {0.00002} 1.43 {0.0001} 0.72 {0.00005}
2 3.13 {0.00019} 1.54 {0.00009} 6.27 {0.0004} 3.15 {0.00018}
3 1.26 {0.00394} 0.60 {0.00188} 2.46 {0.0077} 1.23 {0.00384}

Estimating Equivalent Symmetric Security Level: The above examples were computed using
the root Hermite factor of δ = 1.005. Mapping this “hardness” parameter for the underlying lattice
problem to a specific symmetric security level (i.e. 80-bit security, or 128-bit security) is a bit of a
“black art” at present.

In [9] the authors derive an estimate for the block size needed to obtain a given root Hermite
factor, assuming an efficient BKZ lattice reduction algorithm is used. They then provide estimates
as to the run time needed for a specific enumeration using this block size. As an example of their
analysis they estimate that a block size of 286 is needed to obtain a root Hermite factor of δ = 1.005.
Then they estimate that the run time needed to perform the enumeration in a projected lattice of
such dimension (the key sub-procedure of the BKZ algorithm) takes time roughly between 280 and
2175 operations. Thus a value of δ = 1.005 can be considered secure; however their estimates are
not precise enough to produce parameters associated with a given symmetric security level.

In [20] the authors take a different approach and simply extrapolate run times for the NTL
implementation of BKZ. By looking at various LWE instances, they derive the following equation
linking the expected run-time of a distinguishing attack and the root Hermite factor

log2 T =
1.8

log2 δ
− 110.

The problem with this approach is that NTL’s implementation of BKZ is very old, and hence is
not state-of-the-art; on the other hand we are able to derive a direct linkage between δ and log2 T .
Using this equation we find the following equivalences:

265

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

log2 T 80 100 128 196 256
δ 1.0066 1.0059 1.0052 1.0041 1.0034

Using these estimates for δ we re-run the above analysis to find approximate values for N and
q in our three example applications; again assuming n = 3 and sec = 40.

Fp : p > 232 Fp : p > 264 F28

N > log2 q ≈ N > log2 q ≈ N > log2 q ≈
δ = 1.0066 11300 430 12900 490 9500 360
δ = 1.0059 12600 430 14700 500 10900 370
δ = 1.0052 14300 430 16700 500 12300 370
δ = 1.0041 18600 440 21100 500 15600 370
δ = 1.0034 22400 440 25500 500 18800 370

As can be seen the security parameter has only marginal impact on log2 q, and results in a
doubling of the size of N as we increase from a security level of 80 bits to 256 bits. As a comparison
if we, for security level 128 bits, i.e. δ = 1.0052, increase the value of sec from 40 to 80 we find the
following parameter sizes:

Fp : p > 232 Fp : p > 264 F28

N > log2 q ≈ N > log2 q ≈ N > log2 q ≈
δ = 1.0052 18700 560 21000 630 16700 500

E Functionalities

Functionality FRand

Random Sample: When receiving (rand) from all parties, it samples a uniform r ← {0, 1}u and outputs
(rand , r) to all parties.

Random modulo p: When receiving (rand , p) from all parties, it samples a uniform value e← Fpk and outputs
(rand , e) to all parties.

Fig. 14. The ideal functionality for coin-flipping.

266

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Functionality FAMPC

Initialize: On input (init , p) from all parties, the functionality activates and stores the modulus p.
Rand: On input (rand , Pi, varid) from all parties Pi, with varid a fresh identifier, the functionality picks r ← Fpk

and stores (varid , r).
Input: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?) from all other parties, with varid a fresh

identifier, the functionality stores (varid , x).
Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory and

varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y mod p).
Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory

and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y mod p).
Output: On input (output , varid) from all honest parties (if varid is present in memory), the functionality

retrieves (varid , x) and outputs it to the environment. If the environment inputs OK then x is output to all
players. Otherwise ⊥ is output to all players.

Fig. 15. The ideal functionality for arithmetic MPC.

267

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Functionality FPREP

Usage: We first describe two macros, one to produce [[v]] representations and one to produce 〈v〉 representations.
We denote by A the set of players controlled by the adversary.

Bracket(v1, . . . ,vn,∆1, . . . ,∆n, β1, . . . , βn), where v1, . . . ,vn,∆1, . . . ,∆n ∈ (Fpk)s, β1, . . . , βn ∈ Fpk

1. Let v =
Pn
i=1 vi

2. For i = 1, . . . , n
(a) The functionality computes the MAC γ(v)i ← v · βi and sets γi ← γ(v)i +∆i

(b) For every corrupt player Pj , j ∈ A the environment specifies a share γji
(c) The functionality sets each share γji , j /∈ A, uniformly such that

Pn
j=1 γ

j
i = γi

3. The functionality sends (vi, (βi, γ
i
1, . . . , γ

i
n)) to each honest player Pi (dishonest players already have

the respective data).
Angle(v1, . . . ,vn,∆, α), where v1, . . . ,vn,∆ ∈ (Fpk)s, α ∈ Fpk

1. Let v =
Pn
i=1 vi

2. The functionality computes the MAC γ(v)← α · v and sets γ ← γ(v) +∆
3. For every corrupt player Pi, i ∈ A the environment specifies a share γi
4. The functionality sets each share γi i /∈ A uniformly such that

Pn
i=1 γi = γ

5. The functionality sends (0,vi, γi) to each honest player Pi (dishonest players already have the respective
data).

Initialize: On input (init , p, k, s) from all players, the functionality stores the prime p and the integers k, s. It
then waits for the environment to call either “stop” or “OK”. In the first case the functionality sends “fail”
to all honest players and stops. In the second case it does the following:
1. For each corrupt player Pi, i ∈ A, the environment specifies a share αi
2. The functionality sets each share αi, i /∈ A uniformly
3. For each corrupt player Pi, i ∈ A, the environment specifies a key βi
4. The functionality sets each key βi i /∈ A uniformly
5. The environment specifies ∆1, . . . ,∆n ∈ (Fpk)s

6. It runs the macro Bracket(Diag(α1), . . . ,Diag(αn),∆1, . . . ,∆n, β1, . . . , βn).
Pair: On input (pair) from all players, the functionality waits for the environment to call either “stop” or “OK”.

In the first case the functionality sends “fail” to all honest players and stops. In the second case it does the
following:
1. For each corrupt player Pi, i ∈ A, the environment specifies a share ri
2. The functionality sets each share ri, i /∈ A uniformly
3. The environment specifies ∆,∆1, . . . ,∆n ∈ (Fpk)s

4. It runs the macros Bracket(r1, . . . , rn,∆1, . . . ,∆n, β1, . . . , βn) and Angle(r1, . . . , rn,∆, α).
Triple: On input (triple) from all players, the functionality waits for the environment to call either “stop” or

“OK”. In the first case the functionality sends “fail” to all honest players and stops. In the second case it
does the following
1. For each corrupt player Pi, i ∈ A, the environment specifies shares ai,bi
2. The functionality sets each share ai,bi, i /∈ A uniformly. Let a :=

Pn
i=1 ai, b :=

Pn
i=1 bi

3. The environment specifies ∆a,∆b, δ ∈ (Fpk)s

4. It sets c← a · b + δ
5. For each corrupt player Pi, i ∈ A, the environment specifies shares ci
6. The functionality sets each share ci, i /∈ A uniformly with the constrain

Pn
i=1 ci = c

7. The environment specifies ∆c ∈ (Fpk)s

8. It runs the macros Angle(a1, . . . ,an,∆a, α), Angle(b1, . . . ,bn,∆b, α), Angle(c1, . . . , cn,∆c, α).

Fig. 16. The ideal functionality for making the global key [[α]], pairs [[r]], 〈r〉 and triples 〈a〉, 〈b〉, 〈c〉

268

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Implementing AES via an Actively/Covertly Secure
Dishonest-Majority MPC Protocol

I. Damg̊ard1, M. Keller2, E. Larraia2, C. Miles2, and N.P. Smart2

1 Department of Computer Science,
University of Aarhus,

IT-parken, Aabogade 34, DK-8200 Aarhus N,
Denmark.

2 Dept. Computer Science,
University of Bristol,

Woodland Road,
Bristol, BS8 1UB,
United Kingdom.

Abstract. We describe an implementation of the protocol of Damg̊ard, Pastro, Smart and Zakarias
(SPDZ/Speedz) for multi-party computation in the presence of a dishonest majority of active adver-
saries. We present a number of modifications to the protocol; the first reduces the security to covert
security, but produces significant performance enhancements; the second enables us to perform bit-wise
operations in characteristic two fields. As a bench mark application we present the evaluation of the
AES cipher, a now standard bench marking example for multi-party computation. We need examine
two different implementation techniques, which are distinct from prior MPC work in this area due to
the use of MACs within the SPDZ protocol. We then examine two implementation choices for the finite
fields; one based on finite fields of size 28 and one based on embedding the AES field into a larger finite
field of size 240.

1 Introduction

The invention of secure multi-party computation is one of the crowning achievements of theoretical cryptog-
raphy, yet despite being invented around twenty-five years ago it has only recently been implemented and
tested in practice. In the last few years a number of MPC “systems” have appeared [4, 7–9, 12, 15, 22], as
well as experimental research results [13, 16, 21, 25, 26].

The work (both theoretical and practical) can be essentially divided into two camps. On one side we have
techniques based on Yao circuits [28], which are mainly focused on two party computations, and on the other
we have techniques based on secret sharing [6, 11], which can be applied to more general numbers of players.
This is rather a coarse divide as some techniques, such as that from [25], only apply in the two party case
but it is based on secret sharing as opposed to Yao circuits. Following this coarse divide we can then divide
work into those which consider only honest-but-curious adversaries and those which consider more general
active adversaries.

As in theory, it turns out that in practice obtaining active security is a much more challenging task;
requiring more computational and communication resources. All prior implementation reports to our knowl-
edge for active adversaries have either been in the two party setting, or have restricted themselves to the
multi-party setting with honest majority. In the two party setting one can adopt specialist protocols, such
as those based on Yao circuits, whilst the restriction to honest majority in the multi-party setting means
that cheaper information theoretic constructions can be employed. Recently, Damg̊ard et al [14] following on
from work in [5], presented an actively secure protocol (dubbed “SPDZ” and pronounced “Speedz”) in the
multi-party setting which is secure in the presence of dishonest majority. The paper [14] contains some simple
implementation results, and extrapolated estimates, but it does not report on a fully working implementation
which computes a specific function.

269

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Whilst active security is the “gold standard” of security, many applications can accept a weaker notion
called covert security [1, 2]. In this model a dishonest party deviating from the protocol will be detected with
high probability; as opposed to the overwhelming probability required by active security. Due to the weaker
requirements, covert security can often be achieved for less computational effort.

Our Contribution. As already remarked much progress has been made on implementation of MPC protocols
in the last few years, but most of the “fast” implementations have been for simpler security models. For ex-
ample prior work has focused on protocols for two party computation only, or honest-but-curious adversaries
only, or for threshold adversaries only. In this work we extend the prior implementation work to the most
complex setting namely covert and active security against a dishonest majority. In addition we examine more
than four players; with some experiments being carried out with ten players. Thus our work shows that even
such stringent security requirements and parameter settings are beginning to be within reach of practical
application of MPC technology.

More concretely, we show how to simplify the SPDZ protocol so that it achieves covert security for
a greatly improved computational performance, we present the first implementation results for the SPDZ
protocol (in both the active and covert cases), and we describe an evaluation of the AES functionality with
this protocol. Our protocol implementation is in the random oracle model, specifically the zero-knowledge
proofs required by SPDZ are implemented using the Fiat–Shamir heuristic. We also simplify some other
parts of the SPDZ protocol in the random oracle model (details are provided below), and present extensions
to enable bit-wise operations in characteristic two fields.

Since the work of [26] it has become common to measure the performance of an MPC protocol with the
time it takes to evaluate the AES functionality. This is for a number of reasons: Firstly AES provides a
well understood function which is designed to be highly non-linear, secondly AES has a regular and highly
mathematical structure which allows one to investigate various different optimization techniques in a single
function, and thirdly “oblivious” evaluation of AES on its own is an interesting application which if one
could make it fast enough could have practical application.

The paper is structured as follows. We start by covering details of prior work on using MPC to implement
AES. In Section 3 we detail the basics of the SPDZ protocol and the minor changes we made to the pre-
sentation in [14]. Then in Section 4 we describe how we implemented the S-Box, this is the only non-linear
component in AES and so it is the only part which requires interaction. Finally in Section 5 we present our
implementation results.

2 Prior Work on Evaluating AES via MPC Protocols

As noted earlier the first MPC evaluation of the AES functionality was presented in [26]. This paper presented
a protocol for the case of two parties, using Yao circuits as the basic building block. On their own Yao circuits
only provide security against semi-honest adversaries, and in this case the authors obtained a run-time of
7 seconds to evaluate a single AES block (the model being that party A holds the key, and party B holds
a message, with B wishing to obtain the encryption of their message under A’s key). To obtain security
against active adversaries a variant of the cut-and-choose methodology of Lindell and Pinkas [20] was used,
this resulted in the run-time dropping to 19 minutes to evaluate an AES encryption.

In [15] Henecka et al again look at two-party computation based on Yao circuits, but restrict to the case
of semi-honest adversaries only. They reduce the run time per block from the previous 7 seconds down to 3.3
seconds. Huang et al [16] improve this even further obtaining a time of 0.2 seconds per block for semi-honest
adversaries.

In [25] the authors present a two party protocol, but instead of their protocol being based on Yao circuits
they instead base it on OT extension in the Random Oracle Model, and a form of “secret sharing with MACs”
(similar to the SPDZ protocol which we examine below). This enables the authors to obtain active security
and to improve on the prior performance of other implementations. The run time for a single evaluation of
the AES circuit is 64 seconds, however this drops to around 2.5 seconds when amortized over a number of
encryption blocks.

270

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The most recent result in the two party setting is [17], which returns to using Yao circuit based protocols.
By use of clever engineering of the overall run-time design the authors are able to significantly improve the
execution time for a single AES evaluation down to 1s in the case of active adversaries.

Moving to the case of more than two players, all prior implementation results have either been for three
or four players; and have been in the semi-honest setting for the case of three players. Like our work, in this
setting one utilizes secret sharing but prior work has been based on Shamir secret sharing, or specialised
protocols; and in the case of active security has been based on Verifiable Secret Sharing.

The main paper which is related to our work is that of [13], so we now spend some time to explain the
differences between our approach and that of [13]. In [13] the authors examine an AES implementation in
the case of standard threshold-secret-sharing based MPC protocols. An implementation for one semi-honest
adversary amongst three players and one active adversary amongst four players is described using the VIFF
framework [12]. The VIFF framework works much like the SPDZ protocol, in that it utilizes Beaver’s [3]
method for MPC evaluation. In an Offline Phase “multiplication triples” are produced, and then in an Online
Phase the function specific calculation is performed. The two key differences between the protocol in [13]
and the use of SPDZ is that the method to produce the triples is different, and the method to ensure non-
cheating adversaries during the evaluation of the circuit is also different. These differences are induced since
[13] is interested in threshold adversary structures, whereas we are interested in the more challenging case
of dishonest majority.

The protocol of [13] is however similar to our work in that it looks at the AES circuit as a circuit over
the finite field F28 , and not as an arbitrary binary circuit. The S-Box in AES is (usually) composed of two
operations an inversion in the field F28 followed by a linear operation on the bits of the resulting element. In
[13] the authors discuss various techniques for computing the inversion, and for the bitwise linear operation
they utilize a trick of bit-decomposition of the shared value. This bit-decomposition is itself implemented
using the technique of pseudorandom secret sharing (PRSS) of bits.

For MPC protocols based on Shamir secret sharing, obtaining a PRSS is relatively straight forward, indeed
it is a local operation assuming some set-up. However, for protocols using secret sharing with MACs (as in
our approach) it is unknown how to build a PRSS in such a clean way. Thus we produce such shared random
bits by executing another stage in the Offline Phase of the SPDZ protocol. We also present a simplification
of the technique in [13] to use such bit-decompositions to implement the S-Box. This approach does however
assume that the Offline Phase somehow “knows” that the computed function will required shared random
bits; which defeats the point of having a function independent Offline stage and also adds to the run time of
the Offline stage. Thus we also present a distinct approach which utilizes a surprising algebraic formulation
of the S-Box.

The implementation of [13] required less than 2 seconds per AES block (including key expansion) when
computing with three players and at most one semi-honest adversary, and less than 7 seconds per AES block
when computing with four players and at most one active adversary. These times include the time for the
Offline Phase. If one is only interested in the Online Phase times, then the active adversary case can be
executed in between three and four seconds per AES block.

More recent work has focused on the case of semi-honest adversaries and three players only. Two recent
results [18, 19] have used an additive secret sharing scheme and a novel multiplication protocol to perform
semi-honest three party MPC in the presence of at most one adversary. In [18] the authors present an AES
implementation using a novel implementation of the S-Box component via an MPC table-lookup procedure.
They report being able to perform 67 AES block cipher evaluations per second. In [19] the authors report
on an implementation of AES, using the Sharemind framework [7], in which they can accomplish over one
thousand AES block cipher evaluations per second.

In summary Table 1 summarizes the different performance figures and security models for prior work
on implementing AES using multi-party computation, with also a comparison with our own work. Like
all network based protocols a significant time can be spent waiting for data, thus authors have found that
executing many calculations in parallel (as in for example AES-CTR mode) can have significant performance
enhancements. Thus for papers which report such results we give the improved amortized costs for multiple
executions (or just the blocks-per-second count for a single execution if no improvement via amortization

271

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

occurs). However, single execution costs are still important since this deals with the case of (for example)
AES-CBC mode. In our implementation we found little gain in performing multiple AES evaluations in
parallel.

Total Max Time for (Amortized)
Number Number single Blocks Expanded

Paper Security Parties Adv. AES Block per Sec Key Notes

[26] semi-honest 2 1 7.0s 0.1 N Yao
[15] semi-honest 2 1 3.3s 0.3 N Yao
[16] semi-honest 2 1 0.2s 5.0 Y Yao
[13] semi-honest 3 1 1.2s 0.9 N Shamir
[18] semi-honest 3 1 N/A 67 Y Additive
[19] semi-honest 3 1 1.0s 1893 Y Additive

[26] covert 2 1 95s ≈ 0 N Yao
This work covert 2 1 0.17s 10.3 Y SPDZ
This work covert 3 2 0.19s 9.6 Y SPDZ
This work covert 4 3 0.18s 9.2 Y SPDZ
This work covert 5 4 0.19s 7.4 Y SPDZ
This work covert 10 9 0.23s 5.2 Y SPDZ

[26] active 2 1 19m ≈ 0 N Yao
[25] active 2 1 4.0s 32 N OT
[17] active 2 1 1.0s 1.0 Y Yao
[13] active 4 1 2.1s 0.5 N Shamir

This work active 2 1 0.26s 5.0 Y SPDZ
This work active 3 2 0.29s 4.7 Y SPDZ
This work active 4 3 0.32s 4.6 Y SPDZ
This work active 5 4 0.34s 4.4 Y SPDZ
This work active 10 9 0.41s 3.6 Y SPDZ

Table 1. A comparison of different MPC implementations of AES. We only give the online-times for those protocols
which have a pre-processing phase. We also note whether the implementation assumes a pre-expanded key or not.

In interpreting the table one needs to note that Yao based experiments usually implement a different
functionality. Namely, the circuit constructor is the player holding the key. Whether the key is expanded or
not refers to whether the garbled circuit has this key hardwired in or not.

3 The SPDZ Protocol

We now give an overview of the SPDZ protocol, for more details see [14]. The reader should however note
we make a number of minor alterations to the basic protocol, all of which are describe below. Some of these
alterations are due to us working in the random oracle model (which enables us to simplify a number of
sub-protocols), whilst some are simply a functional change in terms of how inputs to the parties are created
and distributed. In addition we describe how to simplify the SPDZ protocol to the case of covert adversaries.

The SPDZ protocol, being based on the Beaver circuit randomization technique [3], comes in two phases.
In the first phase a large number of random triples are produced, such that each party holds a share of
the triple, and such that the underlying values in the triple satisfy a multiplicative relation. This phase is
referred to as the “Offline Phase” since the triples do not depend on either the function to be evaluated
(bar their number should exceed a constant multiple of the number of multiplication gates in the evaluated
function), and the triples do not depend on the inputs to the function to be evaluated. In the second phase,
called the “Online Phase” the triples are used to evaluate the function on the given input.

272

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The key to understanding the SPDZ protocol is to note that all values are shared with respect to a non-
standard secret sharing scheme, which incorporates a MAC value. To describe this secret sharing scheme we
fix a finite field Fq. The MAC keys are values αj ∈ Fq for 1 ≤ j ≤ nMAC such that player i holds the share
αj,i ∈ Fq where

αj = αj,1 + · · ·+ αj,n.

The shared values are then given by the following sharing of a value a ∈ Fq,

〈a〉 := (δ, (a1, . . . , an), (γj,1, . . . , γj,n)nMAC
j=1),

where a is the shared value, δ is public and we have the equalities

a = a1 + · · ·+ an,

αj · (a+ δ) = γj,1 + · · ·+ γj,n for 1 ≤ j ≤ nMAC.

Given this data representing a shared value a each player Pi holds the data (δ, ai, {γj,i}nMAC
j=1). To ease

notation we write γj,i(a) to denote the share of the jth MAC on item a held by party i. Arithmetic in this
representation is componentwise, more precisely we have

〈a〉+ 〈b〉 = 〈a+ b〉, e · 〈a〉 = 〈e · a〉 and e+ 〈a〉 = 〈e+ a〉,

where
e+ 〈a〉 = (δ − e, (a1 + e, a2, . . . , an), (γj,1, . . . , γj,n)nMAC

j=1).

The simplicity of the above method for adding a constant value to 〈a〉 is the reason of the public value δ. In
[14] the presentation is simplified to having only nMAC = 1, however the case of more general values of nMAC

is discussed. In our implementation having nMAC > 1 will be vital to ensure active security when dealing
with small finite fields, thus we present the more general case above.

The SPDZ protocol can tolerate active adversaries and dishonest majority (ignoring the case where one
of the dishonest players aborts) amongst a total of n parties. Thus we can assume that n−1 of the parties are
dishonest and will arbitrarily deviate from the protocol. The SPDZ protocol guarantees that if the protocol
terminates then the honest parties know that their resulting output is correct, except with a negligible
probability. For active adversaries we set this probability, to mirror the choice in [14], to 2−40. For covert
adversaries we adapt the protocol so that the probability that a cheating adversary will be detected is lower
bounded by

min
{

1− q−nMAC , 1− q−nSAC ,
1

2 · (n− 1)

}
,

where nMAC and nSAC are parameters to be discussed later and Fq is the finite field over which our triples
are defined.

3.1 Offline Phase

The Offline Phase makes use of a somewhat homomorphic encryption (SHE) scheme, with a distributed
decryption procedure, and zero-knowledge proofs. In our implementation we use the optimized non-interactive
zero-knowledge proofs of knowledge (NIZKPoKs) derived from the Fiat–Shamir heuristic which are described
in [14]. Thus our Offline Phase is only secure in the Random Oracle model.

The specific SHE scheme used is a variant of the BGV scheme [10] over the mth cyclotomic field. We
thus have lattices of dimension φ(m), over a modulus of size Q. Each ciphertext consists of two (or three)
polynomials modulo Q of degree less than φ(m). The underlying plaintext space can hold an element of
(Fq)`.

The Offline Phase produces many triples of such sharings 〈a〉, 〈b〉, 〈c〉 such that c = a · b, where these
values are authenticated via a global set of nMAC shared MAC keys as described above. The NIZKPoKs
mentioned above have soundness error 1/2, and so in [14], we “batch” together sec executions so as to reduce

273

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

the soundness error to 2−sec. This batching, combined with the vectoral plaintext space, means that a single
execution of the Offline phase produces sec · ` triples.

We can trivially modify the Offline Phase so that it also outputs, for characteristic two fields, a set of
shared random bits and their associated MACs. We can produce one such shared bit for roughly one third
of the cost of one shared triple. As for the shared triples, each invocation of the method to produce shared
random bits will produce sec · ` bits in one go.

The main cost of the Offline phase is in the production and verification of the zero-knowledge proofs.
For n players, for each proof that a player needs to produce he will need to verify n− 1 proofs of the other
players. For the case of covert adversaries we simplify the Offline Phase as follows. We do not batch together
proofs, i.e. we take sec = 1, which results in soundness error for each proof of 1/2. In addition each player
when it receives n− 1 proofs from all other players only verifies a random proof. This means that a cheating
player will be detected with probability at least 1/(2 · (n− 1)) in the Offline phase, as opposed to 1− 2−40

when we use the standard actively secure Offline Phase.

3.2 Online Phase

Given that our Offline Phase is given in the Random Oracle Model we alter the Online Phase from [14] so
that it too utilizes Random Oracles. This means we can present a more efficient Online Phase than that
used in [14]. Our Online Phase makes use of three hash functions: The first one H1 is used to ensure that
broadcast has happened, for this hash function we require it is one which supports an API of standard hash
functions consisting of Init,Update and Finalise methods. The second hash function H2 is used to generate
random values for checking the linear MAC equations and the triples. The third hash function H3, which we
model as a random oracle, is used to define a commitment scheme as follows: To commit to a value x, which
we denote by Commit(x), one generates a random value r ∈ {0, 1}sec, for some security parameter sec, and
computes comm = H3(x‖r). To open Open(comm, x, r) one verifies that comm = H3(x‖r) returning x if this
is true, and ⊥ if it is not.

The first change we make is in how we guarantee that consistent broadcast occurs. For the Online phase
we assume that the point-to-point links between the parties are authenticated, but we need to guarantee
that a dishonest party is not allowed to send different messages to different players when he is required to
broadcast a single value to all players. This is done by modifying the notion of a “partial opening” from [14]
and the notion of “broadcast”. The “broadcasts” are ensured to be correct via the parties maintaining a
hash of all values received. This is checked before the output is reconstructed; thus in the final broadcast to
recover the output we utilize the re-transmit method from [14] to check consistency of the final broadcast.

In the original protocol “partial opening” just means a broadcast of the share of a value held by a party,
but not the broadcast of the share of the MAC on that value. Thus only the value is opened, not the MAC
on the value. However, we each ensure player maintains the running totals of the linear equations they will
eventually check. In [14] these linear equations were of the form

∑
k e

kak, for some random agreed value e.
This gives an error probability of T/q, where T is the number of partial openings in an execution of the
Online Phase. For small values of q this is not effective, thus we replace the values ek by the output of hash
function H2. In Figure 1 we describe our modified partial opening, and broadcast protocol, which maintains
a hash value of all values broadcast; as well as a method for checking consistency.

In the Online Phase the key issue is that the triples produced by the Offline Phase may not satisfy the
relation c = a · b, nor may the MACs verify. This is because we do not ensure that the dishonest parties
were “well behaved” in the Offline Phase. Thus these two properties must be checked. The Online Protocol
of [14] does this as follows: To check that c = a · b for the triples, we will use for the MPC evaluation we
“sacrifice” a set of nSAC extra triples per evaluated triple. For the sacrificing method in our implementation,
we adopted the näıve method of [14]. This results in consuming more triples, but is simpler computationally.
To check the MAC values a series of nMAC linear equations are checked at the end of the Online Phase.

Each triple sacrifice and MAC equation check can be made to hold by the adversary with probability 1/q.
Thus to reduce this to something negligible we sacrifice many triples, and utilize many MAC equations. But
in the case of covert adversaries we select nMAC = nSAC = 1, and so the probability of a cheating adversary
being detected is bounded from below by 1− 1/q.

274

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Init(): We initialize the following data:
1. Party i executes H1.Init().
2. Party i sets cnti = 0.
3. For j = 1, . . . , nMAC

(a) Party i sets âj,i = 0 and γj,i = 0.
4. Party i generates a random value seedi ∈ {0, 1}sec and sends it to all other players.

Broadcast(vi): We broadcast vi and receive the equivalent broadcasts from other players:
1. Party i sends vi to each player.
2. On receipt of {v1, . . . , vn} \ {vi} execute H1.Update(v1‖ . . . ‖vn).
3. Return {v1 + · · ·+ vn}.

PartialOpen(〈a〉): Party i obtains the partial opening of the shared value and updates their partial sums:
1. Execute {a1, . . . , an} = Broadcast(ai).
2. a = a1 + · · ·+ an.
3. (e1‖ . . . ‖enMAC) = H2(0‖seed1‖ . . . ‖seedn‖cnti) ∈ Fq.
4. cnti = cnti + 1
5. For j = 1, . . . , nMAC

(a) âj,i = âj,i + ej · (a+ δa).
(b) γj,i = γj,i + ej · γj,i(a).

6. Return a.
Verify(): We check all broadcasts have been consistent:

1. Party i computes hi = H1.Finalise() and sends hi to each player.
2. On receipt of hj from player j, if hi 6= hj then abort.

Fig. 1. Methods for Partial Opening and Broadcast for Party i

Both of these checks require that the parties agree on some global random values at different points in
the protocol. In [14] these extra shared values are determined in the Offline Phase, via a different form of
secret sharing; with the sharings being opened at the critical point in the Online protocol. The benefit of this
approach is that one obtains a protocol which is UC secure without the need for Random Oracles; however
the down-side is that the Offline Phase becomes relatively complex. In our work we take the view that since
Random Oracles have been used in the Offline Phase one might as well exploit them in the Online Phase.
Thus these shared values are obtained via a Random Oracle based commitment scheme as we now describe.

The next alteration we make to the Online Phase of [14] is that we assume that the players shares of
the input values are “magically distributed” to them. This can be justified in two ways. Firstly we are only
interested in timing the main Offline and Online Protocol and the input distribution phase is just an added
complication. Secondly, a key application scenario for MPC is when the players are computing a function on
behalf of some client. In such a situation the players do not themselves have any input, it is the client which
has input. In such a situation the players would obtain their respective input shares directly from the client;
thus eliminating the need entirely for a special protocol to deal with obtaining the input shares.

Our final alteration is that we utilize a new online operation, in addition to local addition and multi-
plication, called BitDecomposition. We first note that we can given a sharing 〈a〉 of a finite field element
a ∈ F2k = F2[X]/F (X), and a set of k randomly shared bits 〈ri〉 for i = 0, . . . , k − 1. Suppose we write a as∑k−1

i=0 ai ·Xi, our goal is to produce 〈ai〉. Firstly via a local operation we compute a sharing of r =
∑
ri ·Xi

by computing 〈r〉 =
∑
〈ri〉 ·Xi. Then we produce a masked value of a, via 〈c〉 = 〈a〉+ 〈r〉. The value of 〈c〉

is then opened to reveal c and we compute the decomposition c =
∑
ci ·Xi. Then we can locally compute

〈ai〉 = ci + 〈ri〉. Note, if a is known to be in a subfield of F2k , as it will be in one of our implementations
for k = 40, we can utilize the embedding of the subfield into the larger field to reduce the number of shared
random bits needed for this decomposition down to the degree of the subfield. We refer to Appendix A for
more details.

Given these alterations to the Online Phase of [14] we present the modified protocol in Figure 2 of the
Appendix.

275

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

4 S-Box Implementation

We present two distinct methodologies to implement the S-Box. The first requires the Offline Phase to only
produce multiplication triples, and utilizes the algebraic properties of the S-Box. The second requires the
Offline Phase to also produce sharings (and associated MACs) of random bits.

4.1 S-Box Via Algebraic Operations

A key design criteria of any block cipher is that it should be highly non-linear. In addition it should be hard
to write down a series of simple algebraic equations to describe the cipher. Since such equations could give
rise to an attack via algebraic cryptanalysis. Indeed one reason for choosing AES as an example benchmark
for MPC protocols, is that being a block cipher it should be highly non-linear and hence a challenge for MPC
protocols. However, as was soon realised after the standardization of AES the S-Box (the only non-linear
component in the entire cipher) can be represented in a relatively clean algebraic manner.

Our algebraic method to implement the S-Box operation is based on the analysis of AES of Murphy
and Robshaw [23]. In this work the authors demonstrate that actually AES can be described by (relatively
simple) algebraic formulae over F28 , in other words the transform between byte-wise and bit-wise operations
in the standard representation of the AES S-Box is a bit of a MacGuffin.

Recall the AES S-Box consists of an inversion in F28 (which is indeed a highly non-linear function)
followed by a linear operation over the bits of the result. This is usually explained that the mixture of the
two operations in two distinct finite fields “breaks any algebraic structure”. This was shown to be false in
[23]. Indeed one can express the S-Box calculation via the following simple polynomial

S-Box(z) = 0x63 + 0x8F · z127 + 0xB5 · z191 + 0x01 · z223 + 0xF4 · z239

+ 0x25 · z247 + 0xF9 · z251 + 0x09 · z253 + 0x05 · z254.

where (as is usual) operations are in the finite field defined by F28 = F2[x]/(x8 + x4 + x3 + x + 1) and the
notation 0x12 represents the element defined by the polynomial x4 + x. That the operation can be defined
by a polynomial of degree bounded by 255 is not surprising, since by interpolation any functions from F28 to
F28 can be represented in such a way. What is surprising is that the polynomial is relatively sparse, however
this can be easily shown from first principles.

Lemma 1. The AES S-Box can be represented by a polynomial which has a non-zero coefficient for the term
i if and only if i ∈ {0, 127, 191, 223, 239, 247, 251, 253, 254}.
Proof. Recall the AES S-Box consists first of inversion z → z−1 = y followed by an F2 linear operation
w = A · yT + b on the bits of the result, where y are the bits in y. The bit matrix A and the bit vector b
are fixed. The final result is obtained by forming the dot-product of the (F2)8 vector w with the fixed vector
x = (1, x, x2, x3, x4, x5, x6, x7) ∈ (F28)8.

First note that inversion in F28 can be accomplished by computing z−1 = z254, since z255 = 1 for all
z 6= 0. The AES standard “defines” 0−1 = 0, and so the formula of z254 can be applied even when z = 0 as
well.

We then note that extracting the bits y = (y0, . . . , y7) ∈ (F2)8 of an element y = y0 + y1 · x+ · · ·+ y7 · x7

can be obtained via a linear operation on the action of Frobenius on y. This follows since Frobenius acts
as a linear map, and hence by applying Frobenius eight times we find eight linear equations linking the set
{y0, . . . , y7} with the Frobenius actions on y. This in turn allows us to solve for the bits y = (y0, . . . , y7).
Thus there is matrix B ∈ (F28)8×8 such that

y = B · (y, y2, y4, y8, y16, y32, y64, y128)T.

Hence, the output of the S-Box can be written as

S-Box(z) = x · (A · y + b),

= x · (A ·B) · (y, y2, y4, y8, y16, y32, y64, y128)T + x · b,
= s · (1, y, y2, y4, y8, y16, y32, y64, y128)T

276

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

where s is a fixed nine dimensional vector over F28 . On replacing y with z254 in the above equation, using
z255 = 1 for all z 6= 0, we obtain our result. With the result also following for z = 0 by inspection.

Finally to implement the S-Box we therefore need an efficient method to obtain from an shared input
value z, the shared values of the elements {z127, z191, z223, z239, z247, z251, z253, z254}. This is equivalent to
finding a short addition chain for the set {127, 191, 223, 239, 247, 251, 253, 254}. We found the shortest such
addition chain consists of eighteen additions and is the chain

{1, 2, 3, 6, 12, 15, 24, 48, 63, 64, 96, 127, 191, 223, 239, 247, 251, 253, 254}.

Thus to evaluate a single S-Box requires eighteen MPC multiplication operations, as well as some local
computation. Hence, to evaluate the entire AES cipher we require 18 · 16 · 10 = 2880 MPC multiplications.

Looking ahead each multiplication operation will require interaction, and to reduce execution times we
need to ensure that each player is kept “busy”, i.e. is not left waiting for data to arrive. To do this we will
interleave various different multiplications together; essentially exploiting the instruction level parallelism
(ILP) within the basic AES algorithm. Clearly one can execute each of the 16 S-Box operations in a single
round in parallel, thus obtaining an immediate 16-fold factor of ILP. However, further ILP can be exploited
in the addition chain above as can be seen from its graphical realisation in Figure B. in the Appendix. We
see that the addition chain can be executed in twelve parallel multiplication steps; thus the total number of
rounds of multiplication need for the entire AES cipher will be 12 · 10 = 120.

4.2 S-Box Via BitDecomposition

As explained in [13] the S-Box can be implemented if one has access to shared random bits, via the Bit-
Decomposition operation. In our second implementation choice we extend this technique, and reduce even
further the amount of interaction needed to compute the S-Box.

We use this BitDecomposition trick in two ways. The first way is to decompose an element in F28 into
it’s bit components, so as to apply the linear map of the S-Box. This part is exactly as described in [13];
except when we open the value of 〈c〉 we perform a partial opening, leaving the checking of the MACs until
the end.

In our second application of BitDecomposition we use BitDecomposition to implement the operation
x −→ x254. This done as follows: We decompose x into it’s constituent bits. Then the operations x −→ x2,
x −→ x4 are all linear operations, and so can be performed locally. Finally the value of x254 = x−1 is
computed via the combination

x254 =
((
x2 · x4

)
·
(
x8 · x16

))
·
((
x32 · x64

)
· x128

)
,

which requires a total of six multiplications. We could reduce this down to four multiplications by applying
the Frobenius map to other elements [27]; but this will consume even more random bits per S-Box thus we
settled for the above implementation which consumes 16 sharings of random bits per S-Box invocation.

5 Experimental Results

We implemented the SPDZ protocol over finite fields of characteristic two and used it to evaluate the AES
function, with the S-Box implemented using both the algebraic formulation described earlier and the variant
by BitDecomposition. As described earlier we examined the case of dealing with both covert adversaries and
fully malicious (a.k.a. active) adversaries (with cheating probability of 2−40). We note that the probability
of 2−40 could be extended to smaller values, but we used 2−40 so as to be comparable with the theoretical
run-time estimates given in [14]. For example to reduce the probability down to 2−80 would essentially require
a doubling of the cost of both the Offline and Online stages.

The first decision one needs to take is as to what finite field one should work with. Since we are evaluating
AES it is natural to pick the field

K8 = F2[x]/(x8 + x4 + x3 + x+ 1).

277

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Another choice, particularly suited to our active adversary cheating probability of 2−40, would be to use the
field

K40 = F2[y]/(y40 + y20 + y15 + y10 + 1).

Using this finite field has the advantage that, for active adversaries, we only need to keep one MAC share
per data item, and only one triple per multiplication needs to be sacrificed. In addition the field K8 lies in
K40 via the embedding x = y5 + 1. We also for means of comparison of the Offline phase implemented the
Offline protocol over a finite field Fq with q a 64-bit prime.

We also experimented with various numbers of players, and different values of nMAC and nSAC. As explained
in [14] all such variants lead to different basic parameters (m,Q, `) of the underlying SHE scheme.

We now determine values of (m,Q, `) for our SHE scheme given a specific finite field Fq (or in the case
of q prime a rough size for q), a value for the sec (the number of NIZKPoKs we run in parallel in the
Offline stage), and the number of players n. As a “lattice security parameter” we selected δ = 1.0052 which
corresponds to roughly 128 bits of symmetric security.

We require finite fields Fq of size F28 and F240 , as well for comparison a finite field where q was a 64-bit
prime. We also looked for parameters for n ∈ {2, 3, 4, 5, 10} and sec ∈ {1, 40}. As in [14] we first search for
rough estimate of the parameters (m,Q) which fit these needs:

char(Fq) n sec φ(m) ≥ log2(Q)
2 2 ≤ n ≤ 10 40 12300 370
2 2 ≤ n ≤ 5 1 8000 200
2 10 1 8000 210
≈ 264 2 ≤ n ≤ 10 40 16700 500
≈ 264 2 ≤ n ≤ 5 1 11000 330
≈ 264 10 1 11300 340

We then selected values for m as follows:

F28 and F240 , sec = 40: We select m = 17425, which gives us φ(m) = 12800. The polynomial Φm(X) factors
modulo two into ` = 320 factors each of degree 40. Thus these parameters can support both our finite fields
F28 and F240 .

F28 , sec = 1: We select m = 13107, which gives us φ(m) = 8192. The polynomial Φm(X) factors modulo
two into ` = 512 factors each of degree 16.

F240 , sec = 1: We select m = 13175, which gives us φ(m) = 9600. The polynomial Φm(X) factors modulo
two into ` = 240 factors each of degree 40.

p ≈ 264, sec = 40: We select, as in [14], p = 264 + 4867 and m = 16729 so that ` = φ(m) = 16728.

p ≈ 264, sec = 1: We select, as in [14], p = 264 + 8947 and m = 11971 so that ` = φ(m) = 11970.

Recall that one invocation of the Offline Phase produces sec · ` triples; thus using the choices above we
obtain the following summary table, where “# Trip/# Bits” denotes the number of triples/bits produced
per invocation of the Offline Phase.

Adversary nMAC # Trip/
Field Type sec = nSAC # Bits
K8 covert 1 1 512
K8 active 40 5 12800
K40 covert 1 1 240
K40 active 40 1 12800

278

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

We ran the Offline phase on machines with Intel i5 CPU’s running at 2.8 GHz. with 4 GB of RAM. The
ping between machines over the local area network was approximately 0.3 ms. We obtained the executions
time given in Table 2 and Table 3, for the two different finite field choices and covert/active security choices,
and various numbers of players. We did not run an example with ten players and active adversaries since
this took too long. We first ran the Offline Phase in each example to produce a minimum of 5000 triples.
Clearly for some parameter sets a single run produced much more than 5000, whilst for others we required
multiple runs so as to reach 5000 triples. These results are in Table 2. These runs are compatible with our
algebraic S-Box formulation.

This table also presents the average time needed to produce each triple, plus also the amortized time to
produce triples per AES invocation (in the case where one wants to evaluate the AES functionality many
times). Recall to evaluate the AES functionality with our method requires 10 · 16 · 18 = 2880 multiplications
in total; thus the number of triples needed is 2880 · (nSAC + 1), since each multiplication consumes nSAC + 1
triples. What is clear from the table is that if one is wishing to obtain security against covert adversaries
then utilizing the field K8 is preferable. However, for security against active adversaries the field K40 is to
be preferred.

Covert Security Active Security
Total Time per Offline time Total Time per Offline time

Num. Time Triple per AES blk Time Triple per AES blk
Field Parties (h:m:s) (seconds) (h:m:s) (h:m:s) (seconds) (h:m:s)

No. Triples Produced: 5120 No. Triples Produced: 12800

K8 2 0:01:31 0.018 0:01:42 1:25:57 0.403 1:56:02
K8 3 0:01:32 0.018 0:01:43 1:50:25 0.518 2:29:03
K8 4 0:01:32 0.018 0:01:43 2:14:16 0.629 3:01:15
K8 5 0:01:33 0.018 0:01:44 2:37:30 0.738 3:32:37
K8 10 0:01:48 0.021 0:02:01 4:40:15 1.314 6:18:20

No. Triples Produced: 5040 No. Triples Produced: 12800

K40 2 0:05:08 0.061 0:05:52 0:29:34 0.136 0:13:18
K40 3 0:05:13 0.062 0:05:57 0:38:18 0.180 0:17:14
K40 4 0:05:14 0.062 0:05:58 0:46:02 0.216 0:20:42
K40 5 0:05:17 0.063 0:06:02 0:55:51 0.262 0:25:07
K40 10 0:06:02 0.072 0:06:53 1:39:14 0.465 0:44:39

Table 2. Offline Run Time Examples For The Algebraic S-Box Method

We then run an Offline phase tailored to our BitDecomposition S-Box formulation. Here we need to
perform 10 ·16 ·6 = 960 multiplications, and thus we require 960 · (nSAC +1) triples to evaluate a single block.
But we also require 10 · 16 · 16 = 2560 shared random bits so as to perform two eight bit, BitDecompositions
per S-Box invocation. Thus in Table 3 we present run times for a second invocation of the Offline Phase in
which we aimed to produce a minimum of 5000 triples and 6600 shared random bits (which is the correct
ratio for covert security). Due to the inbalance between Triple and Bit production the “Offline Time per AES
Block” column needs to be taken as rough estimate. Again we see that for covert security K8 is preferable,
and for active security K40 is preferable.

But, these run times do not seem comparable with the 13ms per triple estimated by the authors of [14]
for the Offline Phase. However, this discrepancy can easily be explained. The run time estimates in [14] are
given for arithmetic circuit evaluation over a finite field of prime characteristic of 64-bits. With the parameter
choices in [14] this means one can select parameters for the SHE scheme which enable a 16000-fold SIMD
parallelism. For our finite fields of degree two the amount of SIMD parallelism in the Offline Phase is much
lower than this. To see the difference that using large prime characteristic fields makes to the Offline Phase
we implemented it, using the parameters above to obtain the results in Table 4. As can be seen from the

279

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Covert Security Active Security
Total Offline Time Total Offline Time

Number Time per AES Block Time per AES Block
Field Players (h:m:s) (h:m:s) (h:m:s) (h:m:s)

No. Triples/Bits: 5120/6556 No. Triples/Bits: 12800/12800

K8 2 0:02:07 0:00:47 1:54:42 0:51:36
K8 3 0:02:10 0:00:49 2:26:21 1:05:51
K8 4 0:02:13 0:00:50 2:56:47 1:19:33
K8 5 0:02:36 0:00:52 3:29:49 1:34:25
K8 10 0:02:33 0:00:58 6:06:20 2:44:51

No. Triples/Bits: 5040/6720 No. Triples/Bits: 12800/12800

K40 2 0:07:12 0:02:43 0:36:14 0:05:26
K40 3 0:07:12 0:02:43 0:47:30 0:07:07
K40 4 0:07:19 0:02:47 0:58:55 0:08:57
K40 5 0:07:24 0:02:49 1:10:33 0:10:34
K40 10 0:08:32 0:03:15 2:10:03 0:19:32

Table 3. Offline Run Time Examples For The S-Box Via BitDecomposition

table we produce triples for prime fields of 64-bits in size around twice as fast as the estimates in [14] would
predict.

Covert Security Active Security
Total Total Time per Total Total Time per

Number Number Time Triple Number Time Triple
Players Triples (h:m:s) (seconds) Triples (h:m:s) (seconds)

2 11970 0:00:27 0.002 669120 1:10:48 0.006
3 11970 0:00:27 0.002 669120 1:32:13 0.008
4 11970 0:00:28 0.002 669120 1:55:05 0.010
5 11970 0:00:29 0.002 669120 2:20:42 0.013
10 11970 0:00:31 0.002 669120 4:17:10 0.023

Table 4. Offline Run Time Examples For Fp With p ≈ 264

We now turn to the Online Phase; recall that this itself comes in two steps (and two variants). In the
first step we evaluate the function itself (consuming the triples produced in the Offline Phase), whereas in
the second step we check the MAC values and open the final result. In Table 5 we present the run-times to
evaluate the AES functionality for the various parameter sets generated above using our algebraic formulation
of the S-Box. These are average run-times from all the players, executed over 20 different runs. The Online
Phase was run on the same machines as in the Offline Phase. In Table 6 we present the same times using
the S-Box variant utilizing the BitDecomposition method.

The networking between players was implemented in a point-to-point fashion with each player acting as
both a server and a client. We ensured that data was sent over the sockets as soon as it was ready by disabling
Nagle’s algorithm [24]. To complete the function evaluation each player first parses a program written in a
specialised instruction language. This allows our implementation to take advantage of the instruction level
parallelism as described above so as to schedule many multiplication operations to happen in parallel.

Again we see that if security against covert adversaries is the goal then using the field K8 is to be preferred.
However, for security against active adversaries the field K40 performs better. We also ran the Online Phase
in a run which performed ten AES encryptions in parallel. This resulted in only a small improvement in

280

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Covert Security Active Security
Number Function Checking Total Function Checking Total

Field Players Evaluation Step Time Evaluation Step Time

K8 2 0.284 0.017 0.301 1.319 0.031 1.350
K8 3 0.307 0.062 0.369 1.381 0.035 1.416
K8 4 0.316 0.027 0.343 1.422 0.028 1.450
K8 5 0.344 0.034 0.378 1.461 0.018 1.479
K8 10 0.444 0.010 0.454 1.659 0.023 1.682

K40 2 0.449 0.012 0.461 0.460 0.021 0.481
K40 3 0.486 0.022 0.498 0.475 0.025 0.500
K40 4 0.490 0.042 0.532 0.486 0.055 0.541
K40 5 0.508 0.037 0.544 0.510 0.026 0.536
K40 10 0.765 0.021 0.786 0.672 0.017 0.689

Table 5. Online Phase Runtime Examples (all in seconds) – Algebraic S-Box

Covert Security Active Security
Number Function Checking Total Function Checking Total

Field Players Evaluation Step Time Evaluation Step Time

K8 2 0.156 0.009 0.165 0.569 0.011 0.580
K8 3 0.178 0.008 0.186 0.616 0.019 0.635
K8 4 0.169 0.015 0.184 0.620 0.015 0.635
K8 5 0.173 0.019 0.192 0.727 0.019 0.746
K8 10 0.211 0.015 0.226 0.722 0.044 0.766

K40 2 0.260 0.006 0.266 0.256 0.004 0.260
K40 3 0.303 0.009 0.312 0.279 0.011 0.290
K40 4 0.303 0.010 0.313 0.287 0.029 0.316
K40 5 0.319 0.022 0.341 0.319 0.016 0.335
K40 10 0.399 0.016 0.415 0.387 0.027 0.414

Table 6. Online Phase Runtime Examples (all in seconds) – S-Box Via BitDecomposition

time per AES block over executing just one AES encryption at a time, thus we do not present these figures.
Improving the throughput for parallel execution is the subject of future research.

Overall, the two methods of AES evaluation are roughly comparable. The method via BitDecomposition
being faster, and significantly faster when one also takes into account the associated cost of the Offline Phase.
However, as remarked previously this method does not result in a generic Offline Phase; since the Offline
Phase needs to “know” the expected ratio of Bits to Triples that it needs to produce for the actual function
which will be evaluated in the Online Phase.

In summary we have presented the first experimental results for running MPC protocols with large
numbers of players (10 as opposed to the four or less of prior work), and for a dishonest majority of active
or covert adversaries (as opposed to threshold adversaries). It is expected that our reported execution times
will fall as dramatically as those have done for two party MPC protocols in the last couple of years. Thus
we can expect actively/covertly secure MPC protocols for dishonest majority to be within reach of some
practical applications within a few years.

6 Acknowledgements

The first author acknowledges the support from the Danish National Research Foundation and The National
Science Foundation of China (under the grant 61061130540) for the Sino-Danish Center for the Theory of

281

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Interactive Computation, within which [part of] this work was performed; and also from the CFEM research
center (supported by the Danish Strategic Research Council) within which part of this work was performed.

The second, third and fifth author were partially supported by EPSRC via grant COED–EP/I03126X.
The fifth author was also supported by the European Commission through the ICT Programme under Con-
tract ICT-2007-216676 ECRYPT II and via an ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO, the
Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) un-
der agreement number FA8750-11-2-0079, and by a Royal Society Wolfson Merit Award. The US Government
is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation hereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of
DARPA, AFRL, the U.S. Government, the European Commission or EPSRC.

References

1. Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries.
Theoretical Cryptography Conference – TCC 2007, Springer LNCS 4392, 137–156, 2007.

2. Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries. J.
Cryptology, 23, 281–343, 2010.

3. D. Beaver, Correlated pseudorandomness and the complexity of private computations. Symposium on Theory of
Computing – STOC 1996, ACM, 479–488, 1996.

4. A. Ben-David, N. Nisan and B. Pinkas. FairplayMP: a system for secure multi-party computation. Computer
and Communications Security – CCS 2008, ACM, 257–266, 2008.

5. R. Bendlin, I. Damg̊ard, C. Orlandi and S. Zakarias. Semi-homomorphic encryption and multiparty computation.
Advanced in Cryptology – EUROCRYPT 2011, Springer LNCS 6632, 169–188, 2011.

6. M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant dis-
tributed computation. Symposium on Theory of Computing – STOC 1988, ACM, 1–10, 1988.

7. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-preserving computations.
European Symposium on Research in Computer Security – ESORICS 2008, Springer LNCS 5283, 192–206, 2008.

8. P. Bogetoft, D.L. Christensen, I. Damg̊ard, M. Geisler, T. Jakobsen, M. Krøigaard, J.D. Nielsen, J.B. Nielsen,
K. Nielsen, J. Pagter, M. Schwartzbach and T. Toft. Secure multiparty computation goes live, Financial
Cryptography and Data Security – FC 2009, Springer LNCS 5628, 325–343, 2009.

9. P. Bogetoft, I. Damg̊ard, T. Jakobsen, K. Nielsen, J. Pagter. and T. Toft. A practical implementation of secure
auctions based on multiparty integer computation. Financial Cryptography and Data Security – FC 2006, Springer
LNCS 4107, 142–147, 2006.

10. Z. Brakerski, C. Gentry and V. Vaikuntanathan. Fully homomorphic encryption without bootstrapping. Inno-
vations in Theoretical Computer Science –ITCS 2012, 309–325, ACM, 2012.

11. D. Chaum, C. Crepeau and I Damg̊ard. Multiparty unconditionally secure protocols. Symposium on Theory of
Computing – STOC 1988, ACM, 11–19, 1988.

12. I. Damg̊ard, M. Geisler, M. Kroig̊ard, and J.B. Nielsen. Asynchronous multiparty computation: Theory and
implementation. Public Key Cryptography – PKC 2009, Springer LNCS 5443, 160–179, 2009.

13. I. Damg̊ard and M. Keller. Secure multiparty AES. Financial Cryptography and Data Security – FC 2010,
Springer LNCS 6051, 367–374, 2010.

14. I. Damg̊ard, V. Pastro, N.P. Smart and S. Zakarias. Multiparty computation from somewhat homomorphic
encryption. To appear Advances in Cryptology – CRYPTO 2012, IACR e-print 2011/535, http://eprint.iacr.
org/2011/535, 2011.

15. W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: Tool for automating secure
two-party computations. Computer and Communications Security – CCS 2010, ACM, 451–462, 2010.

16. Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using garbled circuits. Proc.
USENIX Security Symposium, 2011.

17. B. Kreuter, a. shelat, and C.-H. Shen. Towards billion-gate secure computation with malicious adversaries. IACR
e-print 2012/179, http://eprint.iacr.org/2012/179, 2012.

18. J. Launchbury, A. Adams-Moran, and I. Diatchki. Efficient lookup-table protocol in secure multiparty compu-
tation. Manuscript, 2012.

19. S. Laur, R. Talviste, and J. Willemson. AES block cipher implementation and secure database join on the
SHAREMIND secure multi-party computation framework. Manuscript, 2012.

282

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

20. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence of malicious
adversaries. Advances in Cryptology – EUROCRYPT 2007, Springer LNCS 4515, 52–78, 2007.

21. Y. Lindell, B. Pinkas, N.P. Smart. Implementing two-party computation efficiently with security against malicious
adversaries. Security and Cryptography for Networks – SCN 2008, Springer LNCS 5229, 2–20, 2008.

22. D. Malkhi, N. Nisan, B. Pinkas and Y. Sella. Fairplay — a secure two-party computation system. Proc. USENIX
Security Symposium, 2004.

23. S. Murphy and M.J.B. Robshaw. Essential algebraic structure within the AES. Advances in Cryptology –
CRYPTO 2002, Springer LNCS 2442, 1–16, 2002.

24. J. Nagle. Congestion control in IP/TCP internetworks. IETF RFC 896, 1984.
25. J.B. Nielsen, P.S. Nordholt, C. Orlandi, and S. Sheshank Burra. A new approach to practical active-secure

two-party computation. IACR e-print 2011/91, http://eprint.iacr.org/2011/91, 2011.
26. B. Pinkas, T. Schneider, N.P. Smart, and S.C. Williams. Secure two-party computation is practical. Advances

in Cryptology – ASIACRYPT 2009, Springer LNCS 5912, 250–267, 2009.
27. M. Rivain and E. Prouff. Provably secure higher-order masking of AES. Cryptographic Hardware and Embedded

Systems – CHES 2010, Springer LNCS 6225, 413–427, 2010.
28. A. Yao. Protocols for secure computation. Proc. Foundations of Computer Science – FoCS 1982, IEEE Press,

160–164, 1982.

A Generalized BitDecomposition

In this section, we describe a generalized variant of BitDecomposition, which includes bit-decomposition in
K8 as a subfield of K40.

Let f : V → W be a linear map between two vector spaces over F2. Then, 〈r〉 and 〈f(r)〉 for a random
element r ∈ V allows to securely compute 〈f(x)〉 for any 〈x〉 by computing and opening 〈x + r〉, and then
computing 〈f(x)〉 = f(x+ r) + 〈f(r)〉.

For bit-decomposition in K8, define f : K8 → F8
2 by

f
(7∑

i=0

ai ·Xi
)

:= (a0, . . . , a7).

This function clearly is linear over F2. In the offline phase, it suffices to generate 〈(r0, . . . , r7)〉 = (〈r0〉, . . . , 〈r7〉)
for random bits (r0, . . . , r7) because 〈r〉 =

∑7
i=0〈ri〉 ·Xi can be computed locally. Note that r0, . . . , r7 are

understood as elements of K8, like all variables in the protocol over K8. Therefore, one has to make sure
that they are in fact 0 or 1 and not another element of K8. This is done by modifying the Offline Phase; in
particular each party encrypts a random bit and proves that it is actually a bit. The homomorphic structure
of the NIZKPoKs makes this straight-forward. As with the triples components, the secret bit is defined as
the sum of all inputs, and the secret sharing with MAC is computed by multiplication via the homomorphic
property of the ciphertexts and threshold decryption.

We now move to bit-decomposition for K8 embedded in K40. Let ı denote the embedding of K8 in
K40. This embedding is a field homomorphism and thus a linear map between vector spaces over F2. The
bit-decomposition for ı(K8) is defined by f : ı(K8)→ F8

2,

f
(
ı
(7∑

i=0

ai ·Xi
))

:= (a0, . . . , a7).

Again, f is linear over F2, and thus, the protocol explained above is applicable. Similarly to the case of K8,
it suffices to generate eight bits (〈r0〉, . . . , 〈r7〉) in the offline phase. There is one peculiarity in this case: We
defined f over ı(K8) ⊂ K40, not K40. That means, we assume that the input of f is an element of ı(K8),
not an arbitrary element. This is guaranteed in our application, but may not be true in general.

In general the function f can easily be extended to f ′ : K40 → F8
2 by defining f ′(x) := f(pı(K8)(x))

for pı(K8) denoting the natural projection to ı(K8). However, masking an arbitrary element x ∈ K40 with
a random element of ı(K8) reveals x− pı(K8)(x). Therefore, one has to mask x additionally with a random

283

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

r′ ∈ K40/ı(K8) before opening it, i.e., compute and open 〈x+ı(
∑7

i=0 ri ·Xi)+r′〉. As above, the homomorphic
structure of the NIZKPoKs allow to generate 〈r′〉 with the same cost as a random element.

The above discussion re F28 and F240 can be extended to an arbitrary field F2n and a subfield F2m if
required.

B Figures

Online Protocol

Initialize: We assume i) the parties have already invoked the Offline Phase to obtain a sufficient number of
multiplication triples (〈a〉, 〈b〉, 〈c〉); ii) each party holds its share of the global MAC keys αj,i; iii) that the
parties have obtained (by some means) the 〈·〉 sharing of the input values to the computation.
1. The parties execute Init() to initialize their local copy of the hash function H1, and the values seedi,

cnti, âj,i, and γj,i.
2. The parties generate global random values tj ∈ Fq for j = 1, . . . , nSAC by computing (t1‖ . . . ‖tnSAC) =

H2(1‖seed1‖ . . . ‖seedn).
The following steps are performed according to the circuit being evaluated.

Add: To add two representations 〈x〉, 〈y〉,the parties locally compute 〈x〉+ 〈y〉.
Multiply: To multiply 〈x〉, 〈y〉 the parties do the following:

1. They take nSAC+1 triples (〈a〉, 〈b〉, 〈c〉), (〈fi〉, 〈gi〉, 〈hi〉)nSAC
i=1 from the set of the available ones (and update

this latter list by deleting these triples).
2. For j = 1, . . . , nSAC player Pi computes

(a) ρj = PartialOpen(tj · 〈a〉 − 〈fj〉).
(b) σj = PartialOpen(〈b〉 − 〈gj〉).
(c) τj = PartialOpen(tj · 〈c〉 − 〈hj〉 − σj · 〈fj〉 − ρj · 〈gj〉 − σj · ρj).
(d) If τj 6= 0 then abort.

3. If no player has aborted the triple (〈a〉, 〈b〉, 〈c〉) is accepted, and the parties execute ε = PartialOpen(〈x〉−
〈a〉) and δ = PartialOpen(〈y〉 − 〈b〉).

4. The parties locally compute the answer 〈z〉 = 〈c〉+ ε · 〈b〉+ δ · 〈a〉+ ε · δ
BitDecomposition: This produces the BitDecomposition of a shared value 〈a〉. We present a simplified protocol

for when q = 2k.

1. c = PartialOpen
“
〈a〉+

Pk−1
i=0 〈ri〉 ·Xi

”
.

2. Write c =
Pk−1

i=0 ci ·X
i.

3. Output 〈ai〉 = ci + 〈ri〉.
Output: We enter this stage when the players have 〈y〉 for the output value y, but this value has not yet been

opened. This output value is only correct if players have behaved honestly, which we now need to check. Let
a1, . . . , aT be all values publicly opened so far, where 〈ak〉 = (δk, (ak,1, . . . , ak,n), (γj,1(ak), . . . , γj,n(ak))

nMAC
j=1).

1. Player Pi computes (commi, ri) = Commit(yi‖(γj,i(y))
nMAC
j=1).

2. The players execute {comm1, . . . , commn} = Broadcast(commi).
3. For j = 1, . . . , nMAC the players execute

(a) Player Pi computes (commj,i, rj,i)← Commit(γj,i).
(b) Execute {commj,1, . . . , commj,n} = Broadcast(commj,i).
(c) Execute {αj,1, . . . , αj,n} = Broadcast(αj,i).
(d) Player Pi computes αj = αj,1 + · · ·+ αj,n.
(e) All players open commj,i to γj,i (via a call to Broadcast), the commitments are checked and if Open

returns ⊥ for a player then it aborts.
(f) Each player verifies that αj · âj,i =

P
i γj,i for his own values of âj,i.

4. The players execute Verify() to confirm all broadcasts have been valid.
5. To obtain the output value y, the commitments to yi, γj,i(y) are opened via each player transmitting

to their openings to each player, and each player transmitting what it receives to each other to check
consistency.

6. Now, y is defined as y :=
P

i yi and each player checks that αj ·(y+δy) =
P

i γj,i(y), for j = 1, . . . , nMAC.

Fig. 2. The (slightly) modified SPDZ online phase.

284

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

1

�
��

2

@
@I6

3

6

6

6

12

�
��3

�
�
�
�
�
�
�
�
�
��

15

6

24

6

48

�
�
�3 6

63

6

96

6

�64

J
J
J
J
J
JJ]

Q
Q

Qk

127

6
�
�
��3

191

6

- 223

66

239

6

- 247

�

�
��

254

6
@

@I

251-

@
@I

253

Fig. 3. Data flow graph of our addition chain

285

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Practical Covertly Secure MPC for Dishonest Majority – or: Breaking the
SPDZ Limits

Ivan Damgård1, Marcel Keller2, Enrique Larraia2, Valerio Pastro1, Peter Scholl2, and Nigel P. Smart2

1 Department of Computer Science, Aarhus University
2 Department of Computer Science, University of Bristol

Abstract. SPDZ (pronounced “Speedz”) is the nickname of the MPC protocol of Damgård et al. from Crypto 2012.
SPDZ provided various efficiency innovations on both the theoretical and practical sides compared to previous work
in the preprocessing model. In this paper we both resolve a number of open problems with SPDZ; and present several
theoretical and practical improvements to the protocol.
In detail, we start by designing and implementing a covertly secure key generation protocol for obtaining a BGV
public key and a shared associated secret key. In prior work this was assumed to be provided by a given setup
functionality. Protocols for generating such shared BGV secret keys are likely to be of wider applicability than to
the SPDZ protocol alone.
We then construct both a covertly and actively secure preprocessing phase, both of which compare favourably with
previous work in terms of efficiency and provable security.
We also build a new online phase, which solves a major problem of the SPDZ protocol: namely prior to this work
preprocessed data could be used for only one function evaluation and then had to be recomputed from scratch for
the next evaluation, while our online phase can support reactive functionalities. This improvement comes mainly
from the fact that our construction does not require players to reveal the MAC keys to check correctness of MAC’d
values.
Since our focus is also on practical instantiations, our implementation offloads as much computation as possible
into the preprocessing phase, thus resulting in a faster online phase. Moreover, a better analysis of the parameters
of the underlying cryptoscheme and a more specific choice of the field where computation is performed allow us
to obtain a better optimized implementation. Improvements are also due to the fact that our construction is in the
random oracle model, and the practical implementation is multi-threaded.

This article is based on an earlier article: ESORICS 2013, pp 1–18, Springer LNCS 8134, 2013, http://dx.doi.org/10.1007/978-
3-642-40203-6 1.

286

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

1 Introduction

For many decades multi-party computation (MPC) had been a predominantly theoretic endeavour in cryptography,
but in recent years interest has arisen on the practical side. This has resulted in various implementation improvements
and such protocols are becoming more applicable to practical situations. A key part in this transformation from theory
to practice is in adapting theoretical protocols and applying implementation techniques so as to significantly improve
performance, whilst not sacrificing the level of security required by real world applications. This paper follows this
modern, more practical, trend.

Early applied work on MPC focused on the case of protocols secure against passive adversaries, both in the case of
two-party protocols based on Yao circuits [19] and that of many-party protocols, based on secret sharing techniques [5,
10, 25]. Only in recent years work has shifted to achieve active security [17, 18, 24], which appears to come at vastly
increased cost when dealing with more than two players. On the other hand, in the real applications active security
may be more stringent than one would actually require. In [2, 3] Aumann and Lindell introduced the notion of covert
security; in this security model an adversary who deviates from the protocol is detected with high (but not necessarily
overwhelming) probability, say 90%, which still translates into an incentive on the adversary to behave in an honest
manner. In contrast active security achieves the same effect, but the adversary can only succeed with cheating with
negligible probability. There is a strong case to be made, see [2, 3], that covert security is a “good enough” security
level for practical application; thus in this work we focus on covert security, but we also provide solutions with active
security.

As our starting point we take the protocol of [14] (dubbed SPDZ, and pronounced Speedz). In [14] this protocol
is secure against active static adversaries in the standard model, is actively secure, and tolerates corruption of n − 1
of the n parties. The SPDZ protocol follows the preprocessing model: in an offline phase some shared randomness is
generated, but neither the function to be computed nor the inputs need be known; in an online phase the actual secure
computation is performed. One of the main advantages of the SPDZ protocol is that the performance of the online
phase scales linearly with the number of players, and the basic operations are almost as cheap as those used in the
passively secure protocols based on Shamir secret sharing. Thus, it offers the possibility of being both more flexible
and secure than Shamir based protocols, while still maintaining low computational cost.

In [12] the authors present an implementation report on an adaption of the SPDZ protocol in the random oracle
model, and show performance figures for both the offline and online phases for both an actively secure variant and a
covertly secure variant. The implementation is over a finite field of characteristic two, since the focus is on providing
a benchmark for evaluation of the AES circuit (a common benchmark application in MPC [24, 11]).

Our Contributions: In this work we present a number of contributions which extend even further the ability the SPDZ
protocol to deal with the type of application one is likely to see in practice. All our theorems are proved in the
UC model, and in most cases, the protocols make use of some predefined ideal functionalities. We give protocols
implementing most of these functionalities, the only exception being the functionality that provides access to a random
oracle. This is implemented using a hash functions, and so the actual protocol is only secure in the Random Oracle
Model. We back up these improvements with an implementation which we report on.

Our contributions come in two flavours. In the first flavour we present a number of improvements and extensions
to the basic underlying SPDZ protocol. These protocol improvements are supported with associated security models
and proofs. Our second flavour of improvements are at the implementation layer, and they bring in standard techniques
from applied cryptography to bear onto MPC.

In more detail our protocol enhancements, in what are the descending order of importance, are as follows:

1. In the online phase of the original SPDZ protocol the parties are required to reveal their shares of a global MAC
key in order to verify that the computation has been performed correctly. This is a major problem in practical
applications since it means that secret-shared data we did not reveal cannot be re-used in later applications. Our
protocol adopts a method to accomplish the same task, without needing to open the underlying MAC key. This
means we can now go on computing on any secret-shared data we have, so we can support general reactive
computation rather than just secure function evaluation. A further advantage of this technique is that some of the
verification we need (the so-called “sacrificing” step) can be moved into the offline phase, providing additional
performance improvements in the online phase.

287

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

2. In the original SPDZ protocol [12, 14] the authors assume a “magic” key generation phase for the production
of the distributed Somewhat Homomorphic Encryption (SHE) scheme public/private keys required by the offline
phase. The authors claim this can be accomplished using standard generic MPC techniques, which are of course
expensive. In this work we present a key generation protocol for the BGV [6] SHE scheme, which is secure
against covert adversaries. In addition we generate a “full” BGV key which supports the modulus switching and
key switching used in [16]. This new sub-protocol may be of independent interest in other applications which
require distributed decryption in an SHE/FHE scheme.

3. In [12] the modification to covert security was essentially ad-hoc, and resulted in a very weak form of covert
security. In addition no security proofs or model were given to justify the claimed security. In this work we present
a completely different approach to achieving covert security, we provide an extensive security model and provide
full proofs for the modified offline phase (and the key generation protocol mentioned above).

4. We introduce a new approach to obtain full active security in the offline phase. In [14] active security was obtained
via the use of specially designed ZKPoKs. In this work we present a different technique, based on a method used
in [21]. This method has running time similar to the ZKPoK approach utilized in [14], but it allows us to give
much stronger guarantees on the ciphertexts produced by corrupt players: the gap between the size of “noise”
honest players put into ciphertexts and what we can force corrupt players to use was exponential in the security
parameter in [14], and is essentially linear in our solution. This allows us to choose smaller parameters for the
underlying cryptosystem and so makes other parts of the protocol more efficient.

It is important to understand that by combining these contributions in different ways, we can obtain two different
general MPC protocols: First, since our new online phase still has full active security, it can be combined with our
new approach to active security in the offline phase. This results in a protocol that is “syntactically similar” to the one
from [14]: it has full active security assuming access to a functionality for key generation. However, it has enhanced
functionality and performance, compared to [14], in that it can securely compute reactive functionalities. Second, we
can combine our covertly secure protocols for key generation and the offline phase with the online phase to get a
protocol that has covert security throughout and does not assume that key generation is given for free.

Our covert solutions all make use of the same technique to move from passive to covert security, while avoiding
the computational cost of performing zero-knowledge proofs. In [12] covert security is obtained by only checking a
fraction of the resulting proofs, which results in a weak notion of covert security (the probability of a cheater being
detected cannot be made too large). In this work we adopt a different approach, akin to the cut-and-choose paradigm.
We require parties to commit to random seeds for a number of runs of a given sub-protocol, then all the runs are
executed in parallel, finally all bar one of the runs are “opened” by the players revealing their random seeds. If all
opened runs are shown to have been performed correctly then the players assume that the single un-opened run is also
correctly executed.

Note that since these checks take place in the offline phase where the inputs are not yet available, we obtain the
strongest flavour of covert security defined in [2], where the adversary learns nothing new if he decides to try to cheat
and is caught.

A pleasing side-effect of the replacement of zero-knowledge proofs with our custom mechanism to obtain covert
security is that the offline phase can be run in much smaller “batches”. In [12, 14] the need to amortize the cost of
the expensive zero-knowledge proofs meant that the players on each iteration of the offline protocol executed a large
computation, which produced a large number of multiplication triples [4] (in the millions). With our new technique
we no longer need to amortize executions as much, and so short runs of the offline phase can be executed if so desired;
producing only a few thousand triples per run.

Our second flavour of improvements at the implementation layer are more mundane; being mainly of an imple-
mentation nature.

1. We focus on the more practical application scenario of developing MPC where the base arithmetic domain is a
finite field of characteristic p > 2. The reader should think p ≈ 232, 264, 2128 and the type of operations envisaged
in [8, 9] etc. For such applications we can offload a lot of computation into the SPDZ offline phase, and we present
the necessary modifications to do so.

2. Parameters for the underlying BGV scheme are chosen using the analysis used in [16] rather than the approach
used in [14]. In addition we pick specific parameters which enable us to optimize for our application to SPDZ
with the choices of p above.

288

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

3. We assume the random oracle model throughout, this allows us to simplify a number of the sub-procedures in
[14]; especially, related to aspects of the protocol which require commitments.

4. The underlying modular arithmetic is implemented using Montgomery arithmetic [20], this is contrasted to earlier
work which used standard libraries, such as NTL, to provide such operations.

5. The removal of the need to use libraries such as NTL means the entire protocol can be implemented in a multi-
threaded manner; thus it can make use of the multiple cores on modern microprocessors.

This extended abstract presents the main ideas behind our improvements and details of our implementation. For a
full description including details of the associated sub-procedures, security models and associated full security proofs
please see the full version of this paper at [13].

2 SPDZ Overview

We now present the main components of the SPDZ protocol; in this section unless otherwise specified we are simply
recapping on prior work. Throughout the paper we assume the computation to be performed by n players over a fixed
finite field Fp of characteristic p. The high level idea of the online phase is to compute a function represented as a
circuit, where privacy is obtained by additively secret sharing the inputs and outputs of each gate, and correctness is
guaranteed by adding additive secret sharings of MACs on the inputs and outputs of each gate. In more detail, each
player Pi has a uniform share αi ∈ Fp of a secret value α = α1 + · · · + αn, thought of as a fixed MAC key. We say
that a data item a ∈ Fp is 〈·〉-shared if Pi holds a tuple (ai, γ(a)i), where ai is an additive secret sharing of a, i.e.
a = a1 + · · ·+ an, and γ(a)i is an additive secret sharing of γ(a) := α · a, i.e. γ(a) = γ(a)1 + · · ·+ γ(a)n.

For the readers familiar with [14], this is a simpler MAC definition. In particular we have dropped δa from the
MAC definition; this value was only used to add or subtract public data to or from shares. In our case δa becomes
superfluous, since there is a straightforward way of computing a MAC of a public value a by defining γ(a)i ← a · αi.

During the protocol various values which are 〈·〉-shared are “partially opened”, i.e. the associated values ai are
revealed, but not the associated shares of the MAC. Note that linear operations (addition and scalar multiplication) can
be performed on the 〈·〉-sharings with no interaction required. Computing multiplications, however, is not straightfor-
ward, as we describe below.

The goal of the offline phase is to produce a set of “multiplication triples”, which allow players to compute prod-
ucts. These are a list of sets of three 〈·〉-sharings {〈a〉 , 〈b〉, 〈c〉} such that c = a · b. In this paper we extend the offline
phase to also produce “square pairs” i.e. a list of pairs of 〈·〉-sharings {〈a〉 , 〈b〉} such that b = a2, and “shared bits”
i.e. a list of single shares 〈a〉 such that a ∈ {0, 1}.

In the online phase these lists are consumed as MPC operations are performed. In particular to multiply two 〈·〉-
sharings 〈x〉 and 〈y〉we take a multiplication triple {〈a〉 , 〈b〉 , 〈c〉} and partially open 〈x〉−〈a〉 to obtain ε and 〈y〉−〈b〉
to obtain δ. The sharing of z = x · y is computed from 〈z〉 ← 〈c〉+ ε · 〈b〉+ δ · 〈a〉+ ε · δ.

The reason for us introducing square pairs is that squaring a value can then be computed more efficiently as follows:
To square the sharing 〈x〉 we take a square pair {〈a〉 , 〈b〉} and partially open 〈x〉 − 〈a〉 to obtain ε. We then compute
the sharing of z = x2 from 〈z〉 ← 〈b〉 + 2 · ε · 〈x〉 − ε2. Finally, the “shared bits” are useful in computing high level
operation such as comparison, bit-decomposition, fixed and floating point operations as in [1, 8, 9].

The offline phase produces the triples in the following way. We make use of a Somewhat Homomorphic Encryption
(SHE) scheme, which encrypts messages in Fp, supports distributed decryption, and allows computation of circuits of
multiplicative depth one on encrypted data. To generate a multiplication triple each player Pi generates encryptions of
random values ai and bi (their shares of a and b). Using the multiplicative property of the SHE scheme an encryption
of c = (a1 + · · · + an) · (b1 + · · · + bn) is produced. The players then use the distributed decryption protocol to
obtain sharings of c. The shares of the MACs on a, b and c needed to complete the 〈·〉-sharing are produced in much
the same manner. Similar operations are performed to produce square pairs and shared bits. Clearly the above (vague)
outline needs to be fleshed out to ensure the required covert security level. Moreover, in practice we generate many
triples/pairs/shared-bits at once using the SIMD nature of the BGV SHE scheme.

289

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

3 BGV

We now present an overview of the BGV scheme as required by our offline phase. This is only sketched, the reader is
referred to [6, 15, 16] for more details; our goal is to present enough detail to explain the key generation protocol later.

3.1 Preliminaries

Underlying Algebra: We fix the ring Rq = (Z/qZ)[X]/Φm(X) for some cyclotomic polynomial Φm(X), where
m is an parameter to be determined later (see Appendix G). Note that q may not necessarily be prime. Let R =
Z[X]/Φm(X), and φ(m) denote the degree of R over Z, i.e. Euler’s φ function. The message space of our scheme
will be Rp for a prime p of approximately 32, 64 or 128-bits in length, whilst ciphertexts will lie in either R2

q0 or R2
q1 ,

for one of two moduli q0 and q1. We select R = Z[X]/(Xm/2 + 1) for m a power of two, and p = 1 (mod m). By
picking m and p this way we have that the message space Rp offers m/2-fold SIMD parallelism, i.e. Rp ∼= Fm/2p . In
addition this also implies that the ring constant cm from [14, 16] is equal to one.

We wish to generate a public key for a leveled BGV scheme for which n players each hold a share, which is itself
a “standard” BGV secret key. As we are working with circuits of multiplicative depth at most one we only need two
levels in the moduli chain q0 = p0 and q1 = p0 · p1. The modulus p1 will also play the role of P in [16] for the
SwitchKey operation. The value p1 must be chosen so that p1 ≡ 1 (mod p), with the value of p0 set to ensure valid
distributed decryption.

Random Values: Each player is assumed to have a secure entropy source. In practice we take this to be /dev/urandom,
which is a non-blocking entropy source found on Unix like operating systems. This is not a “true” entropy source, be-
ing non-blocking, but provides a practical balance between entropy production and performance for our purposes. In
what follows we model this source via a procedure s ← Seed(), which generates a new seed from this source of
entropy. Calling this function sets the players global variable cnt to zero. Then every time a player generates a new
random value in a protocol this is constructed by calling PRFs(cnt), for some pseudo-random function PRF, and then
incrementing cnt. In practice we use AES under the key s with message cnt to implement PRF.

The point of this method for generating random values is that the said values can then be verified to have been
generated honestly by revealing s in the future and recomputing all the randomness used by a player, and verifying his
output is consistent with this value of s.

From the basic PRF we define the following “induced” pseudo-random number generators, which generate ele-
ments according to the following distributions but seeded by the seed s:

– HWT s(h, n): This generates a vector of length n with elements chosen at random from {−1, 0, 1} subject to the
condition that the number of non-zero elements is equal to h.

– ZOs(0.5, n): This generates a vector of length n with elements chosen from {−1, 0, 1} such that the probability
of coefficient is p−1 = 1/4, p0 = 1/2 and p1 = 1/4.

– DGs(σ2, n): This generates a vector of length n with elements chosen according to the discrete Gaussian distri-
bution with variance σ2.

– RCs(0.5, σ2, n): This generates a triple of elements (v, e0, e1) where v is sampled from ZOs(0.5, n) and e0 and
e1 are sampled from DGs(σ2, n).

– Us(q, n): This generates a vector of length n with elements generated uniformly modulo q.

If any random values are used which do not depend on a seed then these should be assumed to be drawn using a secure
entropy source (again in practice assumed to be /dev/urandom). If we pull from one of the above distributions
where we do not care about the specific seed being used then we will drop the subscript s from the notation.

Broadcast: When broadcasting data we assume two different models. In the online phase during partial opening we
utilize the method described in [14]; in that players send their data to a nominated player who then broadcasts the
reconstructed value back to the remaining players. For other applications of broadcast we assume each party broadcasts
their values to all other parties directly. In all instances players maintain a running hash of all values sent and received
in a broadcast (with a suitable modification for the variant used for partial opening). At the end of a protocol run these

290

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

running hashes are compared in a pair-wise fashion. This final comparison ensures that in the case of at least two
honest parties the adversary must have been consistent in what was sent to the honest parties.

Commitments: In Figure 2 we present an ideal functionality FCOMMIT for commitment which will be used in all of our
protocols. Our protocols will be UC secure, this is possible despite the fact that we allow dishonest majority because
we assume a random oracle is available; in particular we model a hash function H1 as a random oracle and define a
commitment scheme to implement the functionality FCOMMIT as follows: The commit function Commit(m) generates
a random value r and computes c ← H1(m‖r). It returns the pair (c, o) where o is the opening information m‖r.
When the commitment c is opened the committer outputs the value o and the receiver runs Open(c, o) which checks
whether c = H1(o) and if the check passes it returns m. See Appendix A for details.

3.2 Key Generation

The key generation algorithm generates a public/private key pair such that the public key is given by pk = (a, b),
where a is generated from U(q1, φ(m)) (i.e. a is uniform in Rq1), and b = a · s + p · ε where ε is a “small” error term,
and s is the secret key such that s = s1 + · · ·+ sn, where player Pi holds the share si. Recall since m is a power of 2
we have φ(m) = m/2.

The public key is also augmented to an extended public key epk by addition of a “quasi-encryption” of the message
−p1 · s2, i.e. epk contains a pair enc = (bs,s2 , as,s2) such that bs,s2 = as,s2 · s + p · εs,s2 − p1 · s2, where as,s2 ←
U(q1, φ(m)) and εs,s2 is a “small” error term. The precise distributions of all these values will be determined when
we discuss the exact key generation protocol we use.

3.3 Encryption and Decryption

Encpk(m): To encrypt an element m ∈ Rp, using the modulus q1, we choose one “small polynomial” (with 0,±1
coefficients) and two Gaussian polynomials (with variance σ2), via (v, e0, e1) ← RCs(0.5, σ2, φ(m)). Then we set
c0 = b · v + p · e0 +m, c1 = a · v + p · e1, and set the initial ciphertext as c′ = (c0, c1, 1).

SwitchModulus((c0, c1), `): The operation SwitchModulus(c) takes the ciphertext c = ((c0, c1), `) defined modulo
q` and produces a ciphertext c′ = ((c′0, c

′
1), ` − 1) defined modulo q`−1, such that [c0 − s · c1]q`

≡ [c′0 − s · c′1]q`−1

(mod p). This is done by setting c′i = Scale(ci, q`, q`−1) where Scale is the function defined in [16]; note we need the
more complex function of Appendix E of the full version of [16] if working in dCRT representation as we need to fix
the scaling modulo p as opposed to modulo two which was done in the main body of [16]. As we are only working
with two levels this function can only be called when ` = 1.

Decs(c): Note, that this operation is never actually performed, since no-one knows the shared secret key s, but present-
ing it will be instructive: Decryption of a ciphertext (c0, c1, `) at level ` is performed by setting m′ = [c0 − s · c1]q`

,
then converting m′ to coefficient representation and outputting m′ mod p.

DistDecsi
(c): We actually decrypt using a simplification of the distributed decryption procedure described in [14],

since our final ciphertexts consist of only two elements as opposed to three in [14]. For input ciphertext (c0, c1, `),
player P1 computes v1 = c0 − si · c1 and each other player Pi computes vi = −si · c1. Each party Pi then sets
ti = vi + p · ri for some random element ri ∈ R with infinity norm bounded by 2sec · B/(n · p), for some statistical
security parameter sec, and the values ti are broadcast; the precise value B being determined in Appendix G. Then
the message is recovered as t1 + · · ·+ tn (mod p).

3.4 Operations on Encrypted Data

Homomorphic addition follows trivially from the methods of [6, 16]. So the main remaining task is to deal with
multiplication. We first define a SwitchKey operation.

291

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

SwitchKey(d0, d1, d2): This procedure takes as input an extended ciphertext c = (d0, d1, d2) defined modulo q1; this
is a ciphertext which is decrypted via the equation

[d0 − s · d1 − s2 · d2]q1 .

The SwitchKey operation also takes the key-switching data enc = (bs,s2 , as,s2) above and produces a standard two
element ciphertext which encrypts the same message but modulo q0.

– c′0 ← p1 · d0 + bs,s2 · d2 (mod q1), c′1 ← p1 · d1 + as,s2 · d2 (mod q1).
– c′′0 ← Scale(c′0, q1, q0), c′′1 ← Scale(c′1, q1, q0).
– Output ((c′′0 , c

′′
1), 0).

Notice we have the following equality modulo q1:

c′0 − s · c′1 = (p1 · d0) + d2 · bs,s2 − s ·
(
(p · d1)− d2 · as,s2

)
= p1 · (d0 − s · d1 − s2d2)− p · d2 · εs,s2 ,

The requirement on p1 ≡ 1 (mod p) is from the above equation as we want this to produce the same value as
d0 − s · d1 − s2d2 mod q1 on reduction modulo p.

Mult(c, c′): We only need to execute multiplication on two ciphertexts at level one, thus c = ((c0, c1), 1) and c′ =
((c′0, c

′
1), 1). The output will be a ciphertext c′′ at level zero, obtained via the following steps:

– c← SwitchModulus(c), c′ ← SwitchModulus(c′).
– (d0, d1, d2)← (c0 · c′0, c1 · c′0 + c0 · c′1,−c1 · c′1).
– c′′ ← SwitchKey(d0, d1, d2).

4 Protocols Associated to the SHE Scheme

In this section we present two sub-protocols associated with the SHE scheme; namely our distributed key generation
and a protocol for proving that a committed ciphertext is well formed.

4.1 Distributed Key Generation Protocol For BGV

To make the paper easier to follow we present the precise protocols, ideal functionalities, simulators and security
proofs in Appendix B. Here we present a high level overview.

As remarked in the introduction, the authors of [14] assumed a “magic” set up which produces not only a distributed
sharing of the main BGV secret key, but also a distributed sharing of the square of the secret key. That was assumed to
be done via some other unspecified MPC protocol. The effect of requiring a sharing of the square of the secret key was
that they did not need to perform KeySwitching, but ciphertexts were 50% bigger than one would otherwise expect.
Here we take a very different approach: we augment the public key with the keyswitching data from [16] and provide
an explicit covertly secure key generation protocol.

Our protocol will be covertly secure in the sense that the probability that an adversary can deviate without being
detected will be bounded by 1/c, for a positive integer c. Our basic idea behind achieving covert security is as follows:
Each player runs c instances of the basic protocol, each with different random seeds, then at the end of the main
protocol all bar a random one basic protocol runs are opened, along with the respective random seeds. All parties then
check that the opened runs were performed honestly and, if any party finds an inconsistency, the protocol aborts. If
no problem is detected, the parties assume that the single unopened run is correct. Thus intuitively the adversary can
cheat with probability at most 1/c.

We start by discussing the generation of the main public key pkj in execution j where j ∈ {1, . . . , c}. To start with
the players generate a uniformly random value aj ∈ Rq1 . They then each execute the standard BGV key generation

292

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

procedure, except that this is done with respect to the global element aj . Player i chooses a low-weight secret key and
then generates an LWE instance relative to that secret key. Following [16], we choose

si,j ← HWT s(h, φ(m)) and εi,j ← DGs(σ2, φ(m)).

Then the player sets the secret key as si,j and their “local” public key as (aj , bi,j) where bi,j = [aj · si,j + p · εi,j]q1 .
Note, by a hybrid argument, obtaining n ring-LWE instances for n different secret keys but the same value of aj is

secure assuming obtaining one ring-LWE instance is secure. In the LWE literature this is called “amortization”. Also
note in what follows that a key modulo q1 can be also treated as a key modulo q0 since q0 divides q1 and si,j has
coefficients in {−1, 0, 1}.

The global public and private key are then set to be pkj = (aj , bj) and sj = s1,j + · · · + sn,j , where bj =
[b1,j + · · ·+ bn,j]q1 . This is essentially another BGV key pair, since if we set εj = ε1,j + · · ·+ εn,j then we have

bj =
n∑
i=1

(aj · si,j + p · εi,j) = aj · sj + p · εj ,

but generated with different distributions for sj and εj compared to the individual key pairs above.
We next augment the above basic key generation to enable the construction of the KeySwitching data. Given a

public key pkj and a share of the secret key si,j our method for producing the extended public key is to produce in turn
(see Figure 3 for the details on how we create these elements in our protocol).

– enc′i,j ← Encpkj
(−p1 · si,j)

– enc′j ← enc′1,j + · · ·+ enc′n,j .
– zeroi,j ← Encpkj

(0)
– enci,j ← (si,j · enc′j) + zeroi,j ∈ R2

q1 .
– encj ← enc1,j + · · ·+ encn,j .
– epkj ← (pkj , encj).

Note, that enc′i,j is not a valid encryption of −p1 · si,j , since −p1 · si,j does not lie in the message space of the
encryption scheme. However, because of the dependence on the secret key shares here, we need to assume a form of
circular security; the precise assumption needed is stated in Appendix B. The encryption of zero, zeroi,j , is added on
by each player to re-randomize the ciphertext, preventing an adversary from recovering si,j from enci,j/enc′j . We call
the resulting epkj the extended public key. In [16] the keyswitching data encj is computed directly from s2

j ; however,
we need to use the above round-about way since s2

j is not available to the parties.
Finally we open all bar one of the c executions and check they have been executed correctly. If all checks pass

then the final extended public key epk is output and the players keep hold of their associated secret key share si. See
Figure 3 for full details of the protocol.

Theorem 1. In the FCOMMIT-hybrid model, the protocol ΠKEYGEN implements FKEYGEN with computational security
against any static adversary corrupting at most n− 1 parties.

Recall that FCOMMIT is a standard functionality for commitment. FKEYGEN simply generates a key pair with a
distribution matching what we sketched above, and then sends the values ai, bi, enc′i, enci for every i to all parties and
shares of the secret key to the honest players. Like most functionalities in the following, it allows the adversary to try
to cheat and will allow this with a certain probability 1/c. This is how we model covert security.

The BGV cryptosystem resulting from FKEYGEN is proven semantically secure by the following theorem.

Theorem 2. If the functionality FKEYGEN is used to produce a public key epk and secret keys si for i = 0, . . . , n − 1
then the resulting cryptosystem is semantically secure based on the hardness of RLWEq1,σ2,h and the circular security
assumption in Appendix B.

293

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

4.2 EncCommit

We use a sub-protocol ΠENCCOMMIT to replace the ΠZKPoPK protocol from [14]. In this section we consider a covertly
secure variant rather than active security; this means that players controlled by a malicious adversary succeed in
deviating from the protocol with a probability bounded by 1/c. In our experiments we pick c = 5, 10 and 20. In
Appendix F we present an actively secure variant of this protocol.

Our new sub-protocol assumes that players have agreed on the key material for the encryption scheme, i.e.
ΠENCCOMMIT runs in the FKEYGEN-hybrid model. The protocol ensures that a party outputs a validly created cipher-
text containing an encryption of some pseudo-random message m, where the message m is drawn from a distribution
satisfying condition cond. This is done by committing to seeds and using the cut-and-choose technique, similarly to the
key generation protocol. The condition cond in our application could either be uniformly pseudo-randomly generated
from Rp, or uniformly pseudo-randomly generated from Fp (i.e. a “diagonal” element in the SIMD representation).

The protocol ΠENCCOMMIT and ideal functionality it implements are presented in Appendix C, along with the proof
of the following theorem.

Theorem 3. In the (FCOMMIT,FKEYGEN)-hybrid model, the protocolΠENCCOMMIT implements FSHE with computational
security against any static adversary corrupting at most n− 1 parties.

FSHE offers the same functionality as FKEYGEN but can in addition generate correctly formed ciphertexts where the
plaintext satisfies a condition cond as explained above, and where the plaintext is known to a particular player (even
if he is corrupt). Of course, if we use the actively secure version of ΠENCCOMMIT from Appendix F, we would get a
version of FSHE where the adversary is not allowed to attempt cheating.

5 The Offline Phase

The offline phase produces pre-processed data for the online phase (where the secure computation is performed). To
ensure security against active adversaries the MAC values of any partially opened value need to be verified. We suggest
a new method for this that overcomes some limitations of the corresponding method from [14]. Since it will be used
both in the offline and the online phase, we explain it here, before discussing the offline phase.

5.1 MAC Checking

We assume some value a has been 〈·〉-shared and partially opened, which means that players have revealed shares of
the a but not of the associated MAC value γ, this is still additively shared. Since there is no guarantee that the a are
correct, we need to check it holds that γ = αa where α is the global MAC key that is also additively shared. In [14],
this was done by having players commit to the shares of the MAC. then open α and check everything in the clear.
But this means that other shared values become useless because the MAC key is now public, and the adversary could
manipulate them as he desires.

So we want to avoid opening α, and observe that since a is public, the value γ − αa is a linear function of shared
values γ, α, so players can compute shares in this value locally and we can then check if it is 0 without revealing
information on α. As in [14], we can optimize the cost of this by checking many MACs in one go: we take a random
linear combination of a and γ-values and check only the results of this. The full protocol is given in Figure 10; it is not
intended to implement any functionality – it is just a procedure that can be called in both the offline and online phases.
MACCheck has the following important properties.

Lemma 1. The protocol MACCheck is correct, i.e. it accepts if all the values aj and the corresponding MACs are
correctly computed. Moreover, it is sound, i.e. it rejects except with probability 2/p in case at least one value or MAC
is not correctly computed.

The proof of Lemma 1 is given in Appendix D.3.

294

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

5.2 Offline Protocol

The offline phase itself runs two distinct sub-phases, each of which we now describe. To start with we assume a BGV
key has been distributed according to the key generation procedure described earlier, as well as the shares of a secret
MAC key and an encryption cα of the MAC key as above. We assume that the output of the offline phase will be a
total of at least nI input tuples, nm multiplication triples, ns squaring tuples and nb shared bits.

In the first sub-phase, which we call the tuple-production sub-phase, we over-produce the various multiplication
and squaring tuples, plus the shared bits. These are then “sacrificed” in the tuple-checking phase so as to create at least
nm multiplication triples, ns squaring tuples and nb shared bits. In particular in the tuple-production phase we produce
(at least) 2 · nm multiplication tuples, 2 · ns + nb squaring tuples, and nb shared bits. Tuple-production is performed
by following the protocol in Figure 13 and Figure 14. The tuple production protocol can be run repeatedly, alongside
the tuple-checking sub-phase and the online phase.

The second sub-phase of the offline phase is to check whether the resulting material from the prior phase has been
produced correctly. This check is needed, because the distributed decryption procedure needed to produce the tuples
and the MACs could allow the adversary to induce errors. We solve this problem via a sacrificing technique, as in [14],
however, we also need to adapt it to the case of squaring tuples and bit-sharings. Moreover, this sacrificing is performed
in the offline phase as opposed to the online phase (as in [14]); and the resulting partially opened values are checked
in the offline phase (again as opposed to the online phase). This is made possible by our protocol MACCheck which
allows to verify the MACs are correct without revealing the MAC key α. The tuple-checking protocol is presented in
Figure 15.

We show that the resulting protocol ΠPREP, given in Figure 12, securely implements the functionality FPREP, which
models the offline phase. The functionality FPREP outputs some desired number of multiplication triples, squaring
tuples and shared bits. In Appendix D we present a proof of the following theorem.

Theorem 4. In the (FSHE,FCOMMIT)-hybrid model, the protocol ΠPREP implements FPREP with computational security
against any static adversary corrupting at most n− 1 parties if p is exponential in the security parameter.

The security flavour of ΠPREP follows the security of EncCommit, i.e. if one uses the covert (resp. active) version of
EncCommit, one gets covert (resp. active) security for ΠPREP.

6 Online Phase

We design a protocolΠONLINE which performs the secure computation of the desired function, decomposed as a circuit
over Fp. Our online protocol makes use of the preprocessed data coming from FPREP in order to input, add, multiply
or square values. Our protocol is similar to the one described in [14]; however, it brings a series of improvements, in
the sense that we could push the “sacrificing” to the preprocessing phase, we have specialised procedure for squaring
etc, and we make use of a different MAC-checking method in the output phase. Our method for checking the MACs
is simply the MACCheck protocol on all partially opened values; note that such a method has a lower soundness error
than the method proposed in [14], since the linear combination of partially opened values is truly random in our case,
while it has lower entropy in [14].

The following theorem, whose proof is given in Appendix E, shows that the protocol ΠONLINE, given in Figure 20,
securely implements the functionality FONLINE, which models the online phase.

Theorem 5. In theFPREP-hybrid model, the protocolΠONLINE implementsFONLINE with computational security against
any static adversary corrupting at most n− 1 parties if p is exponential in the security parameter.

The astute reader will be wondering where our shared bits produced in the offline phase are used. These will be
used in “higher level” versions of the online phase (i.e. versions which do not just evaluate an arithmetic circuit) which
implement the types of operations presented in [8, 9].

295

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

7 Experimental Results

7.1 KeyGen and Offline Protocols

To present performance numbers for our key generation and new variant of the offline phase for SPDZ we first need to
define secure parameter sizes for the underlying BGV scheme (and in particular how it is used in our protocols). This
is done in Appendix G, by utilizing the method of Appendices A.4, A.5 and B of [16], for various choices of n (the
number of players) and p (the field size).

We then implemented the preceding protocols in C++ on top of the MPIR library for multi-precision arithmetic.
Modular arithmetic was implemented with bespoke code using Montgomery arithmetic [20] and calls to the underlying
mpn_ functions in MPIR. The offline phase was implemented in a multi-threaded manner, with four cores producing
initial multiplication triples, square pairs, shared bits and input preparation mask values. Then two cores performed
the sacrificing for the multiplication triples, square pairs and shared bits.

In Table 1 we present execution times (in wall time measured in seconds) for key generation and for an offline
phase which produces 100000 each of the multiplication tuples, square pairs, shared bits and 1000 input sharings. We
also present the average time to produce a multiplication triple for an offline phase running on one core and producing
100000 multiplication triples only. The run-times are given for various values of n, p and c, and all timings were
obtained on 2.80 GHz Intel Core i7 machines with 4 GB RAM, with machines running on a local network.

Run Times Time per
n p ≈ c KeyGen Offline Triple (sec)
2 232 5 2.4 156 0.00140
2 232 10 5.1 277 0.00256
2 232 20 10.4 512 0.00483
2 264 5 5.9 202 0.00194
2 264 10 12.5 377 0.00333
2 264 20 25.6 682 0.00634
2 2128 5 16.2 307 0.00271
2 2128 10 33.6 561 0.00489
2 2128 20 74.5 1114 0.00937

Run Times Time per
n p ≈ c KeyGen Offline Triple(sec)
3 232 5 3.0 292 0.00204
3 232 10 6.4 413 0.00380
3 232 20 13.3 790 0.00731
3 264 5 7.7 292 0.00267
3 264 10 16.3 568 0.00497
3 264 20 33.7 1108 0.01004
3 2128 5 21.0 462 0.00402
3 2128 10 44.4 889 0.00759
3 2128 20 99.4 2030 0.01487

Table 1. Execution Times For Key Gen and Offline Phase (Covert Security)

We compare the results to that obtained in [12], since no other protocol can provide malicious/covert security
for t < n corrupted parties. In the case of covert security the authors of [12] report figures of 0.002 seconds per (un-
checked) 64-bit multiplication triple for both two and three players; however the probability of cheating being detected
was lower bounded by 1/2 for two players, and 1/4 for three players; as opposed to our probabilities of 4/5, 9/10 and
19/20. Since the triples in [12] were unchecked we need to scale their run-times by a factor of two; to obtain 0.004
seconds per multiplication triple. Thus for covert security we see that our protocol for checked tuples are superior both
in terms error probabilities, for a comparable run-time.

When using our active security variant we aimed for a cheating probability of 2−40; so as to be able to compare
with prior run times obtained in [12], which used the method from [14]. Again we performed two experiments one
where four cores produced 100000 multiplication triples, squaring pairs and shared bits, plus 1000 input sharings; and
one experiment where one core produced just 100000 multiplication triples (so as to produce the average cost for a
triple). The results are in Table 2.

By way of comparison for a prime of 64 bits the authors of [12] report on an implementation which takes 0.006
seconds to produce an (un-checked) multiplication triple for the case of two parties and equivalent active security; and
0.008 per second for the case of three parties and active security. As we produce checked triples, the cost per triple for
the results in [12] need to be (at least) doubled; to produce a total of 0.012 and 0.016 seconds respectively.

Thus, in this test, our new active protocol has running time about twice that of the previous active protocol from
[14] based on ZKPoKs. From the analysis of the protocols, we do expect that the new method will be faster, but only
if we produce the output in large enough batches. Due to memory constraints we were so far unable to do this, but we
can extrapolate from these results: In the test we generated 12 ciphertexts in one go, and if we were able to increase

296

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

n = 2 n = 3
p ≈ Offline Time per Triple Offline Time per Triple
232 2366 0.01955 3668 0.02868
264 3751 0.02749 5495 0.04107
2128 6302 0.04252 10063 0.06317

Table 2. Execution Times For Offline Phase (Active Security)

this by a factor of about 10, then we would get results better than those of [14, 12], all other things being equal. More
information can be found in Appendix F.

7.2 Online

For the new online phase we have developed a purpose-built bytecode interpreter, which reads and executes pre-
generated sequences of instructions in a multi-threaded manner. Our runtime supports parallelism on two different
levels: independent rounds of communication can be merged together to reduce network overhead, and multiple threads
can be executed at once to allow for optimal usage of modern multi-core processors.

Each bytecode instruction is either some local computation (e.g. addition of secret shared values) or an ‘open’
instruction, which initiates the protocol to reveal a shared value. The data from independent open instructions can be
merged together to save on communication costs. Each player may run up to four different bytecode files in parallel in
distinct threads, with each such thread having access to some shared memory resource. The advantage of this approach
is that bytecode files can be pre-compiled and optimized, and then quickly loaded at runtime – the online phase runtime
is itself oblivious to the nature of the programs being run.

In Table 3 we present timings (again in elapsed wall time for a player) for multiplying two secret shared values.
Results are given for three different varieties of multiplication, reflecting the possibilities available: purely sequen-
tial multiplications; parallel multiplications with communication merged into one round (50 per round); and parallel
multiplications running in 4 independent threads (50 per round, per thread). The experiments were carried out on the
same machines as the offline phase, running over a local network with a ping of around 0.27ms. For comparison, the
original implementation of the online phase in [14] gave an amortized time of 20000 multiplications per second over
a 64-bit prime field, with three players.

Multiplications/sec
Sequential 50 in Parallel

n p ≈ Single Thread Single Thread Four Threads
2 232 7500 134000 398000
2 264 7500 130000 395000
2 2128 7500 120000 358000
3 232 4700 100000 292000
3 264 4700 98000 287000
3 2128 4600 90000 260000

Table 3. Online Times

8 Acknowledgements

The first and fourth author acknowledge partial support from the Danish National Research Foundation and The
National Science Foundation of China (under the grant 61061130540) for the Sino-Danish Center for the Theory of
Interactive Computation, and from the CFEM research center (supported by the Danish Strategic Research Council).
The second, third, fifth and sixth authors were supported by EPSRC via grant COED–EP/I03126X. The sixth author
was also supported by the European Commission via an ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO,

297

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

the Defense Advanced Research Projects Agency and the Air Force Research Laboratory under agreement number
FA8750-11-2-00793, and by a Royal Society Wolfson Merit Award.

References

1. M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele. Secure computation on floating point numbers. In Network and Distributed
System Security Symposium – NDSS 2013. Internet Society, 2013.

2. Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries. In Theory of
Cryptography – TCC 2007, volume 4392 of LNCS, pages 137–156. Springer, 2007.

3. Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries. J. Cryptology,
23(2):281–343, 2010.

4. D. Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO, volume 576 of LNCS, pages 420–432.
Springer, 1991.

5. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-preserving computations. In European
Symposium on Research in Computer Security – ESORICS 2008, volume 5283 of LNCS, pages 192–206. Springer, 2008.

6. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption without bootstrapping. In ITCS,
pages 309–325. ACM, 2012.

7. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from Ring-LWE and security for key dependent messages.
In CRYPTO, volume 6841 of LNCS, pages 505–524. Springer, 2011.

8. O. Catrina and A. Saxena. Secure computation with fixed-point numbers. In Financial Cryptography – FC 2010, volume 6052
of LNCS, pages 35–50. Springer, 2010.

9. I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally secure constant-rounds multi-party computation for
equality, comparison, bits and exponentiation. In Theory of Cryptography – TCC 2006, volume 3876 of LNCS, pages 285–304.
Springer, 2006.

10. I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen. Asynchronous multiparty computation: Theory and implementation.
In Public Key Cryptography – PKC 2009, volume 5443 of LNCS, pages 160–179. Springer, 2009.

11. I. Damgård and M. Keller. Secure multiparty AES. In Financial Cryptography, volume 6052 of LNCS, pages 367–374.
Springer, 2010.

12. I. Damgård, M. Keller, E. Larraia, C. Miles, and N. P. Smart. Implementing aes via an actively/covertly secure dishonest-
majority mpc protocol. In SCN, volume 7485 of LNCS, pages 241–263. Springer, 2012.

13. I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical covertly secure MPC for dishonest majority
– or: Breaking the SPDZ limits, 2012.

14. I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic encryption. In
Advances in Cryptology – CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, 2012.

15. C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog overhead. In Advances in Cryptology –
EUROCRYPT 2012, volume 7237 of LNCS, pages 465–482. Springer, 2012.

16. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In Advances in Cryptology – CRYPTO
2012, volume 7417 of LNCS, pages 850–867. Springer, 2012.

17. B. Kreuter, A. Shelat, and C.-H. Shen. Towards billion-gate secure computation with malicious adversaries. In USENIX
Security Symposium – 2012, pages 285–300, 2012.

18. Y. Lindell, B. Pinkas, and N. P. Smart. Implementing two-party computation efficiently with security against malicious adver-
saries. In Security and Cryptography for Networks – SCN 2008, volume 5229 of LNCS, pages 2–20. Springer, 2008.

19. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - Secure two-party computation system. In USENIX Security Symposium
– 2004, pages 287–302, 2004.

20. P. L. Montgomery. Modular multiplication without trial division. Math. Comp., 44:519–521, 1985.
21. J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to practical active-secure two-party computation. In

Advances in Cryptology – CRYPTO 2012, volume 7417 of LNCS, pages 681–700. Springer, 2012.
22. J. B. Nielsen and C. Orlandi. LEGO for two-party secure computation. In TCC, volume 5444 of LNCS, pages 368–386.

Springer, 2009.
23. C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable oblivious transfer. Advances in

Cryptology–CRYPTO 2008, pages 554–571, 2008.

3 The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation hereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of DARPA, AFRL, or the U.S. Government.

298

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

24. B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure two-party computation is practical. In Advances in Cryptology
– ASIACRYPT 2009, volume 5912 of LNCS, pages 250–267. Springer, 2009.

25. SIMAP Project. SIMAP: Secure information management and processing. http://alexandra.dk/uk/Projects/
Pages/SIMAP.aspx.

299

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

A Commitments in the Random Oracle Model

A.1 Protocol and Functionality

The Protocol ΠCOMMIT

Commit:
1. In order to commit to v, Pi sets o ← v||r, where r is chosen uniformly in a determined domain, and queries the

Random OracleH to get c← H(o).
2. Pi then broadcasts (c, i, τv), where τv represents a handle for the commitment.

Open:
1. In order to open a commitment (c, i, τv), where c = H(v||r), player Pi broadcasts (o = v||r, i, τv).
2. All players callH on o and check whetherH(o) = c. Players accept if and only if this check passes.

Fig. 1. The Protocol for Commitments.

The Ideal Functionality FCOMMIT

Commit: On input (Commit, v, i, τv) by Pi or the adversary on his behalf (if Pi is corrupt), where v is either in a specific
domain or ⊥, it stores (v, i, τv) on a list and outputs (i, τv) to all players and adversary.

Open: On input (Open, i, τv) by Pi or the adversary on his behalf (if Pi is corrupt), the ideal functionality outputs (v, i, τv)
to all players and adversary. If (NoOpen, i, τv) is given by the adversary, and Pi is corrupt, the functionality outputs
(⊥, i, τv) to all players.

Fig. 2. The Ideal Functionality for Commitments

A.2 UC Security

Lemma 2. In the random oracle model, the protocol ΠCOMMIT implements FCOMMIT with computational security
against any static, active adversary corrupting at most n− 1 parties.

Proof. We here sketch a simulator such that the environment cannot distinguish if it is playing with the real protocol
or the functionality composed with the simulator. Note that the simulator replies to queries to the random oracle H
made by the adversary.

To simulate a Commit call, if the committer Pi is honest, the simulator selects a random value c and gives (c, i, τv)
to the adversary. Note that (i, τv) is given to the simulator by FCOMMIT hereafter receiving (Commit, v, i, τv) from Pi.
Whereas if the committer is corrupt, then it either queries H to get c, or it does not query it. Therefore, on receiving
(c∗, i, τv) from the adversary, the simulator has v (if H was queried) so it sets v∗ ← v. If H was not queried, the
simulator sets dummy input v∗ and the internal flag Aborti,τv to true. It then sends (Commit, v∗, i, τv) to FCOMMIT.

An Open call is simulated as follows. If the committer is honest, the simulator gets (v, i, τv) when Pi inputs
(Open, i, τv) to FCOMMIT. The simulator selects random r and sets o← v||r. It can now hand (o, i, τv) to the adversary.
If the random oracle is queried on o, the simulator sends c as response. If the committer is corrupt, the simulator gets
(i, τv) from the adversary, it checks whether Aborti,τv

is true, if so it sends (NoOpen, i, τv) to FCOMMIT. Otherwise,
the simulator sends (Open, i, τi) to FCOMMIT.

The adversary will notice that queries toH are simulated only if o has been queried before resulting in different c,
but as r is random this happens only with negligible probability (assuming that the size of the output domain of H is
large enough). Also, in a simulated run, if the adversary does not query H when committing will result in abort. The

300

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

probability that in a real run players do not abort, is equivalent to the the probability that adversary correctly guesses
the output ofH, which happens with negligible probability.

ut

B Key Generation : Protocol, Functionalities and Security Proof

B.1 Protocol

The protocol ΠKEYGEN

Initialize:
1. Every player Pi samples a uniform ei ← {1, . . . , c} and asks FCOMMIT to broadcast the handle τei ← Commit(ei)

for a commitment to ei.
2. Every player Pi samples a seed si,j and asks FCOMMIT to broadcast τsi,j ← Commit(si,j).
3. Every player Pi computes and broadcasts ai,j ← Usi,j (q1, φ(m)).

Stage 1:
4. All the players compute aj ← a1,j + · · ·+ an,j .
5. Every player Pi computes si,j ← HWT si,j (h, φ(m)) and εi,j ← DGsi,j

(σ2, φ(m)),
and broadcasts bi,j ← [aj · si,j + p · εi,j]q1 .

Stage 2:
6. All the players compute bj ← b1,j + · · ·+ bn,j and set pkj ← (aj , bj)..
7. Every player Pi computes and broadcasts enc′i,j ← Encpkj

(−p1 · si,j ,RCsi,j (0.5, σ
2, φ(m))).

Stage 3:
8. All the players compute enc′j ← enc′1,j + · · ·+ enc′n,j .
9. Every player Pi computes zeroi,j ← Encpkj

(0,RCsi,j (0.5, σ
2, φ(m))).

10. Every player Pi computes and broadcasts enci,j ← (si,j · enc′j) + zeroi,j .
Output:

11. All the players compute encj ← enc1,j + · · ·+ encn,j and set epkj ← (pkj , encj).
12. Every player Pi callsFCOMMIT with Open(τei). If any opening failed, the players output the numbers of the respective

players, and the protocol aborts.
13. All players compute the challenge chall← 1 +

``Pn
i=1 ei

´
mod c

´
.

14. Every player Pi calls FCOMMIT with Open(τsi,j) for j 6= chall. If any opening failed, the players output the numbers
of the respective players, and the protocol aborts.

15. All players obtain the values committed, compute all the derived values and check that they are correct.
16. If any of the checks fail, the players output the numbers of the respective players, and the protocol aborts. Otherwise,

every player Pi sets
– si ← si,chall,
– pk← (achall, bchall), epk← (pk, encchall).

Fig. 3. The protocol for key generation.

301

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

B.2 Functionality

The ideal functionality FKEYGEN

Generation:
1. The functionality waits for seeds {si}i∈A from the adversary, and samples a seed si for every honest player Pi.
2. It computes ai ← Usi(q1, φ(m)) for all i.
3. It computes si ← HWT si(h, φ(m)), εi ← DGsi

(σ2, φ(m)) and bi ← [a · si + p · εi]q1 for all i.
4. It computes b← b1 + · · ·+ bn.
5. It computes enc′i ← Encpk(−p1 · si,RCsi(0.5, σ

2, φ(m))) for every Pi.
6. It computes enc′ ← enc′1 + · · ·+ enc′n.
7. It computes zeroi ← Encpk(0,RCsi(0.5, σ

2, φ(m))) for every Pi, and enci ← (si · enc′)+ zeroi for all players Pi.
8. It leaks ai, bi, enc′i, enci for all i to the adversary and waits for either Proceed, Cheat, or Abort.

Proceed: The functionality sends si, pk = (a, b), epk = (pk, enc) to Pi, for all i.
Cheat: On input Cheat, with probability 1− 1/c the functionality leaks NoSuccess and goes to “Abort”; otherwise:

1. It leaks the seeds of the honest parties and sends Success to the adversary.
2. It repeats the following loop:

– It waits for the adversary to input values a∗i , (resp. (s∗i , b
∗
i), enc′i

∗, enc∗i) for i ∈ A.
– It overwrites ai, (resp. (si, bi), enc′i, enci) for i ∈ A.
– It recomputes a (resp. b, enc′, enc) accordingly.

3. It waits for Proceed or Abort.
Abort:

1. The functionality leaks the seeds of the honest parties if it never did so.
2. It then waits for a set S ⊆ A, sends it to the honest players, and aborts.

Fig. 4. The ideal functionality for key generation.

B.3 Proof of Theorem 1

Proof. We build a simulator SKEYGEN to work on top of the ideal functionality FKEYGEN, such that the environment
cannot distinguish whether it is playing with the protocol ΠKEYGEN and FCOMMIT, or the simulator and FKEYGEN. The
simulator is given in Figure 6.

We now proceed with the analysis of the simulation. Let A denote the set of players controlled by the adversary.
In steps 1 and 2 the simulator sends random handles to the adversary, as it would happen in the real protocol. In steps
3–11 the simulation is perfect for all the threads where the simulator knows the seeds of the honest players, since
those are generated as in the protocol. In case of no cheat nor abort the simulation is also perfect for the thread where
the simulator does not know the seeds of the honest players, since the simulator forwards honest values provided by
the functionality. In case of cheating at the thread pointed by chall, the simulator gets the seeds also for the remaining
thread and will replace the honestly precomputed intermediate values ai,chall, si,chall, bi,chall, enc′i,chall, enci,chall with the
ones compatible with the deviation of the adversary – the honest values computed after a cheat reflect the adversarial
behaviour of the real protocol, so a simulated run is again indistinguishable from a real run of the protocol.

Steps 12, 14 are statistically indistinguishable from a protocol run, since the simulator plays also the role of
FCOMMIT.

Step 15 needs more work: we need to ensure that the success probability in a simulated run is the same as the one
in a real run of the protocol. If the adversary does not deviate, the protocol succeeds. The same applies for a simulated
run, since the simulator goes through “Pass” at every stage. More in detail, the simulator sampled and computed all the
values at the threads not pointed by the challenge as in a honest run of the protocol, while values at the thread pointed
by the challenge are correctly evaluated and sent to the honest players by FKEYGEN. In case the adversary cheats only
on one thread, in a real execution of the protocol the adversary succeeds in the protocol with probability 1/c; the same
holds in a simulated run, since the simulator goes through Cheat in CheatSwitch once and the functionality leaks

302

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Success, which happens with the same probability, and later the simulator will not abort. If the adversary deviates on
more than one branch (considering all stages), both the real protocol and the simulation will abort at step 15.

Finally, if the protocol aborts due to failure at opening commitments, both the functionality and the players output
the numbers of corrupted players who failed to open their commitments. If the protocol aborts at step 15, the output is
the numbers of players who deviated in threads other than chall in both the functionality and the protocol. ut

The procedure CheatSwitch

Pass: Checks passed for all threads or there was a successful cheat in earlier stages and checks now passed for at least all
threads except for the one pointed by chall.

– The simulator continues.
Cheat: There was no cheat in previous stages and all checks now passed except for the ones pointed by a unique thread j.

– The simulator adds (j, Pi) to a list L, for all players Pi making the check not pass.
– The simulator sends Cheat to FKEYGEN, and gets and stores every honest seeds si,chall.
– If the functionality sends NoSuccess:
• If j = chall, it resamples a different chall← {1, . . . , c} \ {chall}.

It continues the simulation according to the protocol.
– If the functionality sends Success: the simulator sets chall = j and continues according to the protocol.

Abort: In more than one thread checks did not pass (counting also checks in previous stages).
– The simulator adds (j, Pi) to a list L, for all branches j and players Pi making the check not pass.
– The simulator sends Abort to FKEYGEN and it continues the rest of the simulation according to the protocol.

Fig. 5. The cheat switch.

303

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The simulator SKEYGEN

Initialize:
– In Step 1 the simulator obtains ei by every corrupt Pi, and broadcasts τei as FCOMMIT would do. It samples chall

uniformly in {1, . . . , c}, and it broadcasts a handle τei for every honest Pi.
– In Step 2 the simulator sees the random values si,j for i ∈ A.

It inputs {si,chall}i∈A to FKEYGEN, therefore obtaining a full transcript of the thread corresponding to chall.
For the threads j 6= chall, for honest Pi, the simulator samples si,j honestly and broadcasts a handle τsi,j for every
honest Pi for every thread.

– In Step 3, the simulator computes ai,j honestly for i /∈ A and j 6= chall, while it defines ai,chall for i /∈ A as the
values ai obtained from the transcript given by FKEYGEN.
It then broadcasts ai,j for honest Pi and waits for broadcasts ai,j by the corrupt players, and it checks ai,j =
Usi,j (q, φ(m)) for all dishonest Pi. For this check the simulator enters CheatSwitch. If there was a successful cheat
on the thread pointed by chall, the simulator inputs ai,chall to FKEYGEN for i ∈ A.

Stage 1:
– In Step 4 the simulator acts as in the protocol.
– In Step 5 for all the honest seeds that are known by the simulator, the simulator computes bi,j honestly for i /∈ A.

If the simulator does not know the seeds si,chall for honest Pi, it defines bi,chall for i /∈ A as the values bi obtained
from the transcript given by FKEYGEN.
It then broadcasts bi,j for honest Pi and waits for broadcasts bi,j by the corrupt players. It then checks bi,j =
[achall · HWT si,chall(h, φ(m)) + p · RCsi,chall(σ

2, φ(m))]q1 for all dishonest Pi. For this check the simulator enters
CheatSwitch. If there was a successful cheat on the thread pointed by chall, the simulator inputs (si,chall, bi,chall to
FKEYGEN for i ∈ A.

Stage 2:
– In Step 6 the simulator acts as in the protocol.
– In Step 7 for all the honest seeds that are known by the simulator, the simulator computes enc′i,j honestly for i /∈ A.

If the simulator does not know the seeds si,chall for honest Pi, it defines enc′i,chall for i /∈ A as the values enc′i obtained
from the transcript given by FKEYGEN.
It then broadcasts enc′i,j for honest Pi and waits for broadcasts enc′i,j by the corrupt players. It then checks enc′i,j =
Encpk(−p1 · si,j ,RCsi,j (0.5, σ

2, φ(m))) for all dishonest Pi. For this check the simulator enters CheatSwitch. If
there was a successful cheat on the thread pointed by chall, the simulator inputs enc′i,chall to FKEYGEN for i ∈ A.

Stage 3:
– In Step 8, 9 the simulator acts as in the protocol.
– In Step 10 for all the honest seeds that are known by the simulator, the simulator computes enci,j honestly for i /∈ A.

If the simulator does not know the seeds si,chall for honest Pi, it defines enci,chall for i /∈ A as the values enci obtained
from the transcript given by FKEYGEN.
It then broadcasts enci,j for honest Pi and waits for broadcasts enci,j by the corrupt players. It then checks enci,j =
(si,j ·enc′i,j)+zeroi,j for all dishonest Pi. For this check the simulator enters CheatSwitch. If there was a successful
cheat on the thread pointed by chall, the simulator inputs enci,chall to FKEYGEN for i ∈ A.

Output:
– Step 11 is performed according to the protocol.
– The simulator samples ei for i /∈ A uniformly such that 1 +

``Pn
i=1 ei

´
mod c

´
= chall.

– Step 12 is performed according to the protocol, but the simulator opens τei revealing the values ei for all honest Pi,
and if the check fails the simulator sends Abort to FKEYGEN and inputs the set of all players failing in opening.

– Step 13 is performed according to the protocol.
– Step 14 is performed according to the protocol, and if the check fails the simulator sends Abort to FKEYGEN and

inputs the set of all players failing in opening.
– Step 15 is performed according to the protocol, and the simulator defines

S = {i ∈ A | (j, Pi) ∈ L; j ∈ {1, . . . , c}; j 6= chall} ,

i.e. the set of corrupt players who cheated at any thread different from chall.
• If S 6= ∅ (i.e. cheats at a thread which is going to be opened), the simulator sends Abort to FKEYGEN and inputs
S.

• If S = ∅ (i.e. successful or no cheats), the simulator sends Proceed to FKEYGEN.
– Step 16 is performed according to the protocol.

Fig. 6. The simulator for the key generation functionality.

304

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

B.4 Semantic security of FKEYGEN

Here we prove the semantic security of the cryptosystem resulting from an execution of FKEYGEN, based on the ring-
LWE problem and a form of KDM security for quadratic functions. The ring-LWE assumption we use takes an extra
parameter h, as our scheme chooses binary, low hamming weight, secret keys for better efficiency and parameter sizes,
but note that the results here also apply to secrets drawn from other distributions.

Definition 1 (Decisional Ring Learning With Errors assumption). The single sample decisional ring-LWE assump-
tion RLWEq,σ2,h states that

(a, a · s+ e)
c
≈ (a, u)

where s← HWT (h, φ(m)), e← DG(σ2, φ(m)) and a, u are uniform over Rq .

The KDM security assumption, below, can be viewed as a distributed extension to the usual key switching assump-
tion for FHE schemes. In this case we need ‘encryptions’ of quadratic functions of additive shares of the secret key to
remain secure. Note that whilst it is easy to show KDM security for linear functions of the secret [7], it is not known
how to extend this to the functions required here without increasing the length of ciphertexts.

Definition 2 (KDM security assumption). If si ← HWT (h), s =
n−1∑
i=0

si and f is any degree 2 polynomial then

(a, a · s + p · e+ f(s0, . . . , sn−1))
c
≈ (a, a · s + p · e)

where a, u← U(q, φ(m)), e← DG(σ2, φ(m)).

The following lemma states that distinguishing any number of ‘amortized’ ring-LWE samples with different, in-
dependent, secret keys but common first component a, from uniform is as hard as distinguishing just one ring-LWE
sample from uniform. It was proven for the (standard) LWE setting with n = 3 in [23]; here we need a version with
ring-LWE for any n.

Lemma 3 (Adapted from [23, Lemma 7.6]). Suppose a, ui ← U(q, φ(m)), si ← HWT (h, φ(m)) and ei ←
DG(σ2, φ(m)) for i = 0, . . . , n− 1, n ∈ N. Then

{(a, a · si + ei)}i
c
≈ {(a, ui)}i

under the single sample ring-LWE assumption RLWEq,σ2,h.

Proof. Suppose an adversary A can distinguish between the above distributions with non-negligible probability. We
construct an adversary B that solves the RLWE problem. Given a challenge (a, b) from the RLWE oracle, B sets b0 = b
and bi = a · si + ei for i = 1, . . . , n− 1, where ei ← DG(σ2, φ(m)), si ← HWT (h, φ(m)). B sends all pairs (a, bi)
to A and returns the output of A in response to the challenge.

Since the values (a, bi) for i = 1, . . . , n−1 are all valid amortized ring-LWE samples, the only difference between
the view of A and that of a real set of inputs is b0, and so the advantage of B in solving RLWEq,σ2,h is exactly that of
A in solving the amortized ring-LWE problem with n samples. ut

Theorem 6 (restatement of Theorem 2). If the functionality FKEYGEN is used to produce a public key epk and se-
cret keys si for i = 0, . . . , n − 1 then the resulting cryptosystem is semantically secure based on the hardness of
RLWEq1,σ2,h and the KDM security assumption.

Proof. Suppose there is an adversary A that can interact with FKEYGEN and distinguish the public key (pk, epk) from
uniform. We construct an algorithm B that distinguishes amortized ring-LWE samples from uniform. By Lemma 3
this is at least as hard as breaking single sample ring-LWE. If the public key is pseudorandom then semantic security
of encryption easily follows, as ciphertexts are just ring-LWE samples. Note that we only consider a non-cheating
adversary – if A cheats then it can trivially break the scheme with non-negligible probability 1/c.

305

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The challenger gives B the values ac, bc,0, . . . , bc,n−1. B must now simulate an execution of FKEYGEN with A to
determine whether the challenge is uniform or of the form (ac, ac · si + ei) for si ← HWT (h, φ(m)) and ei ←
DG(σ2, φ(m)).

To start with we receive the adversary’s seeds si for every corrupt player i ∈ A. We must then simulate the
values ai, bi, enc′i, enci (for all i) that are leaked to the adversary in FKEYGEN. For corrupt players we simply compute
these values according to FKEYGEN using the adversary’s seeds. Next we have to simulate the honest players’ values,
which we do using the challenge ac, bc,0, . . . , bc,n−1. First we scale the challenge by p, so that it takes the form
(ac, ac · si + p · ei) if they are genuine RLWE samples. Since p is coprime to q this still has the same distribution as
the original challenge.

Now B calculates uniform consistent shares ac,i, for every honest player Pi, of ac, and sends A the pairs ac,i, bc,i.
If the challenge values are amortized ring-LWE samples, then these are consistent with the pairs (ai, bi) computed by
FKEYGEN, since ai is uniform and bi = ai · si + ei.

Next,Bmust provideAwith simulations of players’ contributions to the key-switching data enc′i, enci for all honest
players Pi. For both of these sets of values, B simply re-randomizes the pair (ac, bc) and sends this to A. This can be
done by, for example, computing an encryption of zero under the public key (ac, bc) (where bc =

∑
i bc,i). Notice that

enc′i is just an encryption of −p1 · si under the public key (a, b), and so by the KDM security assumption is (perfectly)
indistinguishable from a re-randomized version of (a, b). For enci, recall thatFKEYGEN computes enci = si ·enc′+zeroi.
Now writing zeroi = (a · vi + p · e0,i, b · vi + p · e1,i) and enc′ = (a · v + p · e0, b · v + p · e1 − p1 · s), we see that

enci = (a · v · si + a · vi + p · (e0 · si + e0,i), b · v · si + b · vi + p · (e1 · si + e1,i)− p1 · s · si)

=

(
a · (v · si + vi)︸ ︷︷ ︸

a′i

+p · (e0 · si + e0,i)︸ ︷︷ ︸
e′0,i

, a · (v · si + vi)︸ ︷︷ ︸
a′i

·s + p · (e1 · si + e1,i + e)︸ ︷︷ ︸
e′1,i

−p1 · s · si

)

=
(
a′i + p · e′0,i, a′i · s + p · e′1,i − p1 · s · si

)
.

Notice that the first component of enci corresponds to the second half of a ring-LWE sample (a, a ·(v ·si+vi)+p ·e0,i)
with secret v · si + vi. The second component of enci corresponds to a ring-LWE sample with secret s and first half
a′i, with an added quadratic function of the key −p1 · s · si. By the KDM security assumption, this is indistinguishable
from a genuine ring-LWE sample, so enci can also be perfectly simulated by re-randomizing (ac, bc).

To finish the simulated execution of FKEYGEN, B sends A shares of the secret key for all Pi where i ∈ A (i.e.
all dishonest players), by sampling randomness using the seeds that were provided to B at the beginning. B then
waits for A to give an answer and returns this in response to the challenger. Notice that throughout the simulation, all
values passed to A were ring-LWE samples derived from the challenge (ac, b0,c, . . . , bn−1,c). We showed that if the
challenge is an amortized ring-LWE sample then A’s input is indistinguishable from the output of FKEYGEN, whereas
if the challenge is uniform then so is A’s input. Therefore if A is successful in distinguishing the resulting public key
from uniform then A must have solved the ring-LWE challenge.

ut

306

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

C EncCommit: Protocol, Functionalities and Security Proofs

C.1 Protocol

Protocol ΠENCCOMMIT

Usage: The specific distribution of the message is defined by the input parameter cond. The output is a single message mi

private to each player, and a public ciphertext ci from player i. The protocol runs in two phases; a commitment phase and
an opening phase.

KeyGen: The players execute ΠKEYGEN to obtain si, pk, and epk.
Commitment Phase:

1. Every player Pi samples a uniform ei ← {1, . . . , c}, and queries Commit(ei) toFCOMMIT, which broadcasts a handle
τei .

2. For j = 1, . . . , c
(a) Every player Pi samples a seed si,j and queries Commit(si,j) to FCOMMIT, which broadcasts a handle τsi,j .
(b) Every player Pi generates mi,j according to cond using PRFsi,j .
(c) Every player Pi computes and broadcasts ci,j ← Encpk(mi,j) using PRFsi,j to generate the randomness.

3. Every player Pi calls FCOMMIT with Open(τei). All players get ei. If any opening failed, the players output the
numbers of the respective players, and the protocol aborts.

4. All players compute chall← 1 +
``Pn

i=1 ei
´

mod c
´
.

Opening Phase:
5. Every player Pi callsFCOMMIT with Open(τsi,j) for all j 6= chall so that all players obtain the value si,j for j 6= chall.

If any opening fails, the players output the numbers of the respective players, and the protocol aborts.
6. For all j 6= chall and all i′ ≤ n, the players check whether ci′,j was generated correctly using si′,j . If not, they

output the numbers of the respective players i′, and the protocol aborts.
7. Otherwise, every player Pi stores {ci′,chall}i′≤n and mi,chall.

Fig. 7. Protocol that allows ciphertext to be used as commitments for plaintexts

C.2 Functionalities

C.3 Proof of Theorem 3

Proof. We construct a simulator SSHE (see Figure 9) working on top of FSHE such that the environment can not
distinguish whether it is playing with the real protocolΠENCCOMMIT andFKEYGEN or withFSHE and SSHE. The simulator
is given in Figure 9.

Calls to FKEYGEN are simulated as in SKEYGEN. We now focus on the commitment phase.
Let A be the set of indices of corrupted players. The simulator starts assuming that the adversary will behave

honestly. It samples a uniform j0 ← {1, . . . , c} and seeds {si,j}i/∈A,j 6=j0 . If the adversary does not deviate, then round
j0 will remain unopened, otherwise the simulator will have to adjust this. We can simulate each round j as follows.
First, the simulator gets corrupted seeds si,j for i ∈ A when the adversary commits to them in step 2a. It gives in
return random handles τsi,j on behalf of each honest player Pi.

If j 6= j0, the simulator engages with the adversary in a normal run of steps 2b to 2c using seeds si,j for honest
player Pi. Since the simulator knows the corrupt seeds of the current round j, it can check whether the adversary
behaved honestly. If the adversary did not, then the simulator stores index j in the cheating list.

If j = j0, the simulator checks again whether the adversary computed the right encryptions {ci}i∈A. If it did not,
the simulator stores j0 in the cheating list. Then the simulator calls EncCommit to FSHE on seeds {si,j0}i∈A and
gets back {ci}i/∈A, which are the values computed by the functionality. It then sets ci,j0 ← ci and pass them onto the
adversary in step 2c.

Once the last round is finished, the simulator checks the cheating list. There are three possibilities:

307

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The ideal functionality FSHE

Usage: The functionality is split into a one-run stage which computes the key material and a stage which can be accessed
several times and is targeted to replace the zero-knowledge protocols in [14].

KeyGen: On input KeyGen the functionality acts as a copy of FKEYGEN.
Notice that all the variables used during this call are available for later use.

EncCommit: On input EncCommit the functionality does the following.
Initialize: Denote by A the set of indices of corrupt players. On input Start by all players, sample, at random, seeds
{si}i/∈A and wait for corrupted seeds {si}i∈A from the adversary.

Computation:
1. It sets mi ← PRFsi subject to condition cond.
2. It sets ci = Encpk(mi,RCsi(0.5, σ

2, φ(m))) for each player Pi.
3. It gives {ci}i/∈A to the adversary, and waits for signal Deliver, Cheat or Abort.

Delivery: The functionality sends mi, {cj}j≤n to player Pi.
Cheat: The functionality gives {si}i/∈A to the adversary, then it decides to do either of the following things:

– With probability 1/c it sends Success to the adversary, it waits for {mi, ci}i∈A, and outputs mi, {cj}i≤n to
player Pi.

– Otherwise sends NoSuccess to the adversary, and goes to abort.
Abort: The functionality waits for the adversary to input S ⊆ A, and outputs S to all players.

Fig. 8. The ideal functionality for key generation and ΠENCCOMMIT.

– The list is empty. In other words, the adversary behaved honestly. The simulator sets chall← j0, and sends Deliver
to the functionality if all commitments are successfully opened. The output of FSHE and what the adversary has
already seen seen will be consistent since FSHE was called in round j0 with the right seeds {si,j0}i∈A.

– The list contains only one index j1. In this case the simulator sends Cheat and gets in return seeds {si}i/∈A used
by the functionality. It sets si,j0 ← si for each honest player Pi. It then waits for the answer.
• If the functionality returns Success, the simulator has to make the adversary believe that round j1 will remain

unopened. It sets chall ← j1. If all commitments are successfully opened, it sends {mi,j1 , ci,j1}i∈A to the
functionality in order to make consistent players’ outputs and what the adversary has already seen.
• If it returns NoSuccess, the simulator has to make the adversary believe that round j1 will be opened. Therefore

it samples chall← {1, . . . , c} \ {j1}.
– The list contains at least two indices j1, j2. In this case the real protocol would result in abort, so the simulator

sends Abort to the functionality and sets chall← j0.

Later the simulator generates the value ei for each honest player such that 1 + ((
∑n
i=1 ei) mod c) = chall. This

ensures that once the challenge is computed, it will point to a round in the same fashion as the protocol would do.
Moreover, opening τei to (any) ei is does not give clues to the adversary if it is playing in a real run of the protocol or
in a simulated one.

In the opening phase, the simulator gives {ei}i/∈A and honest share {si,j}i/∈A,j 6=chall to the adversary, and if it there
was a cheating with no success, then it also sends Abort on behalf of each honest player.

It is clear, from the construction of FSHE, that all the messages generated by the simulator are indistinguishable
from a real run of the protocol. The simulator does the same computations, except in round j0 where the computation
is done by the functionality, and the values are then passed onto the simulator, which forwards them to the adversary.

Finally, if the protocol aborts due to failure at opening commitments, both the functionality and the players output
the numbers of corrupted players who failed to open their commitments. If the protocol aborts at step 6, the output is
the numbers of players who deviated in threads other than chall in both the functionality and the protocol. ut

308

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The simulator SSHE

KeyGen: SSHE acts as SKEYGEN, but SSHE calls FSHE on query KeyGen, when SKEYGEN would have called FKEYGEN.
Commitment Phase:

– The simulator chooses random j0 ← {1, . . . , c} and seeds {si,j}i/∈A,j 6=j0 .
– Acting as the FCOMMIT functionality, in response to query in step 1 and 2a, for j = 1, . . . , c the simulator samples
si,j according to the protocol for i /∈ A and returns random handles {τei }i≤n, {τsi,j}i≤n.

– For j = 1, . . . , c, the simulator does the following:
• If j 6= j0, it performs steps 2b and 2c according to protocol using honest seeds si,j for each i /∈ A.
• If j = j0, it calls FSHE on query EncCommit on corrupted seeds {si,j0}i∈A and gets back honest encryptions
{ci}i/∈A. It then sets ci,j0 ← ci for each i /∈ A.

– In step 2c, the simulator receives encryptions c∗i,j for each i ∈ A and j ∈ {1, . . . , c}. It generates mi,j subject to
cond, and ci,j ← Encpk(mi,j), and checks if ci,j = c∗i,j . If the equality does not hold, it stores j in a (cheating) list.

– The simulator reads the cheating list. There are three possibilities:
• The list is empty. The simulator sets chall← j0.
• The list contains only one index j1. The simulator sends Cheat to FSHE and gets {si}i/∈A back. It then sets
si,j0 ← si for each i /∈ A.
∗ If the functionality returns Success, the simulator sets chall← j1.
∗ If the functionality returns NoSuccess, the simulator samples chall← {1, . . . , c} \ {j1}.

• The list contains at least two indices. The simulator sends Abort to FSHE, gets {si}i/∈A and sets si,j0 ← si for
each i /∈ A, and chall← j0.

– For all honest Pi the simulator sets ei uniformly in 1, . . . , c with the constraint 1 +
``Pn

i=1 ei
´

mod c
´

= chall.
– In step 3, the simulator opens the handle τei to the freshly defined value ei, for all honest Pi. If the adversary fails

to open some of the commitments of corrupted players, the simulator sends Abort and the numbers of the respective
players to FSHE, and it stops.

– Step 4 is performed according to the protocol.
Opening Phase:

– In step 5, the simulator opens the handle τsi,j to si,j for all honest players i /∈ A and j 6= chall. If the adversary fails
to open some of the commitments of corrupted players, the simulator sends Abort and the numbers of the respective
players to FSHE, and it stops.

– If the cheating list is empty, the simulator sends Deliver to FSHE.
– If the functionality returned Success earlier, the simulator inputs {mi,chall, c

∗
i,chall}i∈A to the functionality.

– If the functionality returned NoSuccess, or if the cheating list has at least two indices, the simulator inputs to the
functionality the number of players i ∈ A whose c∗i,j were computed incorrectly for some j 6= chall.

Fig. 9. The simulator for FSHE

309

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

D Offline Phase : Protocol, Functionalities and Simulators

D.1 Protocols

Protocol MACCheck

Usage: Each player has input αi and (γ(aj)i) for j = 1, . . . , t. All players have a public set of opened values {a1, . . . , at};
the protocol either succeeds or outputs failure if an inconsistent MAC value is found.

MACCheck({a1, . . . , at}):
1. Every player Pi samples a seed si and asks FCOMMIT to broadcast τsi ← Commit(si).
2. Every player Pi calls FCOMMIT with Open(τsi) and all players obtain sj for all j.
3. Set s← s1 ⊕ · · · ⊕ sn.
4. Players sample a random vector r = Us(p, t); note all players obtain the same vector as they have agreed on the seed
s.

5. Each player computes the public value a←
Pt
j=1 rj · aj .

6. Player i computes γi ←
Pt
j=1 rj · γ(aj)i, and σi ← γi − αi · a.

7. Player i asks FCOMMIT to broadcast τσi ← Commit(σi).
8. Every player calls FCOMMIT with Open(τσi), and all players obtain σj for all j.
9. If σ1 + · · ·+ σn 6= 0, the players output ∅ and abort.

Fig. 10. Method To Check MACs On Partially Opened Values

Protocol Reshare

Usage: Input is cm, where cm = Encpk(m) is a public ciphertext and a parameter enc, where enc = NewCiphertext or
enc = NoNewCiphertext. Output is a share mi of m to each player Pi; and if enc = NewCiphertext, a ciphertext
c′m. The idea is that cm could be a product of two ciphertexts, which Reshare converts to a “fresh” ciphertext c′m. Since
Reshare uses distributed decryption (that may return an incorrect result), it is not guaranteed that cm and c′m contain the
same value, but it is guaranteed that

P
imi is the value contained in c′m.

Reshare(cm, enc) :
1. The players run FSHE on query EncCommit(Rp) so that player i obtains plaintext fi and all players obtain cfi , an

encryption of fi.
2. The players compute cf ← cf1 + · · ·+ cfn , and cm+f ← cm + cf . We define f = f1 + · · ·+ fn, although no party

can compute f .
3. The players invoke Protocol DistDec to decrypt cm+f and thereby obtain m + f .
4. P1 sets m1 ←m + f − f1, and each player Pi (i 6= 1) sets mi ← −fi.
5. If enc = NewCiphertext, all players set c′m ← Encpk(m + f) − cf1 − · · · − cfn , where a default value for the

randomness is used when computing Encpk(m + f).

Fig. 11. The Protocol For Additively Secret Sharing A Plaintext m ∈ Rp On Input A Ciphertext cm = Encpk(m).

310

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Protocol ΠPREP

Usage: Note that DataGeneration can be run in four distinct threads, and DataCheck in two threads with one thread exe-
cuting the Square and Shared bit checking at the same time. Each thread executes its own check for correct broadcasting
using Section 3.1.

Initialize: This produces the keys for encryption and MACs. On input (Start, p) from all the players:
1. The players call FSHE on query KeyGen so player i obtains (si, pk, enc).
2. The players call FSHE on query EncCommit(Fp) so player j obtains a share αj of the MAC key, and all players get

ci, and encryption of αi, for 1 ≤ i ≤ n.
3. All players set cα ← c1 + · · ·+ cn.

Data Generation: On input (DataGen, nI , nm, ns, nb), the players execute the following subprocedures of DataGen from
Figure 13 and Figure 14:

1. InputProduction(nI)
2. Triples(nm)
3. Squares(ns)
4. Bits(nb)

Data Check: On input DataCheck, the players do the following:
1. Generate two random values tm, tsb running the steps below twice:

(a) Every player Pi samples random ti ← Fp and asks FCOMMIT to broadcast τ ti ← Commit(ti).
(b) Every player Pi calls FCOMMIT with Open(τ ti) and all players obtain tj for 1 ≤ j ≤ n.
(c) Every player sets t← t1 + · · ·+ tn. If t = 0, then repeat the previous steps.

2. Execute DataCheck(tm, tsb).
Finalize: For the set of partially opened values run protocol MACCheck from Figure 10.
Abort: If FSHE outputs a set S of corrupted players at any time, all players output S, and the protocol aborts.

Fig. 12. The Preprocessing Phase

311

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Procedure DataGen

Input Production: This produces at least nI · n shared values ri,j for 1 ≤ i ≤ nI and 1 ≤ j ≤ n such that player j holds
the actual value ri,j and all other players hold a sharing of this value only.

1. For j ∈ {1, . . . , n} and k ∈ {1, . . . , d2 · nI/me}.
(a) Player j generates r ∈ Rp.
(b) Player j computes c← Encpk(r) and broadcasts the ciphertext to all players.
(c) The parties execute Reshare(c,NoNewCiphertext) so that player i obtains the share ri of r
(d) All parties compute cγ(r) ← cr · cα.
(e) The parties execute Reshare(cγ(r),NoNewCiphertext). to obtain shares γ(r)i.
(f) Player i decomposes the plaintext elements ri and γ(r)i into their m/2 slot values via the FFT and locally

stores the resulting data.
(g) Player j does the same with r to obtain the values r(k−1)·m/2+i,j for i = 1, . . . ,m/2.

Triples: This produces at least 2 · nm 〈·〉-shared values (aj , bj , cj) such that cj = aj · bj .
1. For k ∈ {1, . . . , d4 · nm/me}.

(a) The players run FSHE on query EncCommit(Rp) so that player i obtains plaintext ai and all players obtain cai

an encryption of ai.
(b) The players compute ca ← ca1 + · · ·+ can We define a = a1 + · · ·+ an, although no party can compute a.
(c) The players run FSHE on query EncCommit(Rp) so that player i obtains plaintext bi and all players obtain cbi

an encryption of bi.
(d) The players compute cb ← cb1 + · · ·+ cbn We define b = b1 + · · ·+ bn, although no party can compute b.
(e) All parties compute ca·b ← ca · cb.
(f) The parties execute Reshare(ca·b,NewCiphertext) so that player i obtains the share ci and all players obtain a

ciphertext cc encrypting the plaintext c = c1 + · · ·+ cn.
(g) All parties compute cγ(a) ← ca · cα, cγ(b) ← cb · cα and cγ(c) ← cc · cα.
(h) The parties execute Reshare(cγ(a),NoNewCiphertext), Reshare(cγ(b),NoNewCiphertext) and

Reshare(cγ(c),NoNewCiphertext) to obtain shares γ(a)i, γ(b)i and γ(c)i.
(i) Player i decomposes the various plaintext elements into their m/2 slot values via the FFT and locally stores the

resulting m/2 multiplication triples.

Fig. 13. Production Of Tuples and Shared Bits

312

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Procedure DataGen

Squares: This produces at least (2 · ns + nb) 〈·〉-shared values (aj , bj) such that bj = aj · aj .
1. For k ∈ {1, . . . , d2 · (2 · ns + nb)/me}.

(a) The players run FSHE on query EncCommit(Rp) so that player i obtains plaintext ai and all players obtain cai

an encryption of ai.
(b) The players compute ca ← ca1 + · · ·+ can We define a = a1 + · · ·+ an, although no party can compute a.
(c) All parties compute ca2 ← ca · ca.
(d) The parties execute Reshare(ca2 ,NewCiphertext) so that player i obtains the share bi and all players obtain a

ciphertext cb encrypting the plaintext b = b1 + · · ·+ bn.
(e) All parties compute cγ(a) ← ca · cα and cγ(b) ← cb · cα.
(f) The parties execute Reshare(cγ(a),NoNewCiphertext) and Reshare(cγ(b),NoNewCiphertext) to obtain shares

γ(a)i and γ(b)i.
(g) Player i decomposes the various plaintext elements into their m/2 slot values via the FFT and locally stores the

resulting m/2 squaring tuples.
Bits: This produces at least nb 〈·〉-shared values bj such that bj ∈ {0, 1}.

1. For k ∈ {1, . . . , d2 · nb/me+ 1}.a
(a) The players run FSHE on query EncCommit(Rp) so that player i obtains plaintext ai and all players obtain cai

an encryption of ai.
(b) The players compute ca ← ca1 + · · ·+ can We define a = a1 + · · ·+ an, although no party can compute a.
(c) All parties compute ca2 ← ca · ca.
(d) The players invoke protocol DistDec to decrypt ca2 and thereby obtain s = a2.
(e) If any slot position in s is equal to zero then set it to one. .
(f) A fixed square root t of s is taken, say the one for which each slot position is odd when represented in [1, . . . , p).
(g) Compute cv ← t−1 · ca, this is an encryption of v = t−1 · a, which is a message for which each slot position

contains {−1, 1}, bar the one which we replaced in step (1e).
(h) All parties compute cγ(v) ← cv · cα.
(i) The parties execute Reshare(cv,NoNewCiphertext) and Reshare(cγ(v),NoNewCiphertext) to obtain shares

vi and γ(v)i.
(j) Player i decomposes the various plaintext elements into their slot values via the FFT, bar the ones replaced in

step (1e) to obtain 〈vj〉 for j = 1, . . . , B where B ≈ m · (p− 1)/(2 · p).
(k) Set 〈bj〉 ← (1/2) · (〈vj〉+ 1) and output 〈bj〉.

a Notice that in the production of shared bits the number of rounds is one more than one would expect at first glance: this
is because some entry of the input vector may be equal to zero, making such entry unusable for the procedure. This event
happens with probability 1/p, so the expected number of bits produced per iteration is m · (p− 1)/(2 · p), rather than m/2
(if no entry were zero). Therefore, in order to produce at least nb elements, we add an extra round to the procedure.

Fig. 14. Production Of Tuples and Shared Bits (continued)

313

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Procedure DataCheck

Usage: Note that all players have previously agreed on two common random values tm, tsb.
Checking Multiplication Triples: This produces at least nm checked 〈·〉-shared values (aj , bj , cj) such that cj = aj · bj .

1. For k ∈ {1, . . . , nm}.
(a) Take two unused multiplication tuples (〈a〉 , 〈b〉 , 〈c〉), (〈f〉 , 〈g〉 , 〈h〉) from the list determined earlier.
(b) Partially open tm · 〈a〉 − 〈f〉 to obtain ρ and 〈b〉 − 〈g〉 to obtain σ.
(c) Evaluate tm · 〈c〉 − 〈h〉 − σ · 〈f〉 − ρ · 〈g〉 − σ · ρ and partially open the result to obtain τ .
(d) If τ 6= 0 then output ∅ and abort.
(e) Output (〈a〉 , 〈b〉 , 〈c〉) as a valid multiplication triple.

Checking Squaring Tuples: This produces at least ns checked 〈·〉-shared values (aj , bj) such that bj = a2
j .

1. For k ∈ {1, . . . , ns}.
(a) Take two unused squaring tuples (〈a〉 , 〈b〉), (〈f〉 , 〈h〉) from the list determined earlier.
(b) Partially open tsb · 〈a〉 − 〈f〉 to obtain ρ.
(c) Evaluate t2sb · 〈b〉 − 〈h〉 − ρ · (tsb · 〈a〉+ 〈f〉) and partially open the result to obtain τ .
(d) If τ 6= 0 then output ∅ and abort.
(e) Output (〈a〉 , 〈b〉) as a valid squaring tuple.

Checking Shared Bits: This produces at least nb checked 〈·〉-shared values bj such that bj ∈ {0, 1}.
1. For k ∈ {1, . . . , nb}.

(a) Take an unused squaring tuples (〈f〉 , 〈h〉) and an unused bit sharing 〈a〉 from the lists determined earlier.
(b) Partially open tsb · 〈a〉 − 〈f〉 to obtain ρ.
(c) Evaluate t2sb · 〈a〉 − 〈h〉 − ρ · (tsb · 〈a〉+ 〈f〉) and partially open the result to obtain τ .
(d) If τ 6= 0 then output ∅ and abort.
(e) Output 〈a〉 as a valid bit sharing.

Fig. 15. Check The Output Of The Data Production Procedure

314

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

D.2 Functionalities

The functionality FPREP

Let A be the set of indices of corrupted players. Symbols in bold denote vectors in (Fp)k. Arithmetic is componentwise.

Initialize: On input (Start, p) from honest players and adversary, the functionality sets the internal flag BreakDown to false
and then it does the following:

1. For each corrupted player i ∈ A, the functionality accepts shares αi from the adversary, and it samples at random
αi for each i /∈ A. Then the functionality sets α← α1 + · · ·+ αn.

2. The functionality waits for signal Abort, Proceed or Cheat from the adversary.
3. If received Proceed, the functionality outputs αi to player i.
4. Otherwise, and if the functionality did not abort in Cheat, it outputs adversary’s contribution ∆i to player i.

Computation: On input DataGen from all honest players and adversary, and only if the functionality received Proceed (or
BreakDown is true) it executes the data generation procedures specified in Figure 17.

Macro Angle(v1, . . . ,vn,∆γ , k) The above will be run by the functionality at several points to create representations 〈·〉.
1. It gets {γi}i∈A from the adversary.
2. Let v = v1 + · · ·+ vn, set γ(v)← α · v +∆γ .
3. Sample at random γi(v)← (Fp)k for i /∈ A, subject to γ(v) =

Pn
i γ(v)i.

4. Return (γ(v)1, . . . , γ(v)n).
Cheat: The functionality chooses to do either one of the following:

– It sends, with probability 1/c, Success to the adversary and sets the internal flag BreakDown to true.
– Otherwise it sends NoSuccess to the adversary and players, and goes to “Abort”.

Abort: The functionality waits for S ⊆ A from the adversary and then outputs S to all players.

Fig. 16. MAC Generation and Covert Procedures to Generate Auxiliar Data

315

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The functionality FPREP (continued)

Let A be the set of indices of corrupted players. Symbols in bold denote vectors in (Fp)k. Arithmetic is componentwise.

Input Production: On input DataType = (InputPrep, nI),
1. The functionality choose random values I = {r(i) ∈ (Fp)nI | i /∈ A}.
2. It accepts from the adversary corrupted values {r(i) ∈ (Fp)nI | i ∈ A}, corrupted shares {r(i)

k ∈ (Fp)nI | k ∈
A, i ≤ n}, and offset for data and MACs {∆(i)

r ,∆
(i)
γ ∈ (Fp)nI | i ≤ n}. Then it does the following:

(a) Sample honest shares {r(i)
k | k /∈ A, i ≤ n} subject to r(i) +∆

(i)
r =

Pn
k=1 r

(i)
k .

(b) Run macro Angle(r
(i)
1 , . . . , r

(i)
n ,∆

(i)
γ , nI), for i ≤ n.

(c) Output {r(i), (r
(j)
i , γi(r

(j)))j≤n} to player i, or if BreakDown is true, output adversary’s contribution ∆i to
player i.

Multiplication Triples: On input DataType = (Triples, nm),
1. Choose 2 · nm honest shares I = {(ai,bi) ∈ (Fp)2·nm | i /∈ A}.
2. It accepts corrupted shares {(ai,bi, ci) ∈ (Fp)3·nm | i ∈ A} and MAC offsets {(∆(a)

γ ,∆
(b)
γ ,∆

(c)
γ) ∈ (Fp)3·nm}

from the adversary. It performs the following:
(a) Set c← (a1 + · · ·+ an) · (b1 + · · ·+ bn).
(b) Compute a set of honest shares {ci | i /∈ A} subject to c =

Pn
i=1 ci.

(c) Run the macros Angle(a1, . . . ,an,∆
(a)
γ , nm), Angle(b1, . . . ,bn,∆

(b)
γ , nm), Angle(c1, . . . , cn,∆

(c)
γ , nm).

(d) Output {(ai, γi(a)), (bi, γi(b)), (ci, γi(c))} to player i, or if BreakDown is true, output adversary’s contribu-
tion ∆i to player i.

Squaring Tuples: On input DataType = (Squares, ns),
1. Choose N = ns honest shares I = {ai ∈ (Fp)ns | i /∈ A}.
2. It accepts corrupted shares {(ai, si) ∈ (Fp)2·ns | i ∈ A} and MAC offsets {(∆(a)

γ ,∆
(s)
γ) ∈ (Fp)2·ns} from the

adversary. It does the following:
(a) Set s← (a1 + · · ·+ an) · (a1 + · · ·+ an).
(b) Compute a a set of honest shares {si | i /∈ A} subject to s =

Pn
i=1 si.

(c) Run the macro Angle(a1, . . . ,an,∆
(a)
γ , ns) and Angle(s1, . . . , sn,∆

(s)
γ , ns).

(d) Output {(ai, γi(a)), (si, γi(s))} to player i, or if BreakDown is true, output adversary’s contribution ∆i to
player i.

Shared Bits: On input DataType = (Bits, nb),
1. It gets shares {bi ∈ (Fp)nb | i ∈ A} and MAC offsets {∆(b)

γ ∈ (Fp)nb} from the adversary.
(a) Uniformly sample nb honest shares I = {bi ∈ (Fp)nb | i /∈ A} subject to the condition

P
i bi ∈ {0, 1}

nb .
(b) Run the macro Angle(b1, . . . ,bn,∆

(b)
γ , nb).

(c) Output (bi, γi(b)) to player i, or if BreakDown is true, output adversary’s contribution ∆i to player i.

Fig. 17. Operations to Generate Auxiliar Data for the Online Phase

316

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

D.3 Proof of Lemma 1
Proof.

We here inspect the correctness and the soundness error of the MACCheck protocol. In order to understand the
probability of an adversary being able to cheat, we design the following security game.

1. The challenger generates the secret key α ← α1 + · · · + αn and MACs γ(aj)i ← α · aj and sends messages
a1, . . . , at to the adversary.

2. The adversary sends back messages a′1, . . . , a
′
t.

3. The challenger generates random values r1, . . . , rt ← Fp and sends them to the adversary.
4. The adversary provides an error ∆.
5. Set a←

∑t
j=0 rja

′
j , γi ←

∑t
j=0 rjγ(aj)i, and σi ← γi−αi·a. Now, the challenger checks that σ1+· · ·+σn = ∆

The adversary wins the game if there is an i for which a′i 6= ai and the final check goes through.
The second step in the game where the adversary sends the a′i’s models the fact that corrupted players can choose

to lie about their shares of values opened during the protocol execution.∆models the fact that the adversary is allowed
to introduce errors on the macs.

Now, let us look at the probability of winning the game if the ri’s are randomly chosen. If the check goes through,
we have that the following equalities hold:

∆ =
n∑
i=1

σi =
n∑
i=1

(γi − αi · a)

=
n∑
i=1

 t∑
j=1

rj · γ(aj)i − αi ·
t∑

j=1

rj · a′j

=

n∑
i=1

 t∑
j=1

(
rj · γ(aj)i − αi · rj · a′j

)
=

t∑
j=1

(
rj ·

n∑
i=1

(
γ(aj)i − αi · a′j

))

=
t∑

j=1

rj ·
(
α · aj − α · a′j

)
= α ·

t∑
j=1

rj ·
(
aj − a′j

)

So, the following equality holds:

α ·
t∑

j=0

rj(a′j − aj) = ∆. (1)

First we consider the case where
∑t
j=0 rj(a

′
j − aj) 6= 0, so α = ∆/

∑t
j=0 rj(a

′
j − aj). This implies that being able

to pass the check is equivalent to guessing α. However, since the adversary has no information about α, this happens
with probability only 1/|Fp|. So what is left is to argue that

∑t
j=0 rj(a

′
j − aj) = 0 also happens with very low

probability. This can be seen as follows. We define µj := (a′j − aj) and µ := (µ1, . . . , µt), r := (r1, . . . , rt). Now
fµ(r) := r · µ =

∑t
j=0 rjµj defines a linear mapping, which is not the 0-mapping since at least one µj 6= 0. From

linear algebra we then have the rank-nullity theorem telling us that dim(ker(fµ)) = t − 1. Also since r is random
and the adversary does not know r when choosing the a′i’s, the probability of r ∈ ker(fµ) is |Ft−1

p |/|Ftp| = 1/|Fp|.
Summing up, the total probability of winning the game is at most 2/|Fp|.

For correctness we use the fact that Equation 1 holds with probability one if a′j = aj and ∆ = 0 (honest prover).
ut

317

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

D.4 Proof of Theorem 4

Proof. We construct a simulator SPREP (given in Figure 18 and Figure 19) such that no polynomial-time environment
can distinguish, with significant probability, a view obtained runningΠPREP from a view obtained running SPREP�FPREP.
The environment’s view is the collection of all intermediate messages that corrupted players send and receive, plus the
inputs and outputs of all players.

In a nutshell, the simulator will run a copy of ΠPREP with the adversary, acting on behalf of honest players. Keys
for the underlying cryptosystem and MACs are generated by simulating queries KeyGen and EncCommit to FSHE re-
spectively. Note that due to the distributed decryption, data for the (online) input preparation stage might be incorrectly
secret shared, and all type of data might be incorrectly MAC’d. Since the simulator knows α and s, it can compute
offsets on the secret sharing and MACs and pass them to FPREP.

Before we discuss indistinguishability we explain how the cheat mechanism is handled in the simulation. In the ex-
ecution ofΠPREP, the environment may send Cheat either in the initial query KeyGen or in any later query EncCommit
to FSHE. Thus, the success probability depends on the number of cheat attempts. The simulator ensures two things:
1) Whenever the environment sends the first Cheat to what it thinks is FSHE, the call is forwarded to FPREP, which
decides whether or not it is successful. 2) Assuming this cheat was successful, the simulator recreates the success
probability that a real interaction would have. This is needed as otherwise the environment would distinguish. The
inner procedure SEncCommit is designed for this purpose.

We now turn to show indistinguishability. We point out that there is mainly one difference between a simulated
run and a real execution of ΠPREP: In a simulated run, honest shares used in the interaction are randomly sampled by
the simulator. These shares correspond to the MAC key, and shares of generated data together with the shares of their
MACs. At the end of the day, FPREP will output data using its own honest shares of α, and its own honest shares of
data and MACs.

We can split the view of the environment in four chunks. Namely, messages interchanged either in DataGen, in
DataCheck, or in MACCheck, and players’ output of FPREP. Clearly, indistinguishability of simulated and real views
of DataGen chunk comes from the semantic property of the underlying cryptosystem. For the DataCheck chunk,
note that all opened values are a combination of output data and sacrificed data. The latter does not form part of the
final output, and therefore by no means the environment can reconstruct the set of opened values using its view, as it
does not know honest shares of the sacrificed data. In other words, openings are randomized via sacrificings from the
environment’s point of view, so the best it can do is to guess sacrificed honest shares, which happens with probability
1/|Fp| for each share’s guessing. For the MACCheck chunk, we refer to the fact that the soundness error of MACCheck
is 2/p, as shown in Lemma 1. Both probabilities are negligible if p is exponential in the security parameter. Lastly, we
also have consistency between the output of FPREP and what the environment sees in corrupted transcripts. This is due
to the fact that the offsets (those quantities denoted by ∆) are simply the difference between deviated and correctly
computed data, and therefore independent of what data refers to.

If the protocol aborts in DataCheck or MACCheck, the players output ∅, and so does FPREP on instruction of the
simulator. This corresponds to the fact that those protocols do not reveal the identity of any corrupted party.

It remains to show what happens in case Cheat or Abort is sent by the environment. If the cheat did not go through,
players’ output is a single message S for a set S of corrupted players in both real and simulated interaction. On the
other hand, if the cheat did go through, the functionality FPREP breaks down, and the simulator can decide what MAC
key is used and what data is outputted to every player, so it just gives to FPREP what it has been generated during the
interaction. If the environment sends Abort and a set S of corrupted players, this is simply passed to FPREP, which
forwards it to the players.

ut

318

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The simulator SPREP

Initialize:
– The simulator first sends (Start, p) to FPREP and then interacts with the adversary acting as FSHE on query KeyGen

to generate the encryption public key (pk, enc) and a complete set of shares {s1, . . . , sn} of the secret key. If the
adversary sends Cheat to FSHE, the simulator forwards it to FPREP. If the cheat passed through, the simulator sets the
flag BreakDown to true, otherwise it is set to false.

– The generation of the MAC key α is done as in the protocol, but calling to SEncCommit(Fp) instead to FSHE on
query EncCommit. The simulator stores α← α1 + · · ·+ αn for later use.

– Lastly, it gives αi to FPREP for i ∈ A if BreakDown is false, and i ≤ n otherwise.
– If the simulation FSHE aborts on KeyGen or and EncCommit, go to “Abort”.

Command = DataGen: On input (nI , nm, ns, nb) from honest players and adversary, the simulator sets
TInput ← SimDataGen(InputPrep, nI)
TTriples ← SimDataGen(Triples, nm)
TSquares ← SimDataGen(Squares, ns)
TBits ← SimDataGen(Bits, nb),

where SimDataGen is specified in Figure 19. These calls also return a decision bit. If it is set to Abort, the simulator goes
to “Abort”.

Command = DataCheck:
– Step 1 is executed as in the protocol but calling to SEncCommit(Rp). The simulator goes to “Abort” if SEncCommit

says so.
– The simulator performs steps (a)-(d) of subprocedures Triples, Squares, Bits of DataCheck. In each iteration k, it

gets to know the value σk. If any of these values are non-zero, the simulator sends Abort and ∅ to FPREP. Otherwise,
the algebraic relation among generated data is correct with probability 1− 1/p.

Finalize: At this point, the functionality is waiting for instruction Proceed or Abort, or otherwise, a complete break down
occurred, and the functionality is waiting for command DataGen and output values from the adversary.

1. The simulator engages with the adversary in a normal run of MACCheck on behalf of each honest player i. Note that
to generate honest σi the simulator uses shares αi. If σ1 + · · ·+ σn 6= 0, send Abort and ∅ to FPREP.

2. Otherwise send Success to the adversary, and send to FPREP the following:
– If BreakDown is false, send TInput, TTriples, TSquares, TBits.
– If BreakDown is true, send all the data (corresponding to honest and corrupted players) generated in the execu-

tion of SimDataGen.
Abort: If the simulated FSHE aborts outputting a set S of corrupted players, input Abort and S to FPREP.

Fig. 18. The Simulator SPREP For The Preprocessing Phase

319

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The simulator SPREP

SimDataGen(DataType): This procedure gets ready the data to be inputted to FPREP.
DataType = InputPrep :

– The simulator engages in a normal run of steps (a)-(g) calling to SReshare instead of Reshare. If, at any point,
some of the calls returned Abort, the simulator sets Decision← Abort and TInput ← ∅.

– Otherwise all the rounds were successful. The simulator sets Decision← Continue. Note that in step (c) (after
unpacking all the rounds), the simulator gets players’ shares and MAC shares {r̂k(i), γ

(i)
k ∈ (Fp)2·nI | i, k ≤

n}. Then r̂(i) =
Pn
k r̂

(i)
k is the (presumably) input of player i. The simulator has the secret key, so it can get

the real input r(i) from the broadcast ciphertexts (if Pi is corrupted) or from what he generated (if Pi is honest).
It computes offsets ∆(i)

r ← r̂(i) − r(i) and ∆(i)
γ ←

Pn
k γ

(i)
k − α · r

(i)

There are two possibilities:
• Flag BreakDown is set to false. This means no cheat has occurred, so the simulator prepares corrupt inputs,

corrupt shares and MAC shares, and offsets. That is, it sets TInput ← {r(k), r̂
(i)
k ,∆

(i)
r ,∆

(i)
γ , γ

(i)
k | k ∈

A, i ≤ n}
• Flag BreakDown is set to true. Then there was at least one successful cheat, and the functionality is waiting

for adversary’s contributions. The simulator sets TInput to be the output of each player.
DataType = Triples, Squares,Bits: The simulator engages in a normal run of the subprocedure specified by DataType,

but calling to SEncCommit(Rp) and SReshare(cm) instead of FENCCOMMIT and Reshare(cm). If any of the above
macros returned Abort the simulator sets Decision ← Abort and TDataType ← ∅. In any other case the simulator
sets Decision← Continue, handles the BreakDown flag as above, and does:
Triples: Set TTriples ← {(ai,bi, ci, γ(a)i, γ(b)i, γ(c)i,∆

(a)
γ ,∆

(b)
γ ,∆

(c)
γ) ∈ (Fp)9·(2·nm) | i ≤ n}. The shares

are unpacked in step (i): corrupt shares are given by the adversary, and honest shares are sampled uniformly.
MAC shares are produced after executing SReshare to simulate step (h), and the offsets are computed as ex-
plained earlier.

Squares: Set TSquares ← {(ai,bi, γ(a)i, γ(b)i,∆
(a)
γ ,∆

(b)
γ) ∈ (Fp)6·(2·ns+nb) | i ≤ n} Shares, MAC shares

and offsets are obtained as explained above.
Bits: Set TBits ← {(bi, γi,∆(b)

γ) ∈ (Fp)3·(2·n
′
b) |i ≤ n}. A number n′b ≥ nb of binary shares and MACs has

been computed, The exact amount n′b is round-dependent and it is expected to be approximately (nb +m/2) ·
(p− 1)/p.

Return (Decision, TDataType).
Macro SEncCommit(cond) This macro is intended to simulate a call to FSHE on query EncCommit.

– The simulator receives corrupted seeds si from the adversary, when it thinks is interacting with FSHE, and computes
mi and cmi for i ∈ A which are given to the adversary. Then the simulator generates uniformly mi and ci =
Encpk(mi) for i /∈ A, and gives ci to the adversary. It waits for response Proceed, Cheat or Abort.

– If the adversary gives Proceed, the simulator sets Decision ← Continue, and if the adversary gives Abort, set
Decision← Abort and also send Abort to FPREP.

– If the adversary gives (Cheat, {m∗i , c∗i }i∈A), set mi ←m∗i , ci ← c∗i for i ∈ A, and do the following:
1. Check if flag BreakDown is false, if so, send Cheat to FPREP. Then set BreakDown to true. There are two

possibilities:
(a) The functionality returns Success: set Decision← Continue.
(b) The functionality returns NoSuccess: set Decision← Abort.

2. If BreakDown is set to true, with probability 1/c set Decision← Continue, or otherwise Decision← Abort.
– Return (Decision,m1, . . . ,mn, c1, . . . , cn).

Macro SReshare(cm)
– Set (f1, . . . , fn, c1, . . . , cn)← SEncCommit(Rp) and f ←

P
i fi. Set Decision← Abort if SEncCommit says so.

– Otherwise, set Decision ← Continue and run steps 2-5 of Reshare. Note that in step 3 the simulator might get an
invalid value (m + f)∗. Set m1 ← (m + f)∗ − f1 and mi ← −fi.

– Return shares (Decision,m1, . . . ,mn).

Fig. 19. Internal Procedures Of The Simulator SPREP

320

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

E Online Phase : Protocol, Functionalities and Simulators

E.1 Protocols

Protocol ΠONLINE

Initialize: The parties call FPREP to get the shares αi of the MAC key, a number of multiplication triples (〈a〉 , 〈b〉 , 〈c〉),
squares (〈a〉 , 〈b〉), bits 〈b〉, and mask values (ri, 〈ri〉) as needed for the circuit being evaluated. IfFPREP aborts outputting
a set S of corrupted players, the players output S and abort. Then the operations specified below are performed according
to the circuit.

Input: To share his input xi, Player i takes an available mask value (ri, 〈ri〉) and does the following:
1. Broadcast ε← xi − ri.
2. The players compute 〈xi〉 ← 〈ri〉+ ε.

Add: On input (〈x〉 , 〈y〉), the players locally compute 〈x+ y〉 ← 〈x〉+ 〈y〉.
Multiply: On input (〈x〉 , 〈y〉), the players do the following:

1. Take one multiplication triple (〈a〉 , 〈b〉 , 〈c〉) and open 〈x〉 − 〈a〉 , 〈y〉 − 〈b〉 to get ε, ρ respectively.
2. Locally each player sets 〈z〉 ← 〈c〉+ ε · 〈b〉+ ρ · 〈a〉+ ε · ρ

Square: On input 〈x〉 the players do the following:
1. Take a square pair (〈a〉 , 〈b〉) and partially open 〈x〉 − 〈a〉 so all players get ε.
2. All players locally compute 〈z〉 ← 〈b〉+ 2 · ε · 〈x〉 − ε2.

Output: This procedure is entered once the players have finished the circuit evaluation, but still the final output 〈y〉 has not
been opened.

1. The players call the MACCheck protocol on input all opened values so far. If it fails, they output ∅ and abort.
∅ represents the fact to the corrupted players remain undetected in this case.

2. The players open 〈y〉 and call MACCheck on input y to verify its MAC. If the check fails, they output ∅ and abort,
otherwise they accept y as a valid output.

Fig. 20. Operations for Secure Function Evaluation

321

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

E.2 Functionalities

Functionality FONLINE

Initialize: On input (init , p, k) from all parties, the functionality stores (domain, p, k) and waits for an input from the
environment. Depending on this, the functionality does the following:
Proceed It sets BreakDown to false and continues.
Cheat With probability 1/c, it sets BreakDown to true, outputs Success to the environment and continues. Otherwise it

outputs NoSuccess and proceeds as in Abort.
Abort It waits for the environment to input a set S of corrupted players, outputs it to the players, and aborts.

Input: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?) from all other parties, with varid a fresh identifier,
the functionality stores (varid , x). If BreakDown is true, it also outputs x to the environment.

Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory and varid3 is
not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y).

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory and varid3

is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y).
Square: On input (square, varid1, varid2) from all parties (if varid1 is present in memory and varid2 is not), the function-

ality retrieves (varid1, x), and stores (varid2, x
2).

Output: On input (output , varid) from all honest parties (if varid is present in memory), the functionality retrieves
(varid , y) and outputs it to the environment.

– If BreakDown is false, the functionality waits for an input from the environment. If this input is Deliver then y is
output to all players. Otherwise ∅ is output to all players.

– If BreakDown is true, the functionality waits for y∗ from the environment and outputs it to all players.

Fig. 21. The ideal functionality for MPC

322

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

E.3 Proof of Theorem 5

Proof.
We construct a simulator SONLINE to work on top of the ideal functionality FONLINE, such that the adversary cannot

distinguish whether it is playing with the protocol ΠONLINE and FPREP, or the simulator and FONLINE. See Appendix E
for the complete description of the simulator.

We now proceed with the analysis of the simulation, by first arguing that all the steps before the output are perfectly
simulated and finally we show that the simulated output is statistically close to the one in the protocol.

During initialization, the simulator merely acts as FPREP with the difference that the decision about the success of
a cheating attempt is made by FONLINE. If the cheating was successful, FONLINE will output all honest inputs, and the
simulator can determine all outputs. Therefore, the simulation will precisely agree with the protocol. For the rest of
the proof, we will assume that there was no cheating attempt.

In the input stage the values broadcast by the honest players are uniform in the protocol as well as in the simulation.
Addition does not involve communication, while multiplication and squaring involve partial openings: in the protocol
a partial opening reveals uniform values, and the same happens also in a simulated run. Moreover, MACs carry the
same distribution in both the protocol and the simulation.

In the output stage of both the real and simulated run if the output y is delivered, the environment sees y and the
honest players’ shares, which are uniform and compatible with y and its MAC. Moreover, in a simulated run the output
y is a correct evaluation of the function on the inputs provided by the players in the input phase. In order to conclude,
we need to make sure that the same applies to the real protocol with overwhelming probability. As shown in Lemma
1, the adversary was able to cheat in one MACCheck call with probability 2/p. Thus, the overall cheating probability
is negligible since p is assumed to be exponential in the security parameter. This concludes the proof.

ut

Simulator SONLINE

Initialize: The simulation of the initialization procedure is performed running a local copy of FPREP. Notice that all the data
given to the adversary is know by the simulator.
If the environment inputs Proceed, Cheat, or Abort to the copy of FPREP, the simulator does so to FONLINE and forwards
the output of FONLINE to the environment. If the output is Success, the simulator sets BreakDown to true and uses the
environment’s inputs as preprocessed data. If FONLINE outputs NoSuccess of the input was Abort, the simulator waits for
input S from the environment, forwards it to FONLINE, and aborts.

Input:
– If BreakDown is false, honest input is performed according to the protocol, with a dummy input, for example zero.
– If BreakDown is true, FONLINE outputs the inputs of honest players, which then can be used in the simulation.

For inputs given by a corrupt player Pi, the simulator waits for Pi to broadcast the (possibly incorrect) value ε′, computes
x′i ← ri + ε′ and uses x′i as input to FONLINE.

Add/Multiply/Square: These procedures are performed according to the protocol. The simulator also calls the respective
procedure to FONLINE.

Output: FONLINE outputs y to the simulator.
– If BreakDown is false, the simulator now has to provide the honest players’ shares of such a value; it already

computed an output value y′, using the dummy inputs for the honest players, so it can select a random honest player
and modify its share adding y− y′ and modify the MAC adding α(y− y′), which is possible for the simulator, since
it knows α. After that, the simulator is ready to open y according to the protocol. If y passes the check, the simulator
sends Deliver to FONLINE.

– If BreakDown is true, the simulator inputs the result of the simulation to FONLINE.

Fig. 22. Simulator for the Online phase

323

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

F Active Security

The following is a sketch of a method for an actively secure version of ΠENCCOMMIT. More specifically, we assume
players have access to an ideal functionalityFAKEYGEN which generates the key material asFKEYGEN, but it models active
security rather than covert security. More concretely, this just means that there is no “cheat option” that the adversary
can choose. The purpose of this section is therefore to describe a protocol ΠA

ENCCOMMIT which securely implements
an ideal functionality FASHE in the FAKEYGEN-hybrid model, where FASHE behaves as FSHE, but, again, models active
security.

The protocol is inspired by the protocol from [22] where a particularly efficient variant of the cut-and-choose
approach was developed.

Let Pi be the player who is to produce ciphertexts to be verified by the other players. The protocol is parametrized
by two natural numbers T, b where b divides T . We will set t = T/b. The protocol will produce as output t ciphertexts
c0, . . . , ct−1.

Each such ciphertext is generated according to the algorithm described earlier, and is therefore created from the
public key and four polynomials m, v, e0 and e1. To make the notation easier to deal with below, we rename these as
f1, f2, f3, f4. We can then observe that there exist ρl, for l = 1, . . . , 4 such that ‖fl‖∞ ≤ ρl except with negligible
probability. Concretely, we can use ρ1 = p/2, ρ2 = 1 and ρ3 = ρ4 = ρ where ρ can be determined by a tail-bound on
the gaussian distribution used for generating f3, f4.

The player Pi will also create a set of random reference ciphertexts d0, . . . , d2T−1 that are used to verify that
c0, . . . , ct−1 are well-formed and that Pi knows what they contain. Each dj is created from 4 polynomials g1, . . . , g4
in the same way as above, but the polynomials are created with a different distribution. Namely, they are random
subject to ‖gi‖∞ ≤ 4 · δ · ρi · T · φ(m), where δ > 1 is some constant.

The protocol now proceeds as follows:

1. Below Pi is given some number of attempts to prove that his ciphertexts are correctly formed. The protocol is
parametrized by a number M which is the maximal number of allowed attempts. We start by setting a counter
v = 1.

2. Pi broadcasts the ciphertexts c0, . . . , ct−1 and the reference ciphertexts d0, . . . , d2T−1 containing plaintexts. These
ciphertexts should be generated from seeds s0, . . . , s2T−1 that are first sent through the random oracle and the
output is used to generate the plaintext and randomness for the encryptions.

3. A random index subset of size T is chosen, and Pi must broadcast si for i ∈ T . Players check that each opened si
indeed induces the ciphertext di, and abort if this is not the case.

4. A random permutation π on T items is generated and the unopened ciphertexts are permuted according to π. We
renumber the permuted ciphertexts and call them d0, . . . , dT−1.

5. Now, for each ci, the subset of ciphertexts {dbi+j | j = 0, . . . , b − 1} is used to demonstrate that ci is correctly
formed. This is called the block of ciphertexts assigned to ci. We do as follows:
(a) For each i, j do the following: let f1, . . . , f4 and g1, . . . , g4 be the polynomials used to form ci, respectively

dbi+j . Define zl = fl + gl, for l = 1, . . . , 4.
(b) Player Pi checks that ‖zl‖∞ ≤ 4 · δ · ρl · T · φ(m)− ρl. If this is the case, he broadcasts zl, for l = 1, . . . , 4.

Otherwise he broadcasts ⊥.
(c) In the former case players check that ‖zl‖∞ is in range for l = 1, . . . , 4 and that the zl’s induce the ciphertext

ci + dbi+j .
(d) At the end, players verify that for each ci, Pi has correctly opened ci + dbi+j for all ciphertexts in the block

assigned to ci.
(e) If all checks go through, output c0, . . . , ct−1 and exit. Else, if v < M , increment v and go to step 2. Finally, if

v = M , the prover has failed to convince us M times, so abort the protocol.

It is possible to adapt the protocol for proving that the plaintexts in ci satisfy certain special properties. For instance,
assume we want to ensure that the plaintext polynomial f1 is a constant polynomial, i.e., only the degree-0 coefficient
is non-zero. We do this by generating the reference ciphertexts such that for each di, the polynomial g1 is also a
constant polynomial. When opening we check that the plaintext polynomial is always constant. The proof of security
is trivially adapted to this case.

324

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Some intuition for why this works: after half the reference ciphertexts are opened, we know that except with
exponentially small probability almost all the unopened ciphertexts are well formed. A simulator will be able to
extract randomness and plaintext for all the well formed ones. When we split the unopened dj’s randomly in blocks
of b ciphertexts, it is therefore very unlikely that some block contains only bad ciphertexts. It can be shown that the
probability that this happens is at most t1−b · (e · ln(2))−b [22].

Assume Pi is corrupt: Now, if he survives one iteration of the test, and no block was completely bad, it follows
that for every ci, he has opened opened at least one ci + dbi+j where dbi+j was well formed. The simulator can
therefore extract a way to open ci since ci = (ci+dbi+j)−dbi+j . It will be able to compute polynomials fl for ci with
‖fl‖∞ ≤ 8 · δ · ρl · T · φ(m). Therefore, if some ci is not of this form, the prover can survive one iteration of the test
with probability at most t1−b · (e · ln(2))−b. To survive the entire protocol, the prover needs to win in at least one of
the M iterations, and this happens with probability at most M · t1−b · (e · ln(2))−b, by the union bound.

Assume Pi is honest: Then when he decides whether to open a given ciphertext, the probability that a single
coefficient is in range is 1

4·δ·φ(m)·T . There are 4 · φ(m) coefficients in a single ciphertext and up to T ciphertexts to
open, so by a union bound, Pi will not need to send ⊥ at all, except with probability 1/δ. The probability that an
honest prover fails to complete the protocol is hence (1/δ)M . We therefore see that the completeness error vanishes
exponentially with increasing M , and in the soundness probability, we only loose logM bits of security.

It is easy to see that for each opening done by an honest prover, the polynomials zl will have coefficients that are
uniformly distributed in the expected range, so the protocol can be simulated.

Finally, note that in a normal run of the protocol, only 1 iteration is required, except with probability 1/δ. So in
practice, what counts for the efficiency is the time we spend on one iteration.

In our experiments we implemented the above protocol with the following parameter choices δ = 256, M = 5,
t = 12 and b = 16. This guaranteed a cheating probability of 2−40, as well as the probability of an honest prover
failing of 2−40. In addition the choice of t = 12 was to ensure that each run of the protocol created enough ciphertexts
to be run in two executions of the main loop of the multiplication triple production protocol. By increasing t and
decreasing b one can improve the amortized complexity of the protocol while keeping the error probabilities the same.
This comes at the cost of increased memory usage, primarily because decreasing b to, e.g, b/2 means that t needs to
be replaced by essentially t2. On our test machines t = 12 seemed to provide the best compromise.

G Parameters of the BGV Scheme

In this appendix we present an analysis of the parameters needed by the BGV to ensure that the distributed decryption
procedure can decrypt the ciphertexts produced in the offline phase and that the scheme is “secure”. Unlike in [14],
which presents the analysis in terms of a worst case analysis, we use the expected case analysis used in [16].

G.1 Expected Values of Norms

Given an element a ∈ R (represented as a polynomial) we define ‖a‖p to be the standard p-norm of the coefficient
vector (usually for p = 1, 2 or∞). We also define ‖a‖canp to be the p-norm of the same element when mapped into the
canonical embedding i.e.

‖a‖canp = ‖κ(a)‖p

where κ(a) : R −→ Cφ(m) is the canonical embedding. The key two relationships are that

‖a‖∞ ≤ cm · ‖a‖
can
∞ and ‖a‖can∞ ≤ ‖a‖1,

for some constant cm depending on m. Since in our protocol we select m to be a power of two then we have cm = 1.
We also define the canonical embedding norm reduced modulo q of an element a ∈ R as the smallest canonical

embedding norm of any a′ which is congruent to a modulo q. We denote it as

|a|canq = min{ ‖a′‖can∞ : a′ ∈ R, a′ ≡ a (mod q) }.

325

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

We sometimes also denote the polynomial where the minimum is obtained by [a]canq , and call it the canonical reduction
of a modulo q.

Following [16][Appendix A.5] we examine the variances of the different distributions utilized in our protocol. Let
ζm denote any complex primitive m-th root of unity. Sampling a ∈ R from HWT (h, φ(m)) and looking at a(ζm)
produces a random variable with variance h, when sampled from ZO(0.5, φ(m)) we obtain variance φ(m)/2, when
sampled from DG(σ2, φ(m)) we obtain variance σ2 · φ(m) and when sampled from U(q, φ(m)) we obtain variance
q2 · φ(m)/12. By the law of large numbers we can use 6 ·

√
V , where V is the above variance, as a high probability

bound on the size of a(ζm), and this provides a bound on the canonical embedding norm of a.

If we take a product of two, three, or four such elements with variances V1, V2, . . . , V4 we use 16 ·
√
V1 · V2,

9.6 ·
√
V1 · V2 · V3 and 7.3 ·

√
V1 · V2 · V3 · V4 as the resulting bounds since

erfc(4)2 ≈ erfc(3.1)3 ≈ erfc(2.7)4 ≈ 2−50.

G.2 Key Generation

We first need to establish the rough distributions (i.e. variances) of the resulting keys arising from our key generation
procedure. For our purposes we are only interested in the variance of the associated distributions in the canonical
embedding, in which case we obtain

Var(κ(sj)) = n · Var(κ(si,j)) = n · h,
Var(κ(aj)) = q21 · φ(m)/12,

Var(κ(εj)) = n · Var(κ(εi,j)) = n · σ2 · φ(m).

We will also need to analyze the distributions of the randomness needed to produce encj . Here we assume that all
parties follow the protocol and we are only interested in the output final extended public key, thus we write (dropping
the j to avoid overloading the reader)

enc = (bs,s2 , as,s2)

where

bs,s2 = as,s2 · s + p · es,s2 − p1 · s2.

We can also write

enc′i = (b · vi + p · e0,i − p1 · si, a · vi + p · e1,i)
zeroi = (b · v′i + p · e′0,i, a · v′i + p · e′1,i)

where (vi, e0,i, e1,i)← RCs(0.5, σ2, φ(m)) and (v′i, e
′
0,i, e

′
1,i)← RCs(0.5, σ2, φ(m)). We therefore have

as,s2 =
n∑
i=1

si ·

 n∑
j=1

a · vj + p · e1,j

+
n∑
i=1

(a · v′i + p · e′1,i),

326

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

and

bs,s2 =
n∑
i=1

si ·

 n∑
j=1

b · vj + p · e0,j − p1 · sj

+
n∑
i=1

(b · v′i + p · e′0,i)

= as,s2 · s− s ·
n∑
i=1

si ·

 n∑
j=1

a · vj + p · e1,j

+
n∑
i=1

si ·

 n∑
j=1

b · vj + p · e0,j − p1 · sj

+

n∑
i=1

(
(a · s + p · ε) · v′i + p · e′0,i

)
− s ·

n∑
i=1

(a · v′i + p · e′1,i)

= as,s2 · s +
n∑
i=1

 n∑
j=1

b · vj · si + p · e0,j · si − p1 · si · sj − s · si · a · vj − s · si · p · e1,j

+ p ·

n∑
i=1

(
ε · v′i + e′0,i − e′1,i · s

)
= as,s2 · s + p ·

n∑
i=1

 n∑
j=1

(ε · vj · si + e0,j · si − s · si · e1,j) + ε · v′i + e′0,i − e′1,i · s

− p1 · s2

= as,s2 · s + p · es,s2 − p1 · s2

where

es,s2 =
n∑
i=1

 n∑
j=1

(ε · vj · si + e0,j · si − s · si · e1,j) + ε · v′i + e′0,i − e′1,i · s

 . (2)

Thus the values enc are indeed genuine “quasi-encryptions” of−p1 ·s2 with respect to the secret key s and the modulus
q1. Equation 2 will be used later to establish the properties of the output of the SwitchKey procedure.

G.3 BGV Procedures

We can now turn to each of the procedures in turn of the two level BGV scheme we are using and estimate the output
noise term. For a ciphertext c = (c0, c1, `) we define the “noise” to be an upper bound on the value

‖c0 − s · c1‖can∞ .

Encpk(m): Given a fresh ciphertext (c0, c1, 1), we calculate a bound (with high probability) on the output noise by

‖c0 − s · c1‖∞ ≤ ‖c0 − s · c1‖can∞
= ‖((a · s + p · ε) · v + p · e0 + m− (a · v + p · e1) · s‖can∞
= ‖m + p · (ε · v + e0 − e1 · s)‖can∞
≤ ‖m‖can∞ + p ·

(
‖ε · v‖can∞ + ‖e0‖can∞ + ‖e1 · s‖can∞

)
≤ φ(m) · p/2 + p · σ ·

(
16 · φ(m) ·

√
n/2 + 6 ·

√
φ(m) + 16 ·

√
n · h · φ(m)

)
= Bclean.

Note this value of Bclean is different from that in [16] due to the different distributions resulting from the distributed
key generation.

SwitchModulus((c0, c1), `): If the input ciphertext has noise ν then the output ciphertext will have noise ν′ where

ν′ =
ν

p`
+Bscale.

327

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The value Bscale is an upper bound on the quantity ‖τ0 + τ1 · s‖can∞ , where κ(τi) is drawn from a distribution which is
close to a complex Gaussian with variance φ(m) · p2/12. We therefore, we can (with high probability) take the upper
bound to be

Bscale = 6 · p ·
√
φ(m)/12 + 16 · p ·

√
n · φ(m) · h/12,

= p ·
√

3 · φ(m) ·
(
1 + 8 ·

√
n · h/3

)
.

Again, note the dependence on n (compared to [16]) as the secret key s is selected from a distribution with variance
n · h, and not just h. Also note the dependence on p due to the plaintext space being defined mod p as opposed to mod
2 in [16].

Decs(c): As explained in [14, 16] this procedure works when the noise ν associated with a ciphertext satisfies ν =
cm · ν < q`/2.

DistDecsi(c): The value B is an upper bound on the noise ν associated with a ciphertext we will decrypt in our
protocols. To ensure valid distributed decryption we require

2 · (1 + 2sec) ·B < q`.

Given a value of B, we therefore will obtain a lower bound on p0 by the above inequality. The addition of a random
term with infinity norm bounded by 2sec ·B/(n · p) in the distributed decryption procedure ensures that the individual
coefficients of the sum t1 + · · ·+ tn are statistically indistinguishable from random, with probability 2−sec. This does
not imply that the adversary has this probability of distinguishing the simulated execution in [14] from the real execu-
tion; since each run consists of the exchange of φ(m) coefficients, and the protocol is executed many times over the
execution of the whole protocol. We however feel that setting concentrating solely on the statistical indistinguishability
of the coefficients is valid in a practical context.

SwitchKey(d0, d1, d2): In order to estimate the size of the output noise term we need first to estimate the size of the
term

‖p · d2 · εs,s2‖can∞ .

Using Equation 2 we find

‖p · d2 · es,s2)‖can∞ /q0 ≤ p ·
√
φ(m)
12
·
[
n2 · σ ·

(
7.3 ·

√
n · h · φ(m)2/2 + 9.6 ·

√
h · φ(m)

+7.3 · h ·
√
n · φ(m)

)
+n ·

(
9.6 · σ ·

√
n · φ(m)2/2 + 16 · σ ·

√
φ(m)

+7.6 · σ ·
√
φ(m) · n · h

)]
≤ p · φ(m) · σ ·

[
n2.5 · (1.49 ·

√
h · φ(m) + 2.11 · h) + 2.77 · n2 ·

√
h

+n1.5 · (1.96 ·
√
φ(m) + 2.77 ·

√
h) + 4.62 · n

]
= BKS.

Then if the input to SwitchKey has noise bounded by ν then the output noise value will be bounded by

ν +
BKS · q0
p1

+Bscale.

Mult(c, c′): Combining the all the above, if we take two ciphertexts of level one with input noise bounded by ν and ν′,
the output noise level from multiplication will be bounded by

ν′′ =
(
ν

p1
+Bscale

)
·
(
ν′

p1
+Bscale

)
+
BKS

p1
+Bscale.

328

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

G.4 Application to the Offline Phase

In all of our protocols we will only be evaluating the following circuit: We first add n ciphertexts together and perform
a multiplication, giving a ciphertext with respect to modulus p0 with noise

U1 =
(
n ·Bclean

p1
+Bscale

)2

+
BKS · p0

p2
+Bscale.

We then add on another n ciphertexts, which are added at level one and then reduced to level zero. We therefore obtain
a final upper bound on the noise for our adversarially generated ciphertexts of

U2 = U1 +
n ·Bclean

p1
+Bscale.

To ensure valid (distributed) decryption, we require

2 · U2 · (1 + 2sec) < p0,

i.e. we take B = U2 in our distributed decryption protocol.
This ensure valid decryption in our offline phase, however we still need to select the parameters to ensure security.

Following the analysis in [16] of the BGV scheme we set, for 128-bit security,

φ(m) ≥ 33.1 · log
(q1
σ

)
.

Combining the various inequalities together; a search of the parameter space the fixed values of σ = 3.2, sec = 40
and h = 64, for several choices of p, n yields the estimates in tables 4, 5 and 6. And it is these parameter sizes which
we use to generate the primes and rings in our implementation.

n φ(m) log2 p0 log2 p1 log2 q1 log2(U2)

2 8192 130 104 234 89
3 8192 132 104 236 90
4 8192 132 104 236 91
5 8192 132 106 238 90
6 8192 132 106 238 91
7 8192 132 108 240 91
8 8192 132 108 240 91
9 8192 132 110 242 91
10 8192 132 110 242 91
20 8192 134 110 244 93
50 8192 136 114 250 94
100 8192 136 116 252 95

Table 4. Parameters for p ≈ 232.

329

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

n φ(m) log2 p0 log2 p1 log2 q1 log2(U2)

2 16384 196 136 332 154
3 16384 196 138 334 154
4 16384 196 140 336 155
5 16384 196 142 338 155
6 16384 198 140 338 156
7 16384 198 140 338 156
8 16384 198 140 338 157
9 16384 198 142 340 156
10 16384 198 142 340 156
20 16384 198 146 344 157
50 16384 200 148 348 158
100 16384 202 150 352 160

Table 5. Parameters for p ≈ 264.

n φ(m) log2 p0 log2 p1 log2 q1 log2(U2)

2 32768 324 202 526 283
3 32768 326 202 528 285
4 32768 326 204 530 284
5 32768 326 204 530 285
6 32768 326 206 532 284
7 32768 326 206 532 285
8 32768 326 208 534 285
9 32768 326 208 534 285
10 32768 326 208 534 285
20 32768 328 210 538 286
50 32768 330 212 542 289
100 32768 330 216 546 288

Table 6. Parameters for p ≈ 2128.

330

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Dishonest Majority Multi-Party Computation for Binary Circuits

Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart

Dept. Computer Science, University of Bristol, United Kingdom
Enrique.LarraiadeVega@bristol.ac.uk,Emmanuela.Orsini@bristol.ac.uk,nigel@cs.bris.ac.uk

Abstract. We extend the Tiny-OT two party protocol of Nielsen et al (CRYPTO 2012) to the case
of n parties in the dishonest majority setting. This is done by presenting a novel way of transferring
pairwise authentications into global authentications. As a by product we obtain a more efficient manner
of producing globally authenticated shares, which in turn leads to a more efficient two party protocol
than that of Nielsen et al.

Keywords: Secure Multi-party Computation, Message Authentication Code, Oblivious Transfer

1 Introduction

In recent years actively secure MPC has moved from a theoretical subject into one which is becoming
more practical. In the variants of multi-party computation which are based on secret sharing the
major performance improvement has come from the technique of authenticating the shared data
and/or the shares themselves using information theoretic message authentication codes (MACs).
This idea has been used in a number of works: In the case of two-party MPC for binary circuits in
[13], for n-party dishonest majority MPC for arithmetic circuits over a “largish” finite field [4,7], and
for n-party dishonest majority MPC over binary circuits [8]. All of these protocols are in the pre-
processing model, in which the parties first engage in a function and input independent offline phase.
The offline phase produces various pieces of data, often Beaver style [3] “multiplication triples”,
which are then consumed in the online phase when the function is determined and evaluated.

In the case of the protocol of [13], called Tiny-OT in what follows, the authors use the technique
of applying information theoretic MACs to the oblivious transfer (OT) based GMW protocol [10] in
the two party setting. In this protocol the offline phase consists of producing a set of pre-processed
random OTs which have been authenticated. The offline phase is then executed efficiently using a
variant of the OT extension protocol of [12]. For a detailed discussion on OT extension see [2,12,13].
In this work we shall take OT extension as a given sub-procedure.

For the case of n party protocols, where n > 2, there are three main techniques using such
MACs. In [4] each share of a given secret is authenticated by pairwise MACs, i.e. if party Pi holds
a share ai, then it will also hold a MAC Mi,j for every j 6= i, and party Pj will hold a key Ki,j .
Then, when the value ai is made public, party Pi also reveals the n − 1 MAC values, that are
then checked by other parties using their private keys Ki,j . Note that each pair of parties holds a
separate key/MAC for each share value. In [7] the authors obtain a more efficient online protocol by
replacing the MACs from [4] with global MACs which authenticate the shared values a, as opposed
to the shares themselves. The authentication is also done with respect to a fixed global MAC key
(and not pairwise and data dependent). This method was improved in [6], where it is shown how
to verify these global MACs without revealing the secret global key. In [8] the authors adapt the
technique from [7] for the case of small finite fields, in a way which allows one to authenticate
multiple field elements at the same time, without requiring multiple MACs. This is performed

331

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

using a novel application of ideas from coding theory, and results in a reduced overhead for the
online phase.

One can think of the Tiny-OT protocol as applying the authentication technique of [4] to
the two party, binary circuit case, with a pre-processing which is based on OT as opposed to
semi-homomorphic encryption. For two party protocols over binary circuits practical experiments
show that Tiny-OT far out-performs other protocols, such as those based on Yao’s garbled circuit
technique. This is because of the performance of the offline phase of the Tiny-OT protocol. Thus
a natural question is to ask, whether one can extend the Tiny-OT protocol to the n-party setting
for binary circuits.

Results and Techniques In this paper we mainly address ourselves to the above question, i.e.
how can we generalize the two-party protocol from [13] to the n-party setting?

We first describe what are the key technical difficulties we need to overcome. The Tiny-OT
protocol at its heart has a method for authenticating random bits via pairwise MACs, which itself
is based on an efficient protocol for OT-extension. In [13] this protocol is called aBit. Our aim is
to use this efficient two-party process as a black-box. Unfortunately, if we extend this procedure
naively to the three party case, we would obtain (for example) that parties P1 and P2 could execute
the protocol so that P1 obtains a random bit and a MAC, whilst P2 obtains a key for the MAC
used to authenticate the random bit. However, party P3 obtains no authentication on the random
bit obtained by P1, nor does it obtain any information as to the MAC or the key.

To overcome this difficulty, we present a protocol in which we fix an unknown global random key
and where each party holds a share of this key. Then by executing the pairwise aBit protocol, we are
able to obtain a secret shared value, as well as a shared MAC, by all n-parties. This resulting MAC
is identical to the MAC used in the SPDZ protocol from [6]. This allows us to obtain authenticated
random shares, and in addition to permit parties to enter their inputs into the MPC protocol.

The online phase will then follow similarly to [6], if we can realize a protocol to produce “mul-
tiplication triples”. In [13] one can obtain such triples by utilizing a complex method to produce
authenticated random OTs and authenticated random ANDs (called aOTs and aANDs)1. We notice
that our method for obtaining authenticated bits also enables us to obtain a form of authenticated
OTs in a relatively trivial manner, and such authenticated OTs can be used directly to implement
a multiplication gate in the online phase.

Our contribution is twofold. First, we generalize the two-party Tiny-OT protocol to the n-party
setting, using a new technique for authentication of secret shared bits, and new offline and online
phases. Thus we are able to dispense with the protocols to generate aOTs and aANDs from [13].
Second, and as a by product, we obtain a more efficient protocol than the original Tiny-OT protocol,
in the two party setting when one measures efficiency in terms of the number of aBit’s needed per
multiplication gate.

The security of our protocols are proven in the standard universal composability (UC) frame-
work [5] against a malicious adversary and static corruption of parties.

We end this introduction by describing two possible extensions to our work. Firstly, each bit
in our protocol is authenticated by an element in a finite field F2κ . Whilst such values are never
transmitted in our online phase due to our MACCheck protocol, they do provide an overhead in the

1 In fact the paper [13] does not produce such multiplication triples, but they follow immediately from the presen-
tation in the paper and would result in a more efficient online phase than that described in [13]

332

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

computation. In [8] the authors show how to reduce this overhead using coding theory techniques.
It would be interesting to see how such techniques could be applied to our protocol, and what
advantage if any they would bring.

Secondly, our protocol requires n · (n − 1)/2 executions of the aBit protocol from [13]. Each
pairwise invocation requires the execution of an OT-extension protocol, and hence we require
O(n2) such OT-channels. In [11], in the context of traditional MPC protocols, the authors present
techniques and situations in which the number of OT-channels can be reduced to O(n). It would
be interesting to see how such techniques could be applied in practice to the protocol described in
this paper.

2 Notation

In this section we settle the notation used throughout the paper. We use κ to denote the secu-
rity parameter. We let negl(κ) denote some unspecified function f(κ), such that f = o(κ−c) for
every fixed constant c, saying that such a function is negligible in κ. We say that a probability is
overwhelming in κ if it is 1− negl(κ).

We consider the sets {0, 1} and Fκ2 endowed with the structure of the fields F2 and F2κ , respec-
tively. Let F = F2κ , we will denote elements in F with greek letters and elements in F2 with roman
letters.

We will additively secret share bits and elements in F, among a set of parties P = {P1, . . . , Pn},
and sometimes abuse notation identifying subsets I ⊆ {1, . . . , n} with the subset of parties indexed
by i ∈ I. We write 〈a〉I if a is shared amongst the set I = {i1, . . . , it} with party Pij holding a
value aij , such that

∑
ij∈I aij = a. Also, if an element x ∈ F2 (resp. β ∈ F) is additively shared

among all parties we write 〈x〉 (resp. 〈β〉). We adopt the convention that if a ∈ F2 (resp. β ∈ F)
then the shares ai ∈ F2 (resp. βi ∈ F).

(Linear) arithmetic on the 〈·〉I sharings can be performed as follows. Given two sharings 〈x〉Ix =
{xij}ij∈Ix and 〈y〉Iy = {yij}ij∈Iy we can compute the following linear operations

a · 〈x〉Ix = {a · xij}ij∈Ix ,
a+ 〈x〉Ix = {a+ xi1} ∪ {xij}ij∈Ix\{i1},

〈x〉Ix + 〈y〉Iy = 〈x+ y〉Ix∪Iy

= {xij}ij∈Ix\Iy ∪ {yij}ij∈Iy\Ix ∪ {xij + yij}ij∈Ix∩Iy .

Our protocols will make use of pseudo-random functions, which we will denote by PRFX,ts (·)
where for a key s and input m ∈ {0, 1}∗ the pseudo-random function is defined by PRFX,ts (m) ∈ Xt,
where X is some set and t is a non-negative integer.

Authentication of Secret Shared Values. As described in the introduction the literature gives
two ways to authenticate a secret globally held by a system of parties, one is to authenticate the
shares of each party, as in [4], the other is to authenticate the secret itself, as in [7]. In addition we
can also have authentication in a pairwise manner, as in [4,13], or in a global manner, as in [7]. Both
combinations of these variants can be applied, but each implies important practical differences, e.g.,
the total amount of data each party needs to store and how checking of the MACs is performed.
In this work we will use a combination of different techniques, indeed the main technical trick is a
method to pass from the technique used in [13] to the technique used in [7].

333

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Our main technique for authentication of secret shared bits is applied by placing an information
theoretic tag (MAC) on the shared bit x. The authenticating key is a random line in F, and the
MAC on x is its corresponding line point, thus, the linear equation µδ(x) = νδ(x) + x · δ holds,
for some µδ(x), νδ(x), δ ∈ F. We will use these lines in various operations2, for various values of
δ. In particular, there will be a special value of δ, which we denote by α and assume to be 〈α〉P
shared, which represents the global key for our online MPC protocol. This will be the same key
for every bit that needs to be authenticated. It will turn out that for the key α we always have
να(x) = 0. By abuse of notation we will sometimes refer to a general δ also as a global key, and
then the corresponding νδ(x), is called the local key.

Distinguishing between parties, say I, that can reconstruct bits (together with the line point),
and those parties, say J , that can reconstruct the line gives a natural generalization of both ways
to authenticate, and it also allows to move easily from one to another. We write [x]Iδ,J if there exist
µδ(x), νδ(x) ∈ F such that:

µδ(x) = νδ(x) + x · δ,

where we have that x and µδ(x) are 〈·〉I shared, and νδ(x) and δ are 〈·〉J shared, i.e. there are
values xi, µi, and νj , δj , such that

x =
∑
i∈I

xi, µδ(x) =
∑
i∈I

µi, νδ(x) =
∑
j∈J

νj , δ =
∑
j∈J

δj .

Notice that µδ(x) and νδ(x) depend on δ and x: we can fix δ and so obtain key-consistent represen-
tations of bits, or we can fix x and obtain different key-dependant representations for the same bit
x. To ease the reading, we drop the sub-index J if J = P, and, also, the dependence on δ and x
when it is clear from the context. We note that in the case of Ix = Jx then we can assume νj = 0.

When we take the fixed global key α and we have Ix = Jx = P, we simplify notation and write
JxK = [x]Pα,P . By our comment above we can, in this situation, set νj = 0 3, this means that a JxK
sharing is given by two sharings

(
〈x〉P , 〈µ〉P

)
. Notice that the J·K-representation of a bit x implies

that x is authenticated with the global key α and that it is 〈·〉-shared, i.e. its value is actually
unknown to the parties.

This notation does not quite align with the previous secret sharing schemes used in the literature,
but it is useful for our purposes. For example, with this notation the MAC scheme of [4] is one
where each data element x is shared via [xi]iαj ,j sharings. Thus the data is shared via a 〈x〉 sharing
and the authentication is performed via [xi]iαj ,j sharings, i.e. we are using two sharing schemes
simultaneously. In [7] the data is shared via our JxK notation, except that the MAC key value ν is
set equal to ν = ν ′/α, where ν ′ being a public value, as opposed to a shared value. Our JxK sharing
is however identical to that used in [6], bar the differences in the underlying finite fields.

Looking ahead we say that a bit JxK is partially opened if 〈x〉 is opened, i.e. the parties reveal
the shares of x, but not the shares of the MAC value µα(x).

Arithmetic on JxK Shared Values. Given two representations [x]Ixδ,Jx =
(
〈x〉Ix , 〈µδ(x)〉Ix , 〈νδ(x)〉Jx

)
and [y]Iyδ,Jy =

(
〈y〉Iy , 〈µδ(y)〉Iy , 〈νδ(y)〉Jy

)
, under same the δ, the parties can locally compute [x +

2 For example, we will also use lines to generate OT-tuples, i.e. quadruples of authenticated bits which satisfy the
algebraic equation for a random OT.

3 Otherwise one can subtract νj from µj , before setting νj to zero.

334

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

y]Ix∪Iyδ,Jx∪Jy as
(
〈x〉Ix + 〈y〉Iy , 〈µδ(x)〉Ix + 〈µδ(y)〉Iy , 〈νδ(x)〉Jx + 〈νδ(y)〉Jy

)
using the arithmetic on 〈·〉I

sharings above.
Let JxK =

(
〈x〉, 〈µ(x)〉

)
and JyK =

(
〈y〉, 〈µ(y)〉

)
be two different authenticated bits. Since our

sharings are linear, as well as the MACs, it is easy to see that the parties can locally perform linear
operations:

JxK + JyK =
(
〈x〉+ 〈y〉, 〈µ(x)〉+ 〈µ(y)〉

)
= Jx+ yK

a · JxK =
(
a · 〈x〉, a · 〈µ(x)〉

)
= Ja · xK,

a+ JxK =
(
a+ 〈x〉, 〈µ(a+ x)〉

)
= Ja+ xK.

where 〈µ(a+ x)〉 is the sharing obtained by each party i ∈ P holding the value αi · a+ µi(x).
This means that the only remaining question to enable MPC on J·K-shared values is how to

perform multiplication and how to generate the J·K-shared values in the first place. Note, that a
party Pi that wishes to enter a value into the MPC computation is wanting to obtain a [x]iα,P
sharing of its input value x, and that this is a JxK-representation if we set xi = x and xj = 0 for
j 6= i.

3 MPC Protocol for Binary Circuit

We start presenting a high level view of the protocols that allow us to perform multi-party com-
putation for binary circuits. We assume synchronous communication and authentic point-to-point
channels. Our protocol is in the pre-processing model in which we allow a function (and input)
independent pre-processing, or offline, phase which produces correlated randomness. This enables
a lightweight online phase, that does not need public-key machinery.

Online Eval.
Sec. 5

Preprocess
Sec 6

App. C.2

Bootstrap
Sec. 4

App. C.3

FaBit
App. C.1

FOT

[13]

FComm , PRFX,ts

Figure 1 Overview of Protocols Enabling MPC

In the following sections we will describe a
protocol, ΠOnline, implementing the actual func-
tion evaluation in the (FComm,FPrep)-hybrid
model; a protocol, ΠPrep, implementing the
offline phase in the (FComm,FBootstrap)-hybrid
model; and a novel way to authenticate bits to
more than two parties, which takes as starting
point the aBit command of [13], and which we
model with the FBootstrap functionality.

The online phase implements the standard
functionality FOnline (see Appendix C.2 for de-
tails). It is based on the J·K-representation of
bits described in Section 2, and it is very simi-
lar to the online phase of other MPC protocols
[6,7,8,13]. We compute a function represented
as a binary circuit, where private inputs are
additively shared among the parties, and cor-
rectness is guaranteed by using additive secret
sharings of linear MACs with global secret key
α. For simplicity we assume one single input
for each party and one public output. The on-
line protocol, presented in Section 5, uses the

335

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

linearity of the J·K-sharings to perform additions and scalar multiplications locally. For general
multiplications we need utilize data produced during the offline phase, in particular the output
of the GaOT (Global authenticated OT) command of Section 6. Refer to Figure 2 for a complete
description of the functionality for preprocessing data. The aforementioned command GaOT builds
upon ΠBootstrap protocol, described in Section 4, to generate random authenticated OTs and, as we
noted above, we skip the less efficient procedures of [13].

The Functionality FPrep

Let A be the set of indices of corrupt parties.

Initialize: On input (Init) from honest parties, the functionality samples random αi for each i 6∈ A. It waits for
the environment to input corrupt shares {αj}j∈A If any j ∈ A outputs abort, then the functionality aborts
and returns the set of j ∈ A which returned abort. Otherwise the functionality sets α = α1 + · · ·+ αn, and
outputs αk to honest Pk.

Share: On input (i, x, Share) from party Pi, and (i,Share) from all other parties. The functionality produces
an authentication JxK = (〈x〉, 〈µ〉). It sets xj = 0 if j 6= i. Also, the MAC might be shifted by a value ∆H ,
i.e. µ = x · α + ∆H , where ∆H is an F2-linear combination of {αk}k/∈A not known to the environment. It
proceeds as follows:

- Set µ = x · α. If i ∈ A, the environment specifies x.
- Wait for the environment to specify MAC shares {µj}j∈A, and generate 〈µ〉 where the portion of honest

shares is consistent with the adversarial shares, but otherwise random.
- Set xk = 0 if k 6= i, k 6∈ A. If the environment inputs shift-Pk set µk = µk + αk.
- Output (xk, µk) to honest Pk

GaOT: On input (GaOT) from the parties, the functionality waits for the environment to input “Abort” or
“Continue”. If it is told to abort, it outputs the special symbol ∅ to all parties.
Otherwise it samples three random bits e, x0, x1, and sets z = xe. Then, for every bit y ∈ {e, z, x0, x1} the
functionality produces an authentication JyK = (〈y〉, 〈µ(y)〉), but let the environment to specify shares for
corrupt Pj . It proceeds as follows:

- Set µ(y) = y · α.
- Wait for the environment to input bit shares {yj}j∈A, and MAC shares {µj}j∈A, and creates sharings
〈y〉, 〈µ〉 where the portion of honest shares is consistent with adversarial shares.

- Output (yk, µk) to honest Pk.

Figure 2 Ideal Preprocessing

Notice that, as in [6,7,8,13], during the online computation of the circuit we do not know
if we are working with the correct values, since we do not check the MACs of partially opened
values during the computation. This check is postponed to the end of the protocol, where we call
the MACCheck procedure as in [6] (see Appendix B for details). Note this procedure enables the
checking of multiple sets of values partially opened during the computation without revealing the
global secret key α, thus our MPC protocol can implement reactive functionalities.

The MAC checking protocol is called in both the offline and the online phases, it requires access
to an ideal functionality for commitments FComm, also given in Appendix B, and it is not intended
to implement any functionality. Also, note that the algebraic correctness of the output of the GaOT
command in the offline phase is checked in the offline phase and not in the online phase.

4 From Tiny-OT aBit’s to J·K-Sharings

At the heart of our MPC protocol is a method to translate from the two party aBits produced by
the offline phase of the Tiny-OT protocol in [13], to the J·K-sharings under some global shared key

336

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

α from Section 2. We note that the protocol to produce aBit’s is the only sub-protocol from [13]
which we use in this paper, and thus the more complex protocols in [13] for producing aOT’s and
aAND’s we discard. We first deal with the underlying two party sub-protocols, and then we use
these to define our multi-party protocols.

4.1 Two-party [·]-representations.

Thus throughout we assume access to an ideal functionality FaBit, given in Figure 3, that produces
a substantially unbounded number of (oblivious) authenticated random bits for two parties, under
some randomly chosen key δj known by one of the parties. This functionality can be implemented
assuming a functionality FOT and using OT-extension techniques as in [13]. For ease of exposition
we present the functionality as returning single bits for single requests. In practice the functionality
is implemented via OT-extension and so one is able to obtain many aBits on each invocation of the
functionality, for a given value of δj . Adapting our protocols to deal with multiple aBit production
for a single random fixed δj chosen by the functionality is left to the reader4.

The Functionality FaBit

Authenticated Bit(Pi, Pj): This functionality selects a random δj ∈ F and a random bit r, and returns a
sharing [r]iδj ,j

.
- On input (aBit, i, j) from honest Pi and Pj , the functionality samples a random δj and a random sharing

[r]iδj ,j
= (r, µi, νj), such that µi = νj + r · δj . It then outputs {r, µi} to Pi and {δj , νj} to Pj .

- If Pi is corrupted, the functionality waits for the environment to input the pair {r, µi} and it sets
νj = µi + r · δj for some randomly chosen δj , and {δj , νj} is returned to party Pj .

- If Pj is corrupted, the functionality waits for the environment to input the pair {δj , νj}, r is selected at
random and µi is set to be νj − r · δj . The pair {r, µi} is returned to party Pi.

Figure 3 Two-party Bit Authentication [13]

Using the protocol Π2-Share, described in Protocol 4, we can obtain a “two-party” representation
[r]iδj ,j of a random bit known to Pi, under the key chosen by Pj . This extension is needed because
we need to adapt the aBit command to the multi-party case. For example, if two parties, Pi and
Pj , run the command aBit(i, j), they obtain a random [r]iδ′j ,j , with respect to δ′j ; when Pj calls

aBit(k, j) with a different party Pk, k 6= j, then they obtain a random [s]k
δ̃j ,j

, with a different δ̃j .
Thus allowing the parties to select their own values of δj means that we can obtain key-consistent
[·]-representations, in which each party Pj use the same fixed δj . The security of the protocol
Π2-Share follows from the security of the original aBit in [13]: intuitively the changes required to
obtain a consistent [·]-representation do not compromise security, because δj is one-time-padded
with the random δ′j produced by FaBit. See C.1 for details.

Notice that the command 2-Share takes δj as the input of Pj . In particular the value δj may
not be used to authenticate bits. Thus we could use the protocol Π2-Share to obtain a sharing of
the scalar product r · δj , where Pi obtains the random bit r, and the other party decides what field
element δj ∈ F gets multiplied in. Then party Pi obtains the result µi masked by a one-time pad

4 Note, that in this situation we (say) produce 1, 000, 000 aBits per invocation with a fixed random value of δj , then
on the next invocation we obtain another 1, 000, 000 aBits but with a new random δj value. This is not explicit in
the ideal functionality description of aBit presented in [13], but is implied by their protocol.

337

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The Subprotocol Π2-Share

2Share(i, j; δj): On input (2-Share, i, j, δi), where Pj has δj ∈ F as input, this command produces a [r]iδj ,j

sharing of a random bit r.
1. Pi and Pj call FaBit on input (aBit, i, j): The box samples a random δ′j and then produces

[r]iδ′j ,j = (r, µ′i, νj),

such that µ′i = νj + r · δ′j , and outputs {r, µ′i} to Pi and {δ′j , νj} to Pj .
2. Pj computes σj = δj + δ′j and sends σj to party Pi.
3. Pi sets µi = µ′i + r · σj = νj + r · δj .

Protocol 4 Switching to Fixed δ-shares

value νj known only to Pj . This application of the subprotocol Π2-Share is going to be crucial in
our method to obtain authenticated OT’s in our pre-processing phase. As a consequence we do not
always see δj as an authentication key.

4.2 Multiparty [·]-representation

The Functionality FBootstrap

Let A be the indices of corrupt parties.

Initialize: On input (Init) from honest parties, the functionality activates and waits for the environment to
input a set of shares {δj}j∈A. It samples random δ ∈ F and prepares sharing 〈δ〉, where the portions of
honest shares are consistent with the adversarial shares, but otherwise random. If any j ∈ A outputs abort,
then the functionality aborts and returns the set of j ∈ A which returned abort, otherwise it continues.

Share: On input (i, x, Share) from party Pi, and (i,Share) from all other parties. The functionality produces a
representation [x]iδ = (〈x〉i, 〈µ〉i, 〈ν〉P), except that ν might be shifted by a value ∆H , i.e. µ = x · δ+ν+∆H ,
where ∆H is an F2-linear combination of {δk}k/∈A, which is not known to the environment. It proceeds as
follows:

- It samples random µ ∈ F. If i ∈ A waits for the environment to input (µ, x).
- The functionality sets ν = x · δ + µ.
- The functionality waits for the environment to input shares {νj}j∈A, and prepares sharing 〈ν〉P consistent

with the adversarial shares. The portion of honest shares are otherwise random.
- If the environment inputs shift-Pk, the functionality sets νk = νk + δk, k 6∈ A.
- It outputs (νk, δk) to honest Pk.

Figure 5 Ideal Generation of [·]iδ,P -representations

Here we show how to generalize the Π2-Share protocol in order to obtain an n-party representation
[x]iδ of a bit x chosen by Pi. This is what the functionality FBootstrap models in Figure 5. It bootstraps
from a two party authentication to a multi-party authentication of the shared bit. As before for
Π2-Share, we can see the outputs of FBootstrap as the shares of scalar products x · δ, where one party
Pi chooses the scalar (bit) x, but now the field element δ is unknown and additively shared among
all the parties. An interesting feature of this functionality is that the adversary can only influence
honest outputs in a small way, that we model with the shift-Pk flag. Additionally, we can not prevent
corrupt parties from outputting what they wish, this is reflected on the fact that the functionality
leaves their outputs undefined. The main difference between this functionality and the equivalent in

338

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

the SPDZ protocol [7], is that in [7] the functionality takes as input an offset known to the adversary
who adjusts his shares to obtain an invalid MAC value by this linear amount. We do not model
this in our functionality, instead we allow the adversary to choose his shares arbitrarily (which
obtains the same effect). However, in our protocol the adversary can also introduce an unknown (to
the adversary) error into the MAC values. In particular the adversary can decide whether to shift
honest shares, but he cannot choose the shifting, namely, an element on the F2-span of secrets δk of
honest parties Pk. Later, we manage to determine whether there are any errors (both adversarially
known and unknown ones) using an information-theoretic MACCheck procedure that we borrow
from [6]. See Appendix B for details.

The protocol ΠBootstrap, described in Protocol 6, realizes the ideal functionality FBootstrap in a
hybrid model in which we are given access to FaBit. It permits to obtain [x]iδ and it is implemented
by sending to each Pj , j 6= i, a mask of x using the random bits given by 2-Share(i, j; δj) as
paddings, and then allowing Pj to adjust his share to the right value. In total the protocol needs
to execute n− 1 aBit per scalar product.

The Protocol ΠBootstrap

Initialize: Each party Pi samples a random δi. Define δ = δ1 + · · ·+ δn.
Share: On input (i, x, Share) from Pi and (i, Share) from all other parties, do:

1. For each j 6= i, call Π2-Share with 2-Share(i, j; δj). Party Pi obtains {ri,j , µi,j}j 6=i whilst party Pj obtains
νi,j , such that µi,j = νi,j + ri,j · δj .

2. Party Pi samples ε at random and sets µi = ε+
P
j 6=i µi,j and νi = ε+ x · δi.

3. Party Pi sends dj = x+ ri,j to party Pj for all j 6= i.
4. For j 6= i, Pj sets νj = νi,j + dj · δj .
5. Output (µi, νi, δi) to Pi and (νj , δj) to party Pj , for j 6= i. The system now has [x]iδ.

Protocol 6 Transforming Two-party Representations onto [·]iδ,P -representations

Lemma 1. In the FaBit-hybrid model, the protocol ΠBootstrap implements FBootstrap with perfect
security against any static adversary corrupting up to n− 1 parties.

Proof. See Appendix C.1.

5 The Online Phase

In this section we present the protocol ΠOnline, described in Protocol 7, which implements the
online functionality in the (FComm,FPrep)-hybrid model. The basic idea behind our online phase is
to use the set of GaOTs output in the offline phase to evaluate each multiplication gate. To see how
this is done, consider that we want to multiply two authenticated bits JaK, JbK. The parties take a
GaOT tuple {JeK, JzK, Jx0K, Jx1K} off the pre-computed list. Recall we have for such tuples z = xe.
It is then relatively straightforward to compute authenticated shares of JcK, where c = a · b, as
follows: First, the parties partially open JfK = JbK + JeK and JgK = Jx0K + Jx1K + JaK, and then set
JcK = Jx0K+f ·JaK+g ·JeK+JzK. To see why this is correct, note that since, xe+x0 +e ·(x0 +x1) = 0,
we have c = x0 + (b+ e) · a+ (x0 + x1 + a) · e+ z = a · b.

Theorem 1. In the (FComm,FPrep)-hybrid model, the protocol ΠOnline securely implements FOnline

against any static adversary corrupting up to n− 1 parties, assuming protocol MACCheck utilizes a
secure pseudo-random function PRFF,t

s (·).

339

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Protocol ΠOnline

Initialize: The parties call Init on the FPrep functionality to get the shares αi of the global MAC key α. If
FPrep aborts outputting a set of corrupted parties, then the protocol returns this subset of A. Otherwise the
operations specified below are performed according to the circuit.

Input: To share his input bit x, Pi calls FPrep with input (i, x, Share) and party Pj for i 6= j calls FPrep with
input (i, Share). The parties obtain JxK where the x-share of Pj is set to zero if j 6= i.

Add: On input (JaK, JbK), the parties locally compute Ja+ bK = JaK + JbK.
Multiply: On input (JaK, JbK), the parties call FPrep on input (GaOT), obtaining a random GaOT tuple
{JeK, JzK, Jx0K, Jx1K}. The parties then perform:
1. The parties locally compute JfK = JbK + JeK and JgK = Jx0K + Jx1K + JaK.
2. The shares JfK and JgK are partially opened.
3. The parties locally compute

JcK = Jx0K + f · JaK + g · JeK + JzK.

Output: This procedure is entered once the parties have finished the circuit evaluation, but still the final
output JyK has not been opened.
1. The parties call the protocol ΠMACCheck on input of all the partially opened values so far. If it fails, they

output ∅ and abort. ∅ represents the fact that the corrupted parties remain undetected in this case.
2. The parties partially open JyK and call ΠMACCheck on input y to verify its MAC. If the check fails, they

output ∅ and abort, otherwise they accept y as a valid output.

Protocol 7 Secure Function Evaluation in the FComm,FPrep-hybrid Model

Proof. See Appendix C.2.

6 The Offline Phase

Here we present our offline protocol ΠPrep (Protocol 8). The key part of this protocol is the GaOT
command. In [13] the authors give a two-party protocol to enable one party, say A, to obtain two
authenticated bits e, z, and the other party, say B, to obtain two authenticated secret bits x0,
x1, such that z = xe and e, x0 and x1 are chosen at random. We generalize such a procedure to
many parties and we obtain sharings JeK, JzK, Jx0K, Jx1K, subject to z = xe. Notice that the values
e, z, x0, x1 are not known so they can be used in the online phase to implement multiplication gates.

The idea behind the GaOT command it is to exploit the relation between “affine functions” and
“selector functions”, in which a bit e selects one of two elements (χ0, χ1) in F. This connection was
already noted in [1] on the context of garbling arithmetic circuits via randomized encodings. Thus,
on one hand we have authentications, that are essentially evaluations of affine functions, and on the
other we have OT quadruples, that can be seen as selectors. Seeing both as the same object means
that a way to authenticate bits also gives us a way to generate OTs, and the other way around.
The procedure is broken into three steps, Share OT, Authenticate OT and Sacrifice OT. We
examine these three stages in turn.

To produce bit quadruples (e, z, x0, x1), such that z = xe, the parties will use a (secret) affine
line in F parametrized by (ϑ, η). Note that with our functionality FBootstrap we get [ei]iη, where ei is
known to Pi, and an additive sharing 〈η〉 is held by the system. We denote this concrete execution
of the functionality as FBootstrap(η), since we shall use fresh copies of FBootstrap to generate more OT
quadruples and also for authentication purposes. Note, that η is not an input to the functionality but
a shared random value produced when initialising the functionality. Now, performing n independent
queries of Share command on this copy FBootstrap(η), the parties can generate

[e]Pη = [e1]1η + · · ·+ [en]nη . (1)

340

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The Protocol ΠPrep

Let A be the set of indices of corrupt parties.

Initialize: On input (Init) from honest parties and adversary, the system runs a copy of FBootstrap which is de-
noted FBootstrap(α). Then it calls Init on FBootstrap(α). If FBootstrap(α) aborts, outputting a set of corrupted par-
ties, then the protocol returns this subset of A and aborts. Otherwise, the values δi returned by FBootstrap(α)
are labelled as αi. Set α = α1 + · · ·+ αn, and output αi to honest parties Pi.

Share: On input (i, x, Share) from party i and (j, Share) from all parties j 6= i. The protocol calls Share command
of FBootstrap(α) to obtain [x]iα, given by {〈µ〉i, 〈ν〉P}. Then, for j 6= i, party Pj sets his share of x to be zero,
and µj(x) = νj . Party Pi sets µi(x) = µ+ νi. Thus, the parties obtain JxK.

GaOT: On input (GaOT) from all Pi, execute the following sub-procedures:
Share OT. This generates sharings (〈e〉, 〈z〉, 〈x0〉, 〈x1〉) such that x0, x1 and e are random bits. If all parties

are honest then it holds z = xe.
1. The system runs a fresh copy of FBootstrap on Init command getting an additive sharing 〈η〉 for some

random η ∈ F. Denote this copy as FBootstrap(η).
2. Each party samples a random bit ei. Define e = e1 + · · ·+ en.
3. For each i = 1, . . . , n, the system calls FBootstrap(η) on input (i, ei, Share) from party Pi and input

(i, Share) from any other Pj , to obtain [ei]
i
η. That is, (in an honest execution) Pi gets ζi ∈ F, and

the parties gets an additive sharing 〈ϑi〉 of some unknown ϑi ∈ F, such that ζi = ϑi + ei · η. The
parties compute [e]Pη = [e1]1η + · · ·+ [en]nη .

4. At this point of the protocol, the system holds sharings 〈e〉, 〈ζ〉, 〈ϑ〉, 〈η〉, so it can derive 〈χ0〉 = 〈ϑ〉,
and 〈χ1〉 = 〈ϑ〉+ 〈η〉. Note that (for an honest execution) ζ = ϑ+ e · η, or in other words ζ = χe.

5. Each party Pi sets zi, x0,i, x1,i to be the least significant bits of ζi, χ0,i, χ1,i respectively, so as to
obtain sharings 〈z〉, 〈x0〉 and 〈x1〉.

Authenticate OT. This step produces authentications on the bits previously computed.
For every bit y ∈ {e, z, x0, x1} it does the following:

6. Call FBootstrap(α) on input (i, yi, Share) from Pi and (j, Share) for party Pj to obtain [yi]
i
α.

7. Compute JyK by forming
P
i∈P [yi]

i
α, and then subtracting ν(y) from µ(y).

Sacrifice OT. This step checks that the authenticated OT-quadruples are correct. Let JeK, JzK, Jx0K, Jx1K,
be the quadruple to check, and κ a security parameter:
8. Every party Pi samples a seed si and asks FComm to broadcast τi = Comm(si).
9. Every party Pi calls FComm with Open(τi) and all parties obtain sj for all j. Set s = s1 + · · ·+ sn.

10. Parties sample a random vector t = PRFF2,κ
s (0) ∈ Fκ2 . Note all parties obtain the same vector as

they have agreed on the seed s.
11. For i = 1, . . . , κ, repeat the following:

- Take one fresh quadruple JeiK, JziK, Jx0,iK, Jx1,iK, and partially open the values
pi = ti · (Jx0K + Jx1K) + Jx0,iK + Jx1,iK and qi = JeK + JeiK.

- Locally evaluate ci such that

JciK = ti · (JzK + Jx0K) + JziK + Jx0,iK + pi · JeK + qi · (Jx0,iK + Jx1,iK),

and check it partially opens to zero. If it does not, then abort.
12. The parties call ΠMACCheck on the values partially opened in step 11.
13. If no abort occurs, output JeK, JzK, Jx0K, Jx1K as a valid quadruple.

Protocol 8 Preprocessing: Input Sharing and Creation of OT Quadruples in the FBootstrap-hybrid Model

Thus, the system obtains two (secret) elements 〈e〉, 〈ζ〉, such that ζ = ϑ+ e · η, for line (〈ϑ〉, 〈η〉).
Define χ0 = ϑ and χ1 = ϑ+ η, so it holds ζ = χe. The quadruple (e, z, x0, x1) is then given by the
least significant bits of the corresponding field elements (e, ζ, χ0, χ1). This conclude the Share OT
step.

To add MACs to each bit of the quadruple that the parties just generated, the protocol uses the
FBootstrap(α) instance to obtain a sharing 〈α〉 of the global key. Each party can now authenticate
his shares of (e, z, x0, x1) querying Share command and obtaining JeK, JzK, Jx0K, Jx1K. We emphasize

341

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

that the same α is used to authenticate all OT quadruples, thus FBootstrap(α) is fixed once and for
all.

After the Authenticate OT step the parties have sharings JeK, JzK, Jx0K, Jx1K, which could
suffer from two possible errors induced by the corrupted parties: Firstly the algebraic equation
z = xe may not hold, and second the MAC values may be inconsistent. For the latter problem
we will check all the partially opened values using the MACCheck procedure at the end of the
offline phase. For the former case we use the Sacrifice OT step. We use the same methodology
as in [4,7,6], i.e. one quadruple is checked by “sacrificing” another quadruple. The idea involving
sacrificing can be seen as follows: We associate to each pair of quadruples a polynomial S(t) over
the field of secrets (F2 in our case), which is the zero polynomial only if both quadruples are correct.
Thus, proving correctness of quadruples is equivalent to proving that S(t) is the zero polynomial.
This is done by securely evaluating S(t) on a random public challenge bit t via a combination
of addition gates and two openings (plus one extra opening to check the evaluation), and then
checking that the result of the evaluation partially opens to zero. In this way we would waste κ
quadruples to check one quadruple, to get security of 2−κ; we refer the reader to Appendix A for
a more efficient sacrifice procedure.

Theorem 2. Let κ be the security parameter and t ∈ N. In the (FComm,FBootstrap)-hybrid model, the
protocol ΠPrep securely implements FPrep with statistical security on κ against any static adversary
corrupting up to n− 1 parties, assuming the existence of PRFX,ms (·) with domain X = F (resp. F2)
and m = t (resp. κ).

Proof. See Appendix C.3

7 Efficiency Analysis

As it stands our protocol is not that efficient, mainly due to the naive sacrificing step performed in
the offline phase so as to check the GaOTs for correctness. In Appendix A we present a much more
efficient sacrifice step, which for reasonable parameters means that the ratio of required GaOT’s for
each used one can be between four and six. Let this ratio be denoted r.

We examine the cost of a multiplication in terms of the number of aBits required in the case of
two parties. We notice that each GaOT requires us to consume ten aBits; we need to execute the
Share OT step to determine e, z, x0, x1 (which requires one aBit consumption per player, i.e. two
in total when n = 2); in addition each of these four bits needs to be authenticated in Authenticate
OT in Protocol 8 (which again requires one aBit consumption per player, i.e. eight in total when
n = 2).

Since we need one checked GaOT to perform a secure multiplication, and we sacrifice r−1 GaOT
to obtain a checked one; this means we require r ·10 aBits per secure multiplication in the two party
case. Depending on the parameters we use for our sacrifice step in Appendix A, this equates to 40,
50 or 60 aBits per secure multiplication.

We now compare this to the number of aBits needed in the Tiny-OT protocol [13]. In this
protocol each secure multiplication requires two aBits, two aANDs and two aOTs. Assuming a
bucket size of four in the protocols to generate aANDs and aOTs; each aAND (resp. aOT) requires
four LaANDs (resp LaOTs). Each LaAND requires four aBits and each LaOT requires three aBits.
Thus the total number of aBits per secure multiplication is 2 · (1 + 4 · 4 + 4 · 3) = 2 · 29 = 58. We see
therefore that we can make our protocol (in the two party case) more efficient than the Tiny-OT
protocol, when we measure efficiency in terms of the number of aBits consumed.

342

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

8 Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO,
by EPSRC via grant EP/I03126X and by research sponsored by Defense Advanced Research
Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) under agreement num-
ber FA8750-11-2-0079. The US Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of Defense Advanced Research
Projects Agency (DARPA) or the U.S. Government.

References

1. B. Applebaum, Y. Ishai, and E. Kushilevitz. How to garble arithmetic circuits. In R. Ostrovsky, editor, FOCS,
pages 120–129. IEEE, 2011.

2. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer and extensions for faster
secure computation. In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM Conference on Computer and
Communications Security, pages 535–548. ACM, 2013.

3. D. Beaver. Efficient multiparty protocols using circuit randomization. In J. Feigenbaum, editor, CRYPTO,
volume 576 of Lecture Notes in Computer Science, pages 420–432. Springer, 1991.

4. R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multiparty computation.
In K. G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 169–188.
Springer, 2011.

5. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS, pages
136–145. IEEE Computer Society, 2001.

6. I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical covertly secure mpc for
dishonest majority - or: Breaking the spdz limits. In J. Crampton, S. Jajodia, and K. Mayes, editors, ESORICS,
volume 8134 of Lecture Notes in Computer Science, pages 1–18. Springer, 2013.

7. I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic
encryption. In Safavi-Naini and Canetti [15], pages 643–662.

8. I. Damg̊ard and S. Zakarias. Constant-overhead secure computation of boolean circuits using preprocessing. In
A. Sahai, editor, TCC, volume 7785 of Lecture Notes in Computer Science, pages 621–641. Springer, 2013.

9. T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, P. S. Nordholt, and C. Orlandi. Minilego: Efficient secure
two-party computation from general assumptions. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT,
volume 7881 of Lecture Notes in Computer Science, pages 537–556. Springer, 2013.

10. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols
with honest majority. In A. V. Aho, editor, STOC, pages 218–229. ACM, 1987.

11. D. Harnik, Y. Ishai, and E. Kushilevitz. How many oblivious transfers are needed for secure multiparty com-
putation? In A. Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages 284–302.
Springer, 2007.

12. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In D. Boneh, editor,
CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 145–161. Springer, 2003.

13. J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to practical active-secure two-party
computation. In Safavi-Naini and Canetti [15], pages 681–700.

14. J. B. Nielsen and C. Orlandi. Lego for two-party secure computation. In TCC, pages 368–386, 2009.
15. R. Safavi-Naini and R. Canetti, editors. Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Con-

ference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer
Science. Springer, 2012.

A Batching the Sacrifice Step

This technique (an adaptation of a technique to be found originally in [14,6,9]) permits to check a
batch of OT quadruples for algebraic correctness using a smaller number of “sacrificed” quadruples

343

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

than the basic version we described in Section 6. Recall, the idea is to check that an authenticated
OT-quadruple GaOTi = (JeiK, JziK, JxiK, JyiK) verifies the “multiplicative” relation mi = zi + xi +
ei · (xi + yi) = 0.

At a high level, Protocol 9 essentially consists of two different phases. Let (GaOT1, . . . ,GaOTN)
be a set of OT quadruples, in the first phase a fixed portion of these GaOTs are partially opened
as in a classical cut-and-choose step. If any of the opened OT quadruples does not satisfy the
multiplicative relation the protocol aborts. Otherwise it runs the second phase: the remaining
GaOTs are permuted and uniformly distributed into t buckets of size T . Then, for each of the
buckets, the protocol selects a BucketHead, i.e. the first (in the lex order) GaOT in the bucket (as in
[9]), and uses the remaining GaOTs in the same bucket to check that BucketHead correctly satisfies
the multiplicative relation. If any BucketHead does not pass the test, then we know that some
parties are corrupted and the protocol aborts. If all the checks pass then we obtain t algebraically
correct BucketHeads, i.e. t OT quadruples, with overwhelming probability.

Bucket Cut-and-Choose Protocol

Input : Let N = (T + h) · t be the number of input GaOTs and T the size of the buckets, with T ≥ 2. We let
1 ≤ h ≤ T denote an additional parameter controlling how much cut-and-choose we perform.

Phase-I Cut-And-Choose :
1. Every party Pi samples a seed si and asks FComm to broadcast τi = Comm(si).
2. Every party Pi calls FComm with Open(τi) and all parties obtain sj for all j. Set s = s1 + · · ·+ sn.
3. Using a PRFF2,N

s , parties sample a random vector v ∈ FN2 , such that the number of its non-zero entries
is h · t (i.e. the Hamming weight of v is h · t).

4. Let J be the set of indices j such that vj 6= 0, and, ∀j ∈ J , the parties partially open GaOTj and check
that it satisfies the algebraic relation zj + xj = ej · (xj + yj). If there exists an algebraically incorrect
GaOTj quadruple, then the protocol aborts.

Phase-II Bucket-Sacrifice :
5. Permute the unopened GaOTs according to a random permutation π on T ·t indices, again using a PRFs.

Then renumber the permuted unopened GaOTj , such that j = 1, . . . , T · t, and, for i = 1, . . . , t, create
the ith bucket as {GaOTj}iTj=iT−T+1.

6. Parties compute a BucketHead(i) for each i = 1, . . . , t, i.e. return the first (in the lex order) element in
the ith bucket.

7. For i = 1, . . . , t, parties check that BucketHead(i) = GaOTi = (JeiK, JziK, JxiK, JyiK) is correct using the
other GaOTs in the bucket. For j = iT − T + 2, . . . , iT do:

– Set CheckGaOTj = GaOTj = (JzjK, JhjK, JejK, JgjK).
– Parties open 〈ei + ej〉 and 〈xi + yi + hj + gj〉.
– Parties locally compute

Jci,jK = Jzi + xiK + Jzj + hjK + (ei + ej)Jhj + gjK + (xi + yi + hj + gh)JeiK,

and check it partially opens to zero.
– If all checks go through output GaOTi as valid quadruples; otherwise abort.

8. The parties execute the protocol ΠMACCheck to check all partially opened values.

Protocol 9 Bucket Cut-and-Choose Protocol

Theorem 3. For T ≥ κ+log2(t)
log2(t) the previous protocol provide t correct GaOTs with error probability

2−κ.

344

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Proof (sketch). It is easy to check that the protocol is correct and secure in the semi-honest model,
i.e. if all the OT quadruples are honestly generated, according to the GaOT command in ΠPrep,
then ci = 0,∀i.

The argument for active security is as follows. A badGaOT, i.e. a OT quadruple which does not
satisfy the multiplicative relation, passes the test if and only if all the partially opened GaOTs in the
cut-and-choose phase are correct and then it ends up in a bucket containing only badGaOTs. This is
because if we combine two badGaOTs, say GaOTi and GaOTj , we obtain ci,j = mi+mj = 1+1 = 0,
and the test passes. We show that this happens with negligible probability with an appropriate
choice of the parameters. We argue this in two steps: first we prove that when a bucket contains
at least one goodGaOT (a OT satisfying the multiplicative relation) a badGaOT will be always
detected, and then we bound the probability of having buckets containing only badGaOTs.

If parties misbehaved in any previous step yielding a badGaOTi, when we combine it with a
goodGaOTj , then ci,j = mi +mj = 1 and the check fails. Notice that the protocol always abort if
there is a bucket with both bad and good GaOTs. More precisely the protocol checks the algebraic
correctness of the BucketHeads, but indirectly also that of any other GaOTs (We use the BucketHead
notation so that each GaOT is only once paired with a different GaOT).
Let

– PassICheck be the event that the protocol does not abort in the cut-and-choose step
– mbadGaOT be the event that m GaOTs are bad. Note that we fix m here.
– NoMixedBucket the event that there are no buckets containing both goodGaOTs and badGaOTs.

We bound the probability that both PassICheck and NoMixedBucket occur. To do this we prove:

1. Pr[E1] = Pr[PassICheck ∧mbadGaOT] ≤ (T
T+h)m.

2. Pr[E2] = Pr[E1 ∧ NoMixedBucket] ≤ 2(log2(t))(1−T).

The first point is straightforward. First note that if m > h · t then Pr[PassICheck] = 0 and the
protocol aborts; similarly, if m < T , then Pr[NoMixedBucket] = 0, so we can suppose T ≤ m ≤ h · t
(in particular m > 1). Moreover as a bad BucketHead will be always detected if a bucket contains
both good and bad GaOTs, we add the condition m = k · T , k = 1, . . . , t. In this way if m denotes
the number of badGaOTs, and PassICheck is true, then the h · t GaOTs that are opened in the
cut-and-choose step are sampled from the N −m good GaOTs. It holds:

Pr[E1] =
(
N −m
h · t

)
·
(
N

h · t

)−1

=
(

(T + h) · t−m
T · t−m

)
·
(

(T + h) · t
T · t

)−1

=

=
((T + h) · t−m) · · · (h · t+ 1) · (Tt)!

(T · t+ h · t) · · · (ht+ 1)(Tt−m)!
=

(T · t) · · · (Tt−m+ 1) · (Tt−m)!
(Tt+ ht) · · · (Tt+ ht−m+ 1) · (Tt−m)!

≤

≤
(Tt

T t+ ht

)m
=
(T

T + h

)m
.

Now we compute the probability of NoMixedBucket∧E1. Recall that the cardinality of each of the
t buckets is T and that we are assuming m = k · T bad GaOTs. It is easy to see that

Pr[E2] ≤
(T

T + h

)kT
·
(
t

k

)
·
(
Tt

k · T

)−1

.

This probability is maximized in k = 1. Intuitively we can see this as follows: the term
(
t
k

)
·
(
Tt
k·T
)−1

is symmetric with respect to the value k = t/2, as
(
t
k

)
·
(
Tt
k·T
)−1

=
(
t

t−k
)
·
(

Tt
T t−k·T

)−1
, k = 1, . . . , t,

345

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

and it strictly decreases for 1 ≤ k ≤ t/2; the term
(

T
T+h

)kT
is less than 1 and it decreases when

k grows. So when we multiply the two terms we have that the above probability for values of k in
[1, . . . , t/2] is bigger than the same probability for “symmetric” values in]t/2, . . . , t] and we have
the maximum for k = 1. By substituting this value in the previous expression we get:

Pr[E2] =
(T

T + h

)T
· t ·

(
Tt

T

)−1

≤
(T

T + h

)T
· t(1−T) = 2(log2(t))(1−T)+T (log2(T/(T+h))

≤ 2(log2(t))(1−T)

Thus for T ≥ κ+log2(t)
log2(t) we obtain Pr[E2] ≤ 2−κ.

ut

We can replace the Sacrifice OT step in ΠPrep with the above Bucket-Cut-and-Choose Protocol
and Theorem 2, with relative proof, still holds.

Notice, how the value h has little effect on the final probability (we suppressed the effect in
the statement of the Lemma since it is so low). This means we can take h = 1 to obtain the most
efficient protocol, which means the amount of cut-and-choose performed is relatively low.

To measure the efficiency of this protocol we can consider the ratio r = (T+h)· t
t = T + h: it

measures the number of GaOTs that we need to produce one actively secure OT quadruple. We
obtain the following table, all with h = 1 and an error probability of 2−40.

r T = r − h t 40+log2(t)
log2(t)

4 3 220 3
5 4 214 3.85
6 5 210 5

B Information Theoretic Tags for Dishonest Majority

In the online phase, parties work with representations with information-theoretic message authen-
tication codes. The key properties of the MACs is that are homomorphic, and hold enough entropy
to convince an honest party that local computation has been done correctly. The homomorphic
property allows us to postpone the check of the correctness in the MACs until the very end of the
circuit evaluation (where the circuit can be the one implicitly used in the preprocessing or the tar-
get online circuit). In [6] it was shown how to do the check on partially open values whilst keeping
secret the key, hence enabling support for reactive online evaluations, and this is the one we use.
See Protocol 10 for details. The procedure utilizes an ideal functionality FComm for commitments
given in Figure 11. An implementation of FComm in the random oracle model can be found in the
Appendix of [6].

In order to understand the probability of an adversary being able to cheat during the execution
of Protocol 10, the authors in [6] used a security game approach, which in turn was an adaptation
of the one in [7]. For completeness, we state here both the protocol and the security game.

The adversary wins the game if there is an i ∈ {1, . . . , t} for which bi 6= ai, and the check goes
through. The second step in the game, where the adversary sends the bi’s, models the fact that

346

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Protocol ΠMACCheck

Usage: The parties have a set of JaiK, sharings and public bits bi, for i = 1, . . . , t, and they wish to check that
ai = bi, i.e. they want to check whether the public values are consistent with the shared MACs held by the
parties.
As input the system has sharings

`
〈α〉, {bi, 〈ai〉, 〈µ(ai)〉}ti=1

´
. If the MAC values are correct then we have

that µ(ai) = bi · α, for all i.
MACCheck({b1, . . . , bt}):

1. Every party Pi samples a seed si and asks FComm to broadcast τi = Comm(si).
2. Every party Pi calls FComm with Open(τi) and all parties obtain sj for all j.
3. Set s = s1 + · · ·+ sn.
4. Parties sample a random vector χ = PRFF,t

s (0) ∈ Ft; note all parties obtain the same vector as they
have agreed on the seed s.

5. Each party computes the public value b =
Pt
i=1 χi · bi ∈ F.

6. The parties locally compute the sharings 〈µ(a)〉 = χ1 ·〈µ(a1)〉+ · · ·+χt ·〈µ(at)〉 and 〈σ〉 = 〈µ(a)〉−b ·〈α〉.
7. Party i asks FComm to broadcast his share τ ′i = Comm(σi).
8. Every party calls FComm with Open(τ ′i), and all parties obtain σj for all j.
9. If σ1 + · · ·+ σn 6= 0, the parties output ∅ and abort, otherwise they accept all bi as valid authenticated

bits.

Protocol 10 Method to Check MACs on Partially Opened Values

Game: Security of the MACCheck procedure assuming pseudorandom functions

1: The challenger samples random sharing 〈α〉 ∈ F. It sets 〈µ(ai)〉 = ai ·〈α〉 and sends bits a1, . . . , at to the adversary.
2: The adversary sends back bits b1, . . . , bt.
3: The challenger generates random values χ1, . . . , χt ∈ F and sends them to the adversary.
4: The adversary provides an error ∆ ∈ F.
5: Set b =

Pt
i=1 χi · bi, and sharings 〈µ(a)〉 =

Pt
i=0 χi · 〈µ(ai)〉, and 〈σ〉 = 〈µ(a)〉 − b · 〈α〉. The challenger checks

that σ = ∆.

corrupted parties can choose to lie about their shares of values opened on the execution of the
parent protocol. The offset ∆ models the fact that the adversary is allowed to introduce errors on
the MACs. A formal proof of Theorem 4 can be found in the Appendix of [7,6].

Theorem 4 ([6]). The protocol MACCheck is correct, i.e. it accepts if all the public values bi, and
the corresponding MACs are correctly computed. Moreover, it is sound, i.e. it rejects except with
probability 2

|F| in case at least one value, or MAC, is not correctly computed.

The Functionality FComm

Commit: On input (Comm, v, i, τv) by Pi or the adversary on his behalf (if Pi is corrupt), where v is either in
a specific domain or ⊥, it stores (v, i, τv) on a list and outputs (i, τv) to all parties and adversary.

Open: On input (Open, i, τv) by Pi or the adversary on his behalf (if Pi is corrupt), the ideal functionality
outputs (v, i, τv) to all parties and adversary. If (NoOpen, i, τv) is given by the adversary, and Pi is corrupt,
the functionality outputs (⊥, i, τv) to all parties.

Figure 11 Ideal Commitments

347

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

C Security Proofs

C.1 Proof of the Bootstrap Step (Lemma 1)

We show that an environment Z corrupting up to n−1 parties, playing with ΠBootstrap attached to
FaBit or with the simulator S attached to FBootstrap, sees transcripts that are identically distributed.
We assume authenticated communication between parties, that is, they are given access to a func-
tionality FAT, which on input (m, s, s′) from Ps, it gives message m to Ps′ and also leak it to Z. In
a nutshell, the simulator runs a copy of ΠBootstrap acting on behalf of honest parties. Let A be the
set of indices of corrupted parties, parties in A are indexed with j, and parties not in A with k.

We start describing the behaviour of S. The corruption is static, so we can distinguish the two
cases:

a) Pi is honest.
1. In step 1, for s ∈ P, S engages in a run of Π2-Share(2-Share, i, s) with Z, acting on behalf

of Pi and honest Pk: It sets an internal copy of FaBit to generate representations [ri,j]iδ′j on

dummy bits ri,j . It answers queries from Z by sending him {νi,j , δ′j}j∈A. S also gives random
σk to Z, for k /∈ A, and gets back σ∗j for j ∈ A (acting as FAT). It then sets δ∗j = σ∗j + δ′j .

2. S sends {δ∗j }j∈A to FBootstrap as part of Initialize.
3. In step 3, S acting as FAT gives random ds to Z, ∀s 6= i. Note that ν∗j = νi,j + dj · δ∗j is the

purported share that corrupt Pj should come up with.
4. S sends {ν∗j }j∈A to FBootstrap.

b) Pi is dishonest (Z specifies input bit x).
1. In step 1, for s ∈ P, S engages in a run of Π2-Share(2-Share, i, s) with Z, acting on behalf of

honest Pk. It sets an internal copy of FaBit to generate representations [ri,j]iδ′j on dummy bits

ri,s, for s 6= i. S answers queries from Z by sending him {ri,s, µ′i,s}s∈P , and {νi,j , δ′j}j∈A.
Acting as FAT, S gives random σk to Z and it gets back σ∗j . It then sets corrupt δ∗j = σ∗j +δ′j .
S also extracts ν∗j = νi,j + (x+ ri,j) · δ∗j , for j ∈ A, and µi =

∑
s6=i µi,s and ν∗i = x · δ∗i .

2. S sends {δ∗j }j∈A to FBootstrap as part of Initialize.
3. In step 3, S gets bits d∗s for s 6= i via FAT, and for each k /∈ A sets the flag shift-Pk to true

if d∗k 6= ri,k + x.
4. S sends {shift-Pk}k/∈A, {ν∗j }j∈A, µi, x, to FBootstrap.

Case honest Pi. First, we show that ΠBootstrap and FBootstrap output identically distributed values
if Z is honest-but-curious. In ΠBootstrap, the parties obtains a sharing 〈δ〉, 〈ν〉, and party Pi provides
input bit x and also obtains a field element µ. Then, we have∑

s∈P
νs + x · δ =

(
ε+ x · δi

)
+
(∑
s6=i

(νi,s + ds · δs)
)
+x · δ,

=
(
ε+ x · δi

)
+
(∑
s6=i

((µi,s + ri,s · δs) + (x+ ri,s) · δs)
)
+x · δ,

=
(
ε+ x · δi

)
+
(∑
s6=i

(µi,s + x · δs)
)
+x · δ,

= ε+
∑
s6=i

µi,s,

= µ.

348

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

For what Z sees during the execution, either σk or ds, leaked by FAT, look random since
they are paddings of δk and x, with fresh pads δ′k, ri,s given by FaBit to Pi. Now, denote by δH
the sum of the portion of δ-shares that honest parties generated in Initialize of ΠBootstrap, and
let δ∗A =

∑
j∈A(σ∗j + δ′j). That is, δ∗A should match the sum of the corrupt portion of δ-shares

generated in Initialize. Now, say Pi inputs bit x to ΠBootstrap, then, shares {νk}k/∈A are such that∑
k/∈A νk =

∑
j∈A ν

∗
j +x · (δ∗A + δH). In other words, honest νk is consistent with both, δ∗A (that the

adversary imposes via the σ∗j ’s) and ν∗j (that the adversary is suppose to derive from the bits dj),
and these shares are extracted by S in steps 1 and 3 respectively.

Case dishonest Pi. In this case, S sends random σk to Z on behalf of honest Pk. This is
indistinguishable from what is sent in a real run, as Pk is using a padding given by FaBit. For what
ΠBootstrap outputs to honest parties, we note again that, if Z gave correct d∗k to S using FAT, the
sum of the honest portion of ν-shares is equal to

∑
j∈A(νi,j + (x + ri,j) · δ∗j) + x · δi +

∑
j 6=i µi,j ,

which is extracted by S in step 1. And if Z does not send correct d∗k, namely d∗k = x + ri,k + 1,
it would cause honest Pk to compute shifted νk + δk, which is exactly what S tells to FBootstrap to
output in step 3. ut

C.2 Functionality and Proof of the Online Phase (Theorem 1)

Functionality FOnline

Initialize: On input (init) the functionality activates and waits for an input from the environment. Then it
does the following: if it receives Abort, it waits for the environment to input a set of corrupted parties,
outputs it to the parties, and aborts; otherwise it continues.

Input: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?) from all other parties, with varid a fresh
identifier, the functionality stores (varid , x).

Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory and
varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y).

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory
and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y).

Output: On input (output , varid) from all honest parties (if varid is present in memory), the functionality
retrieves (varid , y) and outputs it to the environment. The functionality waits for an input from the en-
vironment. If this input is Deliver then y is output to all players. Otherwise it outputs ∅ is output to all
players.

Figure 12 Secure Function Evaluation

We construct a simulator S such that an environment Z corrupting up to n− 1 parties cannot
distinguish whether it is playing with the ΠOnline attached with FPrep and FComm, or with the
simulator S and FOnline. We start describing the behaviour of the simulator S:

– The simulation of the Initialize procedure is performed running a copy of FPrep on query Init.
All the data of the corrupted parties are known to the simulator. If Z inputs Abort to the copy
of FPrep, then the simulator does the same to FOnline and forward the output of FOnline to Z:
If FOnline outputs Abort, the simulator waits for input a set of corrupted parties from Z and
forward it to FOnline, and aborts; otherwise it uses the Z’s inputs as preprocessed data.

– In the Input stage the simulator does the following. For the honest parties this step is run
correctly with dummy inputs; it reads the inputs of corrupted parties specified by Z. Then
the simulator runs a copy of Share command of FPrep sending back sharings [x]iα such that

349

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

i ∈ A, where A is the set of corrupted parties. When Z writes the outputs corresponding to the
corrupted parties, the simulator writes these values on the influence port of FOnline as inputs.

– The procedure Add, Multiply are performed according to the protocol and the simulator calls
the respective procedure to FOnline.

– In the Output step, the functionality FOnline outputs y to the S. Now the simulator has to
provide shares of honest parties such that they are consistent with y. It knows an output value
y′ computed using the dummy inputs for the honest parties, so it can select a random honest
player and modify its share adding y − y′ and modify the MAC adding α(y − y′), which is
possible for the simulator, since it knows α. After that the simulator opens y as in the protocol.
If y passes the check, the simulator sends Deliver to FOnline.

All the steps of the protocol are perfectly simulated: during the initialization the simulator acts
as FPrep; addition does not involve communication, while multiplication implies partial opening: in
the protocol, as well as in the simulation, this opening reveals uniform values. Also, MACs have
the same distributions in both the protocol and the simulation.

Finally, in the output stage, Z can see y and the shares from honest parties, which are uniform
and compatible with y and its MAC. Moreover it is a correct evaluation of the function on the inputs
provided by the parties in the input stage. The same happens in the protocol with overwhelming
probability, since the probability that a corrupted party is able to cheat in a MACCheck call is 2/|F|
(see Theorem 4). ut

C.3 Proof of the Preprocessing (Theorem 2)

The description of the simulator, denoted by S, is provided in Figure 13. Define TReal to be the
set of messages sent or received from corrupt parties together with the inputs and outputs of the
parties, in an execution of ΠPrep with FBootstrap and FComm. Likewise define TIdeal for an execution
of FPrepwith S. To prove UC security, we see Z as a distinguisher between the two systems, and
our aim is to show that

|Pr[0← Z(TReal)]− Pr[0← Z(TIdeal)]−
1
2
| ≤ negl(κ).

For this to hold, it is enough to show that Z receives as inputs transcripts TReal, TIdeal that are
statistically indistinguishable. We argue as follows.

First note that transcripts generated on calls to Initialize and Share in both executions, are
perfectly indistinguishable, as they are nothing but calls to FBootstrap in the real case, with identical
behaviour of Share command in FPrep, (and S only forwards queries to the FPrep).

We turn now to GaOT command. Let OTout = {JeK, JzK, Jx0K, Jx1K} be the quadruple that
honest parties are hoping to output if no abort occurs. Define the “multiplicative relation” m =
z + x0 + e · (x0 + x1), and say that OTout is bad if m = 1. Thus, bad quadruples are those that
implement the multiplication gate incorrectly. Additionally, say that quadruple is noauth if Z sent
to FBootstrap(α) flag shift-Pk set to true for at least one honest party Pk, during the execution of
AuthenticateOT.

Indistinguishability of transcripts. First notice that TReal and TIdeal truncated up to the point
where the parties output the quadruple are perfectly indistinguishable (steps 12 and 5 respectively):
looking at Figure 13, we see that S sacrifices quadruples exactly as ΠPrep. More precisely, step 5
of S mimics steps 8-12 of ΠPrep. Moreover, S uses quadruples generated in step 3, and honest

350

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The Simulator of ΠPrep

The set of corrupt parties is denoted with A.

Initialize: S forwards to FPrep the query (Init) together with {αj}j∈A) that Z does to FBootstrap. Then samples
random α ∈ F, and a set of sharings {αk}k/∈A consistent with {αj}j∈A and α, but otherwise random. It
stores the complete sharing for later use.

Share: S forwards to FPrep the query (i, Share) of Z to FBootstrap. S also gets flags {shift-Pk}k/∈A, and MAC
shares {µj}j∈A from Z. If i ∈ A, Z specifies input bit x. S sends shift flags, MAC shares and (possibly)
input x to FPrep.

GaOT:
1. In steps 1 and 3, when Z thinks is querying FBootstrap, on commands Init and Share, respectively, S

discards all the values received from Z.
2. Steps 2, 4, 5 are local, and S does nothing.
3. Steps 6-7, are repeated four times, one for each symbol y ∈ {e, z, x0, x1}. In each invocation S does:

– During the i-th query to Share command of FBootstrap, S receives from Z bits {yi,j}i∈A and MAC
shares {νj(yi) ∈ F}j∈A, and flags {shift-Pk

(i)}k/∈A. It also receives bit yi, and µ(yi) ∈ F, if i ∈ A.
– After the n queries are done, S sets the data of each representation [yi]

i
α corresponding to honest

parties exactly as FBootstrap would do. Thus, if i /∈ A, S samples yi ∈ F2, and µ(yi) ∈ F at random,
otherwise uses Z’s choice. It sets ν(yi) = µ(yi) + yi · α and prepares sharings 〈yi〉 〈ν(yi)〉 where the
honest shares νk(yi) are consistent with Z’s shares. Finally, S shifts honest share νk(yi) = ν′k(yi)+αk
if shift-(Pk)(i) is true. The honest data on the joint representation JyK is generated as one expects,
where y =

P
i∈P yi.

4. The above steps are repeated at least κ+ 1 times, as in ΠPrep.
5. Steps 8-12 are performed as in ΠPrep, where S acts on behalf of honest parties using the dummy quadru-

ples generated in the executions of step 3. It also answers queries from Z to Comm and Open commands
of FComm. Openings on behalf of honest parties are set to random seed values.

6. If some iteration in the previous step result in abort, S inputs Abort to FPrep. Otherwise, inputs Continue,
and for each bit y ∈ {e, z, x0, x1} of the checked quadruple, S discards the shift flags, and gives bit shares
{yj}j∈A, and MAC shares {µj(y)}j∈A derived in step 3, to FPrep.

Figure 13 The Simulator of ΠPrep

parties use quadruples generated in steps 6-7. These quadruples are identically distributed because
S proceeds exactly as FBootstrap does. Also, notice that in ΠPrep the output quadruples are those that
parties choose to authenticate, and hence S skips the simulation of ShareOT (besides accepting
Z’s queries) since no outgoing communication from either FBootstrap or party-to-party is done.

Output indistinguishability. If Z is honest-but-curious, then a run with ΠPrep outputs a quadru-
ple that is neither bad nor noauth. This follows from the correctness of ShareOT and Authenti-
cateOT steps. Also, in step 3, S is able to extract the portion of shares of OTout corresponding to
corrupt parties, and give them to FPrep. We therefore conclude that the outputs in both worlds are
identically distributed. On the other hand, if Z misbehaves in an arbitrary way, it suffices to show
the following to conclude the proof:

OTout is bad ∨ noauth⇒ ΠPrep outputs ∅ with probability 1− negl(κ).

We argue as follows: the sacrifice step is run by the honest parties. Therein, in the ith iteration,
a fresh check quadruple OTi is taken and honest parties reveal a linear combination on their portion
of the shares of OTout and OTi, that open to pi, qi and ci. If Z started with input shares that render
an OTout that is noauth, or chooses to reveal something different, say wlog, the first opening gives
wrong p∗i Then he managed to either pass ΠMACCheck on the open values with p∗i not authenticated,
or he managed to authenticate p∗i and feed it to ΠMACCheck. The former happens with probability 2

|F|

351

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

by Theorem 4 (assuming PRFF,t
s (·)), and the latter is equivalent to have Z holding the field element

µH + p∗i ·αH =
∑

k/∈A(µk(p∗i) + p∗i ·αk), and this happens with probability 1
|F| , since µH + p∗i ·αH is

only derivable from the private transcripts of honest parties (thus, Z must guess it). We conclude
that, if ΠMACCheck passes, then Z misbehaves in the sacrifice step, or it inputs shares that render
an OTout that is noauth, with probability bounded by 2

|F| = 2−κ+1. Now, it is easy to see that if Z
follows the sacrifice step, then we can write ci = m · ti +m′i, where m′i is the multiplicative relation
of OTi. Therefore, if Z misbehaved in any previous step, yielding bad OTout, then ci = ti + m′i.
In this way if the sacrifice step passes, we can write t = m′, where t is the challenge vector. This
vector is randomly sampled from Fκ2 , assuming PRFF2,κ

s (·), thus the probability of having t fixed to
m′ is 2−κ.

Summing up, bad or noauth output quadruples will pass both tests with probability at most
2−κ+1. This concludes the proof of the theorem. ut

352

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Reducing the Overhead of MPC over a Large Population

A. Choudhury1, A. Patra2, and N. P. Smart3

1 IIIT Bangalore, India.
2 Dept. of Computer Science & Automation, IISc Bangalore, India.

3 Dept. of Computer Science, Uni. Bristol, United Kingdom.
partho31@gmail.com,arpita@csa.iisc.ernet.in,nigel@cs.bris.ac.uk.

Abstract. We present a secure honest majority MPC protocol, against a static adversary, which aims to reduce the
communication cost in the situation where there are a large number of parties and the number of adversarially con-
trolled parties is relatively small. Our goal is to reduce the usage of point-to-point channels among the parties, thus
enabling them to run multiple different protocol executions. Our protocol has highly efficient theoretical communi-
cation cost when compared with other protocols in the literature; specifically the circuit-dependent communication
cost, for circuits of suitably large depth, is O(|ckt|κ7), for security parameter κ and circuit size |ckt|. Our protocol
finds application in cloud computing scenario, where the fraction of corrupted parties is relatively small. By mini-
mizing the usage of point-to-point channels, our protocol can enable a cloud service provider to run multiple MPC
protocols.

1 Introduction

Threshold secure multi-party computation (MPC) is a fundamental problem in secure distributed computing.
It allows a set of nmutually distrusting parties with private inputs to “securely” compute any publicly known
function of their private inputs, even in the presence of a centralized adversary who can control any t out of
the n parties and force them to behave in any arbitrary manner. Now consider a situation, where n is very
large, say n ≥ 1000 and the proportion of corrupted parties (namely the ratio t/n) is relatively small, say 5
percent. In such a scenario, involving all the n parties to perform an MPC calculation is wasteful, as typical
(secret-sharing based) MPC protocols require all parties to simultaneously transmit data to all other parties.
However, restricting to a small subset of parties may lead to security problems. In this paper we consider
the above scenario and show how one can obtain a communication efficient, robust MPC protocol which
is actively secure against a computationally bounded static adversary. In particular we present a protocol in
which the main computation is performed by a “smallish” subset of the parties, with the whole set of parties
used occasionally so as to “checkpoint” the computation. By not utilizing the entire set of parties all the time
enables them to run many MPC calculations at once. The main result we obtain in the paper is as follows:

Main Result (Informal): Let ε = t
n with 0 ≤ ε < 1/2 and let the t corrupted parties be under

the control of a computationally bounded static adversary. Then for a security parameter κ (for
example κ = 80 or κ = 128), there exists an MPC protocol with the following circuit-dependent
communication complexity4 to evaluate an arithmetic circuit ckt: (a).O(|ckt|·κ7) for ckt with depth
ω(t). (b). O(|ckt| · κ4) for ckt with d = ω(t) and w = ω(κ3) (i.e. |ckt| = ω(κ3t)).

Protocol Overview: We make use of two secret-sharing schemes. A secret-sharing scheme [·] which is an
actively-secure variant of the Shamir secret-sharing scheme [28] with threshold t. This first secret-sharing

4 The communication complexity of an MPC protocol has two parts: a circuit-dependent part, dependent on the circuit size and a
circuit-independent part. The focus is on the circuit-dependent communication, based on the assumption that the circuit is large
enough so that the terms independent of the circuit-size can be ignored; see for example [11, 4, 12, 5].

353

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

scheme is used to share values amongst all of the n parties. The second secret-sharing scheme 〈·〉 is an
actively-secure variant of an additive secret-sharing scheme, amongst a well-defined subset C of the parties.

Assuming the inputs to the protocol are [·] shared amongst the parties at the start of the protocol, we
proceed as follows. We first divide ckt into L levels, where each level consists of a sub-circuit. The com-
putation now proceeds in L phases; we describe phase i. At the start of phase i we have that all n parties
hold [·] sharings of the inputs to level i. The n parties then select (at random) a committee C of size c. If c is
such that εc < 2−κ then statistically the committee C will contain at least one honest party, as the inequality
implies that the probability that the committee contains no honest party is negligibly small. The n parties
then engage in a “conversion” protocol so that the input values to level i are now 〈·〉 shared amongst the
committee. The committee C then engages in an actively-secure dishonest majority5 MPC protocol to eval-
uate the sub-circuit at level i. If no abort occurs during the evaluation of the ith sub-circuit then the parties
engage in another “conversion” protocol so that the output values of the sub-circuit are converted from a 〈·〉
sharing amongst members in C to a [·] sharing amongst all n parties. This step amounts to check-pointing
data. This ensures that the inputs to all the subsequent sub-circuits are saved in the form of [·] sharing which
guarantees recoverability as long as 0 ≤ ε < 1

2 . So the check-pointing prevents from re-evaluating the entire
circuit from scratch after every abort of the dishonest-majority MPC protocol.

If however an abort occurs while evaluating the ith sub-circuit then we determine a pair of parties from
the committee C, one of whom is guaranteed to be corrupted and eliminate the pair from the set of active
parties, and re-evaluate the sub-circuit again. In fact, cheating can also occur in the 〈·〉 ↔ [·] conversions
and we need to deal with these as well. Thus if errors are detected we need to repeat the evaluation of the
sub-circuit at level i. Since there are at most t bad parties, the total amount of backtracking (i.e. evaluating
a sub-circuit already computed) that needs to be done is bounded by t. For large n and small t this provides
an asymptotically efficient protocol.

The main technical difficulty is in providing actively-secure conversions between the two secret-sharing
schemes, and providing a suitable party-elimination strategy for the dishonest majority MPC protocol. The
party-elimination strategy we employ follows from standard techniques, as long as we can identify the pair
of parties. This requirement, of a dishonest-majority MPC protocol which enables identification of cheaters,
without sacrificing privacy, leads us to the utilization of the protocol in [12]. This results in us needing to
use double-trapdoor homomorphic commitments as a basic building block. To ensure greater asymptotic
efficiency we apply two techniques: (a). the check-pointing is done among a set of parties that assures
honest majority with overwhelming probability (b). the packing technique from [20] to our Shamir based
secret sharing.

To obtain an efficient protocol one needs to select L; if L is too small then the sub-circuits are large and
so the cost of returning to a prior checkpoint will also be large. If however L is too large then we will need
to checkpoint a lot, and hence involve all n parties in the computation at a lot of stages (and thus requiring
all n parties to be communicating/computing). The optimal value of L for our protocol turns out to be t.

Related Work: The circuit-dependent communication complexity of the traditional MPC protocols in the
honest-majority setting is O(|ckt| · Poly(n, κ)); this informally stems from the fact in these protocols we
require all the n parties to communicate with each other for evaluating each gate of the circuit. Assum-
ing 0 ≤ ε < 1/2, [11] presents a computationally secure MPC protocol with communication complexity
O(|ckt| · Poly(κ, log n, log |ckt|)). The efficiency comes from the ability to pack and share several values
simultaneously which in turn allow parallel evaluation of “several” gates simultaneously in a single round

5 In the dishonest-majority setting, the adversary may corrupt all but one parties. An MPC protocol in this setting aborts if a
corrupted party misbehaves.

354

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

of communication. However, the protocol still requires communications between all the parties during each
round of communication. Our protocol reduces the need for the parties to be communicating with all oth-
ers at all stages in the protocol; moreover, asymptotically for large n it provides a better communication
complexity over [11] (as there is no dependence on n), for circuits of suitably large depth as stated earlier.
However, the protocol of [11] is secure against a more powerful adaptive adversary.

In the literature, another line of investigation has been carried out in [6, 10, 14, 15] to beat the O(|ckt| ·
Poly(n, κ)) communication complexity bound of traditional MPC protocols, against a static adversary. The
main idea behind all these works is similar to ours, which is to involve “small committees” of parties for
evaluating each gate of the circuit, rather than involving all the n parties. The communication complexity
of these protocols6 is of the order O(|ckt| · Poly(log n, κ)). Technically our protocol is different from these
protocols in the following ways: (a). The committees in [6, 10, 14, 15] are of size Poly(log n), which ensures
that with high probability the selected committees have honest majority. As a result, these protocols run any
existing honest-majority MPC protocol among these small committees of Poly(log n) size, which prevents
the need to check-point the computation (as there will be no aborts). On the other hand, we only require
committees with at least one honest party and our committee size is independent of n, thus providing better
communication complexity. Indeed, asymptotically for large n, our protocol provides a better communica-
tion complexity over [6, 10, 14, 15] (as there is no dependence on n), for circuits of suitably large depth. (b).
Our protocol provides a better fault-tolerance. Specifically, [14, 10, 6] requires ε < 1/3 and [15] requires
ε < 1/8; on the other hand we require ε < 1/2.

We stress that the committee selection protocol in [6, 10, 14, 15] is unconditionally secure and in the
full-information model, where the corrupted parties can see all the messages communicated between the
honest parties. On the other hand our implementation of the committee selection protocol is computationally
secure. The committee election protocol in [6, 10, 14, 15] is inherited from [17]. The committee selection
protocol in these protocols are rather involved and not based on simply randomly selecting a subset of
parties, possibly due to the challenges posed in the full information model with unconditional security; this
causes their committee size to be logarithmic in n. However, if one is willing to relax at least one of the
above two features (i.e. full information model and unconditional security), then it may be possible to select
committees with honest majority in a simple way by randomly selecting committees, where the committee
size may be independent of n. However investigating the same is out of the scope of this paper.

Finally we note that the idea of using small committees has been used earlier in the literature for var-
ious distributed computing tasks, such as the leader election [23, 26], Byzantine agreement [24, 25] and
distributed key-generation [9].

On the Choice of ε: We select committees of size c satisfying εc < 2−κ. This implies that the selected
committee has at least one honest participant with overwhelming probability. We note that it is possible to
randomly select committees of “larger” size so that with overwhelming probability the selected committee
will have honest majority. We label the protocol which samples a committee with honest majority and then
runs an computationally secure honest majority MPC protocol (where we need not have to worry about
aborts) as the “naive protocol”. The naive protocol will have communication complexityO(|ckt| ·Poly(κ)).

For “very small” values of ε, the committee size for the naive protocol is comparable to the committee
size in our protocol. We demonstrate this with an example, with n = 1000 and security level κ = 80: The
committee size we require to ensure both a single honest party in the committee and a committee with honest
majority, with overwhelming probability of (1 − 2−80) for various choices of ε, is given in the following
table:

6 Note, the protocol of [6] involves FHE to further achieve a communication complexity of O(Poly(logn)).

355

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ε c to obtain at least one honest party c to obtain honest majority
1/3 48 448
1/4 39 250
1/10 23 84
1/100 11 20

From the table it is clear that when ε is closer to 1/2, the difference in the committee size to obtain at
least one honest party and to obtain honest majority is large. As a result, selecting committees with honest
majority can be prohibitively expensive, thus our selection of small committees with dishonest majority
provides significant improvements.

To see intuitively why our protocol selects smaller committees, consider the case when the security
parameter κ tends to infinity: Our protocol will require a committee of size roughly ε · n + 1, whereas the
naive protocol will require a committee of size roughly 2 · ε · n + 1. Thus the naive method will use a
committee size of roughly twice that of our method. Hence, if small committees are what is required then
our method improves on the naive method.

For fixed ε and increasing n, we can apply the binomial approximation to the hypergeometric distri-
bution, and see that our protocol will require a committee of size c ≈ κ/ log2(1

ε). To estimate the com-
mittee size for the naive protocol we use the cumulative distribution function for the binomial distribution,
F (b; c, ε), which gives the probability that we select at least b corrupt parties in a committee of size c given
the probability of a corrupt party being fixed at ε. To obtain an honest majority with probability less than
2−κ we require F (c/2; c, ε) ≈ 2−κ. By estimating F (c/2; c, ε) via Hoeffding’s inequality we obtain

exp
(
−2 · (c · ε− c/2)2

c

)
≈ 2−κ,

which implies

κ ≈
(
c · (2 · ε− 1)2

2

)
/ loge 2.

Solving for c gives us

c ≈ 2 · κ · loge 2
(2 · ε− 1)2

.

Thus for fixed ε and large n the number of parties in a committee is O(κ) for both our protocol, and the
naive protocol. Thus the communication complexity of our protocol and the naive protocol is asymptotically
the same. But, since the committees in our protocol are always smaller than those in the naive protocol, we
will obtain an advantage when the ratio of the different committee size is large, i.e. when ε is larger.

The the ratio between the committee size in the naive protocol and that of our protocol (assuming we
are in a range when Hoeffding’s inequality provides a good approximation) is roughly

−2 · loge 2 · log2 ε

(2 · ε− 1)2

So for large n the ratio between the committee sizes of the two protocols depends on ε alone (and is inde-
pendent of κ). By way of example this ratio is approximately equal to 159 when ε = 0.45, 19 when ε = 1/3,
7 when ε = 1/10 and 9.6 when ε = 1/100; although the approximation via Hoeffding’s inequality only
really applies for ε close to 1/2.

This implies that for values of ε close to 1/2 our protocol will be an improvement on the naive protocol.
However, the naive method does not have the extra cost of check-pointing which our method does; thus at
some point the naive protocol will be more efficient. Thus our protocol is perhaps more interesting, when ε
is not too small, say in the range of [1/100, 1/2].

356

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Possible Application of Our Protocol for Cloud-Computing. Consider the situation of an organization
performing a multi-party computation on a cloud infrastructure, which involves a large number of machines,
with the number of corrupted parties possibly high, but not exceeding one half of the parties, (which is
exactly the situation considered in our MPC protocol). Using our MPC protocol, the whole computation can
be then carried out by a small subset of machines, with the whole cloud infrastructure being used only for
check-pointing the computation. By not utilizing the whole cloud infrastructure all the time, we enable the
cloud provider to serve multiple MPC requests.

Our protocol is not adaptively secure. In fact, vulnerability to adaptive adversary is inherent to most
of the committee-based protocols for several distributed computing tasks such as Leader Election [23, 26],
Byzantine Agreement [25, 24], Distributed Key-generation [9] and MPC in [14, 10]. Furthermore, We feel
that adaptive security is not required in the cloud scenario. Any external attacker to the cloud data centre will
have a problem determining which computers are being used in the committee, and an even greater problem
in compromising them adaptively. The main threat model in such a situation is via co-tenants (other users
processes) to be resident on the same physical machine. Since the precise machine upon which a cloud
tenant sits is (essentially) randomly assigned, it is hard for a co-tenant adversary to mount a cross-Virtual
Machine attack on a specific machine unless they are randomly assigned this machine by the cloud. Note,
that co-tenants have more adversarial power than a completely external attacker. A more correct security
model would be to have a form of adaptive security in which attackers pro-actively move from one machine
to another, but in a random fashion. We leave analysing this complex situation to a future work.

2 Model, Notation and Preliminaries

We denote by P = {P1, . . . , Pn} the set of n parties who are connected by pair-wise private and authentic
channels. We assume that there exists a PPT static adversary A, who can maliciously corrupt any t parties
fromP at the beginning of the execution of a protocol, where t = n·ε and 0 ≤ ε < 1

2 . There exists a publicly
known randomized function f : Fnp → Fp, expressed as a publicly known arithmetic circuit ckt over the field
Fp of prime order p (including random gates to enable the evaluation of randomized functions), with party Pi
having a private input x(i) ∈ Fp for the computation. We let d and w to denote the depth and (average) width
of ckt respectively. The finite field Fp is assumed to be such that p is a prime, with p > max{n, 2κ}, where
κ is the computational security parameter. Apart from κ, we also have an additional statistical security
parameter s and the security offered by s (which is generally much smaller than κ) does not depend on the
computational power of the adversary.

The security of our protocol(s) will be proved in the universal composability (UC) model. The UC frame-
work allows for defining the security properties of cryptographic tasks so that security is maintained under
general composition with an unbounded number of instances of arbitrary protocols running concurrently. In
the framework, the security requirements of a given task are captured by specifying an ideal functionality
run by a “trusted party” that obtains the inputs of the parties and provides them with the desired outputs.
Informally, a protocol securely carries out a given task if running the protocol in the presence of a real-world
adversary amounts to “emulating” the desired functionality. For more details, see Appendix A.

We do not assume a physical broadcast channel. Although our protocol uses an ideal broadcast func-
tionality FBC (Fig. 3), that allows a sender Sen ∈ P to reliably broadcast a message to a group of parties
X ⊆ P , the functionality can be instantiated using point-to-point channels; see Appendix B.2 for details.

The communication complexity of our protocols has two parts: the communication done over the point-
to-point channels and the broadcast communication. The later is captured by BC

(
`, |X |

)
to denote that in

total, O(`) bits is broadcasted in the associated protocol to a set of parties of size |X |. For details about the
instantiation of FBC, see Appendix B.

357

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Two different types of secret-sharing are employed in our protocols. The secret-sharings are inherently
defined to include “verification information” of the individual shares in the form of publicly known commit-
ments. We use a variant of the Pedersen homomorphic commitment scheme [27]. In our protocol, we require
UC-secure commitments to ensure that a committer must know its committed value and just cannot manip-
ulate a commitment produced by other committers to violate what we call “input independence”. It has been
shown in [8] that a UC secure commitment scheme is impossible to achieve without setup assumptions.
The standard method to implement UC-secure commitments is in the Common Reference String (CRS)
model where it is assumed that the parties are provided with a CRS that is set up by a “trusted third party”
(TTP). We follow [12], where the authors show how to build a multiparty UC-secure homomorphic com-
mitment scheme (where multiple parties can act as committer) based on any double-trapdoor homomorphic
commitment scheme.

Definition 1 (Double-trapdoor Homomorphic Commitment for Fp [12]). It is a collection of five PPT
algorithms (Gen,Comm,Open,Equivocate,TDExtract,�):

– Gen(1κ) → (ck, τ0, τ1): the generation algorithm outputs a commitment key ck, along with trapdoors
τ0 and τ1.

– Commck(x; r0, r1) → Cx,r0,r1: the commitment algorithm takes a message x ∈ Fp and randomness
r0, r1 from the commitment randomness space R 7 and outputs a commitment Cx;r0,r1 of x under the
randomness r0, r1.

– Openck(C, (x; r0, r1)) → {0, 1}: the opening algorithm takes a commitment C, along with a mes-
sage/randomness triplet (x, r0, r1) and outputs 1 if C = Commck(x; r0, r1), else 0.

– Equivocate(Cx,r0,r1 , x, r0, r1, x, τi)→ (r0, r1) ∈ R: using one of the trapdoors τi with i ∈ {0, 1}, the
equivocation algorithm can open a commitment Cx,r0,r1 with any message x 6= x with randomness r0
and r1 where r1−i = r1−i.

– TDExtract(C, x, r0, r1, x, r0, r1, τi) → τ1−i: using one of the trapdoors τi with i ∈ {0, 1} and two
different sets of message/randomness triplet for the same commitment, namely x, r0, r1 and x, r0, r1, the
trapdoor extraction algorithm can find the other trapdoor τ1−i if r1−i 6= r1−i.
The commitments are homomorphic meaning that Comm(x; r0, r1) � Comm(y; s0, s1) = Comm(x +
y; r0 + s0, r1 + s1) and Comm(x; r0, r1)c = Comm(c · x; c · r0, c · r1) for any publicly known constant
c.

We require the following properties to be satisfied:

– Trapdoor Security: There exists no PPT algorithm A such that A(1κ, ck, τi)→ τ1−i, for i ∈ {0, 1}.
– Computational Binding: There exists no PPT algorithm A with A(1κ, ck) → (x, r0, r1, x, r0, r1) and

(x, r0, r1) 6= (x, r0, r1), but Commck(x; r0, r1) = Commck(x; r0, r1).
– Statistical Hiding: ∀x, x ∈ Fp and r0, r1 ∈ R, let (r0, r1) = Equivocate(Cx,r0,r1 , x, r0, r1, x, τi),

with i ∈ {0, 1}. Then Commck(x; r0, r1) = Commck(x; r0, r1) = Cx,r0,r1; moreover the distribution of
(r0, r1) and (r0, r1) are statistically close.

We will use the following instantiation of a double-trapdoor homomorphic commitment scheme which is
a variant of the standard Pedersen commitment scheme over a group G in which discrete logarithms are
hard [12]. The message space is Fp and the randomness space isR = F2

p.

– Gen(1κ)→ ((G, p, g, h0, h1), τ0, τ1), where ck = (G, p, g, h0, h1) such that g, h0, h1 are generators of
the group G of prime order p and gτi = hi for i ∈ {0, 1}.

7 For the ease of presentation, we assumeR to be an additive group.

358

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

– Commck(x; r0, r1)→ gxhr00 h
r1
1 = Cx,r0,r1 , with x, r0, r1 ∈ Fp.

– Openck(C, (x, r0, r1))→ 1, if C = gxhr00 h
r1
1 , else Openck(C, (x, r0, r1))→ 0.

– Equivocate(Cx,r0,r1 , x, r0, r1, x, τi)→ (r0, r1) where r1−i = r1−i and ri = τ−1
i (x− x) + ri.

– TDExtract(C, x, r0, r1, x, r0, r1, τi)→ τ1−i, where if r1−i 6= r1−i, then

τ1−i =
x− x+ τi(ri − ri)

r1−i − r1−i
.

– The homomorphic operation � is just the group operation i.e.

Comm(x; r0, r1)� Comm(x; r0, r1) = gxhr00 h
r1
1 · g

xhr00 h
r1
1

= gx+x · hr0+r0
0 · hr1+r1

1

= Comm(x+ x; r0 + r0, r1 + r1).

We can now define the various types of secret-shared data used in our protocols. Let α1, . . . , αn ∈ Fp be
n publicly known non-zero, distinct values, where αi is associated with Pi as the evaluation point. The [·]
sharing is the standard Shamir-sharing [28], where the secret value will be shared among the set of parties
P with threshold t. Additionally, a commitment of each individual share will be available publicly, with the
corresponding share-holder possessing the randomness of the commitment.

Definition 2 (The [·] Sharing). Let s ∈ Fp; then s is said to be [·]-shared among P if there exist polyno-
mials, say f(·), g(·) and h(·), of degree at most t, with f(0) = s and every (honest) party Pi ∈ P holds
a share fi = f(αi) of s, along with opening information gi = g(αi) and hi = h(αi) for the commitment
Cfi,gi,hi = Commck(fi; gi, hi). The information available to party Pi ∈ P as part of the [·]-sharing of s
is denoted by [s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P). All parties will also have the access to ck. Moreover, the
collection of [s]i’s, corresponding to Pi ∈ P is denoted by [s].

The second type of secret-sharing (which is a variation of additive sharing), is used to perform computation
via a dishonest majority MPC protocol amongst our committees.

Definition 3 (The 〈·〉 Sharing). A value s ∈ Fp is said to be 〈·〉-shared among a set of parties X ⊆ P ,
if every (honest) party Pi ∈ X holds a share si of s along with the opening information ui, vi for the
commitment Csi,ui,ui = Commck(si;ui, vi), such that

∑
Pi∈X si = s. The information available to party

Pi ∈ X as part of the 〈·〉-sharing of s is denoted by 〈s〉i = (si, ui, vi, {Csj ,uj ,vj}Pj∈X). All parties will also
have access to ck. The collection of 〈s〉i’s corresponding to Pi ∈ X is denoted by 〈s〉X .

It is easy to see that both types of secret-sharing are linear. For example, for the 〈·〉 sharing, given 〈s(1)〉X , . . . ,
〈s(`)〉X and publicly known constants c1, . . . , c`, the parties in X can locally compute their information cor-
responding to 〈c1 · s(1) + . . . + c` · s(`)〉X . This follows from the homomorphic property of the underlying
commitment scheme and the linearity of the secret-sharing scheme. This means that the parties in X can
locally compute 〈c1 · s(1) + . . .+ c` · s(`)〉X from 〈s(1)〉X , . . . , 〈s`〉X , since each party Pi in X can locally
compute 〈c1 · s(1) + . . .+ c` · s(`)〉i from 〈s(1)〉i, . . . , 〈s`〉i.

3 Main Protocol

We now present an MPC protocol implementing the standard honest-majority (meaning ε < 1/2) MPC
functionality Ff presented in Figure 1 which computes the function f .

We now present the underlying idea of our protocol (outlined earlier in the introduction). The protocol is
set in a variant of the player-elimination framework from [4]. During the computation either pairs of parties,

359

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Functionality Ff

Ff interacts with the parties in P and the adversary S and is parametrized by an n-input function f : Fnp → Fp.

– Upon receiving (sid, i, x(i)) from every Pi ∈ P where x(i) ∈ Fp, the functionality computes y = f(x(1), . . . , x(n)),
sends (sid, y) to all the parties and the adversary S and halts.

Fig. 1. The Ideal Functionality for Computing a Given Function f

each containing at least one actively corrupted party, or singletons of corrupted parties, are identified due to
some adversarial behavior of the corrupted parties. These pairs, or singletons, are then eliminated from the
set of eligible parties. To understand how we deal with the active corruptions, we need to define a dynamic
set L ⊆ P of size n, which will define the current set of eligible parties in our protocol, and a threshold
t which defines the maximum number of corrupted parties in L. Initially L is set to be equal to P (hence
n = n) and t is set to t. We then divide the circuit ckt (representing f) to be evaluated into L levels, where
each level consists of a sub-circuit of depth d/L; without loss of generality, we assume d to be a multiple
of L. We denote the ith sub-circuit as ckti. At the beginning of the protocol, all the parties in P verifiably
[·]-share their inputs for the circuit ckt.

For evaluating a sub-circuit cktl, instead of involving all the parties in L, we rather involve a small and
random committee C ⊂ L of parties of size c, where c is the minimum value satisfying the constraint that
εc ≤ 2−κ; recall ε = t/n. During the course of evaluating the sub-circuit, if any inconsistency is reported,
then the (honest) parties in P will identify either a single corrupted party or a pair of parties from L where
the pair contains at least one corrupted party. The identified party(ies) is(are) eliminated from L and the
value of t is decremented by one, followed by re-evaluation of cktl by choosing a new committee from the
updated set L. This is reminiscent of the player-elimination framework from [4], however the way we apply
the player-elimination framework is different from the standard one. Specifically, in the player-elimination
framework, the entire set of eligible parties L is involved in the computation and the player elimination
is then performed over the entire L, thus requiring huge communication. On the contrary, in our context,
only a small set of parties C is involved in the computation, thus significantly reducing the communication
complexity. It is easy to see that after a sequence of t failed sub-circuit evaluations, L will be left with only
honest parties and so each sub-circuit will be evaluated successfully from then onwards.

Note that the way we eliminate the parties, the fraction of corrupted parties in L after any un-successful
attempt for sub-circuit evaluation, is upper bounded by the fraction of corrupted parties in L prior to the
evaluation of the sub-circuit. Specifically, let εold = t/n be the fraction of corrupted parties in L prior to the
evaluation of a sub-circuit cktl and let the evaluation fail, with either a single party or a pair of parties being
eliminated from L. Moreover, let εnew be the fraction of corrupted parties in L after the elimination. Then
for single elimination, we have εnew = t−1

n−1 and so εnew ≤ εold if and only if n ≥ t, which will always hold.
On the other hand, for double elimination, we have εnew = t−1

n−2 and so εnew ≤ εold if and only if n ≥ 2t,
which will always hold.

Since a committee C (for evaluating a sub-circuit) is selected randomly, except with probability at most
εc < 2−κ, the selected committee contains at least one honest party and so the sub-circuit evaluation among
C needs to be performed via a dishonest majority MPC protocol. We choose the MPC protocol of [12], since
it can be modified to identify pairs of parties consisting of at least one corrupted party in the case of the
failed evaluation, without violating the privacy of the honest parties. To use the protocol of [12] for sub-
circuit evaluation, we need the corresponding sub-circuit inputs (available to the parties in P in [·]-shared
form) to be converted and available in 〈·〉-shared form to the parties in C and so the parties in P do the same.
After every successful evaluation of a sub-circuit, via the dishonest majority MPC protocol, the outputs of
that sub-circuit (available in 〈·〉-shared form to the parties in a committee) are converted and saved in the

360

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

form of [·]-sharing among all the parties in P . As the set P has a honest majority, [·]-sharing ensures robust
reconstruction implying that the shared values are recoverable. Since the inputs to a sub-circuit come either
from the outputs of previous sub-circuit evaluations or the original inputs, both of which are [·]-shared, a
failed attempt for a sub-circuit evaluation does not require a re-evaluation of the entire circuit from scratch
but requires a re-evaluation of that sub-circuit only.

3.1 Supporting Functionalities

We now present a number of ideal functionalities defining sub-components of our main protocol; see Ap-
pendix B for the UC-secure instantiations of these functionalities.

Basic Functionalities: The functionality FCRS for generating the common reference string (CRS) for
our main MPC protocol is given in Figure 2. The functionality outputs the commitment key of a double-
trapdoor homomorphic commitment scheme, along with the encryption key of an IND-CCA secure encryp-
tion scheme (to be used later for UC-secure generation of completely random 〈·〉-shared values as in [12]),
see Appendix D. The functionality FBC for group broadcast is given in Figure 3. This functionality broad-
casts the message sent by a sender Sen ∈ P to all the parties in a sender specified set of parties X ⊆ P;
in our context, the set X will always contain at least one honest party. The functionality FCOMMITTEE for a
random committee selection is given in Figure 4. This functionality is parameterized by a value c, it selects
a set X of c parties at random from a specified set Y and outputs the selected set X to the parties in P .

Functionality FCRS

FCRS interacts with the parties in P and the adversary S and is parameterized by κ.

– Upon receiving (sid, i) from every party Pi ∈ P , the functionality computes Gen(1κ) → (ck, τ0, τ1) and
G(1κ) → (pk, sk), where G is the key-generation algorithm of an IND-CCA secure encryption schemea and
Gen is the key-generation algorithm of a double-trapdoor homomorphic commitment scheme. The functionality then sets
CRS = (ck, pk) and sends (sid, i,CRS) to every party Pi ∈ P and the adversary S and halts.

a For use in the protocol of [12]

Fig. 2. The Ideal Functionality for Generating CRS

Functionality FBC

FBC interacts with the parties in P and the adversary S.

– Upon receiving (sid,Sen, x,X) from the sender Sen ∈ P such that X ⊆ P , the functionality sends (sid, j,Sen, x) to
every Pj ∈ X and to the adversary S and halts.

Fig. 3. The Ideal Functionality for Broadcast

Functionality Related to [·]-sharings: In Figure 5 we present the functionality FGEN[·] which allows a
dealer D ∈ P to verifiably [·]-share an already committed secret among the parties in P . The functionality
is invoked when it receives three polynomials, say f(·), g(·) and h(·) from the dealer D and a commitment,
say C, supposedly the commitment of f(0) with randomness g(0), h(0) (namely Cf(0),g(0),h(0)), from the
(majority of the) parties in P . The functionality then hands fi = f(αi), gi = g(αi), hi = h(αi) and commit-
ments {Cfj ,gj ,hj}Pj∈P to Pi ∈ P after ‘verifying’ that (a): All the three polynomials are of degree at most

361

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Functionality FCOMMITTEE

FCOMMITTEE, parametrized by a constant c, interacts with the parties in P and the adversary S.

– Upon receiving (sid, i,Y) from every Pi ∈ P , the functionality selects c parties at random from the set Y that is received
from the majority of the parties and denotes the selected set as X . The functionality then sends (sid, i,X) to every
Pi ∈ P and S and halts.

Fig. 4. The Ideal Functionality for Selecting a Random Committee of Given Size c

t and (b): C = Commck(f(0); g(0), h(0)) i.e. the value (and the corresponding randomness) committed in
C are embedded in the constant term of f(·), g(·) and h(·) respectively. If either of the above two checks
fail, then the functionality returns Failure to the parties indicating that D is corrupted.

In our MPC protocol whereFGEN[·] is called, the dealer will compute the commitment C as Commck(f(0);
g(0), h(0)) and will broadcast it prior to making a call to FGEN[·]. It is easy to note that FGEN[·] generates
[f(0)] if D is honest or well-behaved. If FGEN[·] returns Failure, then D is indeed corrupted.

Functionality FGEN[·]

FGEN[·] interacts with the parties in P , a dealer D ∈ P , and the adversary S and is parametrized by a commitment key ck of a
double-trapdoor homomorphic commitment scheme, along with t.

– On receiving (sid,D, f(·), g(·), h(·)) from D and (sid, i,D,C) from every Pi ∈ P , the functionality verifies whether

f(·), g(·) and h(·) are of degree at most t and C
?
= Commck(f(0); g(0), h(0)), where C is received from the majority

of the parties.
– If any of the above verifications fail then the functionality sends (sid, i,D,Failure) to every Pi ∈ P and S and halts.
– Else for every Pi ∈ P , the functionality computes the share fi = f(αi), the opening information
gi = g(αi), hi = h(αi), and the commitment Cfi,gi,hi = Commck(fi; gi, hi). It sends (sid, i,D, [s]i) to every
Pi ∈ P where [s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P) and halts.

Fig. 5. The Ideal Functionality for Verifiably Generating [·]-sharing

We note that FGEN[·] is slightly different from the standard ideal functionality (see e.g. [2]) of verifiable
secret sharing (VSS) where the parties output only their shares (and not the commitment of all the shares).
In most of the standard instantiations of a VSS functionality (in the computational setting), for example the
Pedersen VSS [27], a public commitment of all the shares and the secret are available to the parties without
violating any privacy. In order to make these commitments available to the external protocol that invokes
FGEN[·], we allow the functionality to compute and deliver the shares along with the commitments to the
parties. We note, [1] introduced a similar functionality for “committed VSS” that outputs to the parties the
commitment of the secret provided by the dealer due to the same motivation mentioned above.

3.2 Supporting Sub-protocols

Our MPC protocol also makes use of the following sub-protocols. Due to space constraints, here we only
present a high level description of these protocols and state their communication complexity. The formal
details of the protocols are available in Appendix C. Since we later show that our main MPC protocol that
invokes these sub-protocols is UC-secure, it is not required to prove any form of security for these sub-
protocols separately.

(A) Protocol Π〈·〉→[·] (Figure 10, Appendix C) : it takes input 〈s〉X for a set X containing at least one
honest party and either produces a sharing [s] (if all the parties in X behave honestly) or outputs one of

362

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

the following: the identity of a single corrupted party or a pair of parties (with at least one of them being
corrupted) from X . The protocol makes use of the functionalities FGEN[·] and FBC.

More specifically, let 〈s〉i denote the information (namely the share, opening information and the set
of commitments) of party Pi ∈ X corresponding to the sharing 〈s〉X . To achieve the goal of our protocol,
there are two clear steps to perform: first, the correct commitment for each share of s corresponding to its
〈·〉X -sharing, now available to the parties in X , is to be made available to all the parties in P; second, each
Pi ∈ X is required to act as a dealer and verifiably [·]-share its already committed share si among P . Note
that the commitment to si is included in the set of commitments that will be already available among P due
to the first step. Clearly, once [si] are generated for each Pi ∈ X , then [s] is computed as [s] =

∑
Pi∈X [si];

this is because s =
∑

Pi∈X si.
Now there are two steps that may lead to the failure of the protocol. First, Pi ∈ X may be identified

as a corrupted dealer while calling FGEN[·]. In this case a single corrupted party is outputted by every party
in P . Second, the protocol may fail when the parties in P try to reach an agreement over the correct set of
commitments of the shares of s. Recall that each Pi ∈ X holds a set of commitments as a part of 〈s〉X . We
ask each Pi ∈ X to callFBC to broadcast amongP the set of commitments held by him. It is necessary to ask
each Pi ∈ X to do this as we can not trust any single party from X , since all we know (with overwhelming
probability) is that X contains at least one honest party. Now if the parties in P receive the same set of
commitments from all the parties in X , then clearly the received set is the correct set of commitments and
agreement on the set is reached among P . If this does not happen the parties in P can detect a pair of parties
with conflicting sets and output the said pair. It is not hard to see that indeed one party in the pair must be
corrupted. To ensure an agreement on the selected pair when there are multiple such conflicting pairs, we
assume the existence of a predefined publicly known algorithm to select a pair from the lot (for instance
consider the pair (Pa, Pb) with minimum value of a+ n · b). Intuitively the protocol is secure as the shares
of honest parties in X remain secure.

The communication complexity of protocol Π〈·〉→[·] is stated in Lemma 1, which easily follows from
the fact that each party in X needs to broadcast O(|X |κ) bits to P .

Lemma 1. The communication complexity of protocol Π〈·〉→[·] is BC
(
|X |2κ, n

)
plus the complexity of

O(|X |) invocations to the realization of the functionality FGEN[·].

(B) Protocol Π〈·〉 (Figure 11, Appendix C) : the protocol enables a designated party (dealer) D ∈ P to
verifiably 〈·〉-share an already committed secret f among a set of parties X containing at least one honest
party. More specifically, every Pi ∈ P holds a (publicly known) commitment Cf,g,h. The dealer D holds the
secret f ∈ Fp and randomness pair (g, h), such that Cf,g,h = Commck(f ; g, h); and the goal is to generate
〈f〉X . In the protocol, D first additively shares f as well as the opening information (g, h) among X . In
addition, D is also asked to publicly commit each additive-share of f , using the corresponding additive-share
of (g, f). The parties can then publicly verify whether indeed D has 〈·〉-shared the same f as committed in
Cf,g,h, via the homomorphic property of the commitments. Intuitively f remains private in the protocol for
an honest D as there exists at least one honest party in X . Moreover the binding property of the commitment
ensures that a potentially corrupted D fails to 〈·〉-share an incorrect value f ′ 6= f .

If we notice carefully the protocol achieves a little more than 〈·〉-sharing of a secret among a set of
parties X . All the parties in P hold the commitments to the shares of f , while as per the definition of 〈·〉-
sharing the commitments to shares should be available to the parties in X alone. A closer look reveals that
the public commitments to the shares of f among the parties in P enable them to publicly verify whether
D has indeed 〈·〉-shared the same f among X as committed in Cf,g,h via the homomorphic property of the
commitments. The communication complexity of Π〈·〉 is stated in Lemma 2.

363

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Lemma 2. The communication complexity of protocol Π〈·〉 is O(|X |κ) and BC
(
|X |κ, n

)
.

(C) Protocol Π[·]→〈·〉 (Figure 12, Appendix C): the protocol takes as input [s] for any secret s and outputs
〈s〉X for a designated set of parties X ⊂ P containing at least one honest party.

Let f1, . . . , fn be the Shamir-shares of s. Then the protocol is designed using the following two-stage
approach: (1): First each party Pk ∈ P acts as a dealer and verifiably 〈·〉-share’s its share fk via protocol
Π〈·〉; (2) Let H be the set of |H| > t + 1 parties Pk who have correctly 〈·〉-shared its Shamir-share fk;
without loss of generality, let H be the set of first |H| parties in P . Since the original sharing polynomial
(for [·]-sharing s) has degree at most t with s as its constant term, then there exists publicly known constants
(namely the Lagrange’s interpolation coefficients) c1, . . . , c|H|, such that s = c1f1 + . . . + c|H|f|H|. Since
corresponding to each Pk ∈ H the share fk is 〈·〉-shared, it follows easily that each party Pi ∈ X can
compute 〈s〉i = c1〈f1〉i + . . . + c|H|〈f|H|〉i. The correctness of the protocol follows from the fact that the
corrupted parties in P will fail to 〈·〉-share an incorrect Shamir-share of s, thanks to the protocol Π〈·〉. The
privacy of s follows from the fact that the Shamir shares of the honest parties in P remain private, which
follows from the privacy of the protocol Π〈·〉.

The communication complexity of the protocol Π[·]→〈·〉 is stated in Lemma 3 which follows from the
fact that n invocations to Π〈·〉 are done in the protocol.

Lemma 3. The communication complexity of Π[·]→〈·〉 is O(n|X |κ) and BC
(
n|X |κ, n

)
.

(D) Protocol ΠRANDZERO[·] (Figure 14, Appendix C): the protocol is used for generating a random [·]-
sharing of 0. To design the protocol, we also require a standard Zero-knowledge (ZK) functionality FZK.BC
to publicly prove a commitment to zero. The functionality is a “prove-and-broadcast ” functionality that
upon receiving a commitment and witness pair (C, (u, v)) from a designated prover Pj , verifies if C =
Commck(0;u, v) or not. If so it sends C to all the parties. A protocol ΠZK.BC realizing FZK.BC can be de-
signed in the CRS model using standard techniques, see [22], with communication complexityO(Poly(n)κ).

Protocol ΠRANDZERO[·] invokes the ideal functionalities FZK.BC and FGEN[·]. The idea is as follows: Each
party Pi ∈ P first broadcasts a random commitment of 0 and proves in a zero-knowledge (ZK) fashion that
it indeed committed 0. Next Pi calls FGEN[·] as a dealer D to generate [·]-sharing of 0 that is consistent with
the commitment of 0. The parties then locally add the sharings of the dealers who are successful as dealers
in their corresponding calls to FGEN[·]. Since there exists at least one honest party in this set of dealers,
the resultant sharing will be indeed a random sharing of 0, see Appendix C for details. Looking ahead, we
invokeΠRANDZERO[·] only once in our main MPC protocolΠf (more on this later); so we avoid giving details
of the communication complexity of the protocol. However assuming standard realization of FZK.BC, the
protocol has complexity O(Poly(n)κ).

(E) Dis-honest Majority MPC Protocol (Appendix D): Apart from the above sub-protocols, we use a
non-robust, dishonest-majority MPC protocol ΠNR

C with the capability of fault-detection. The protocol,
presented in Figure 18 of Appendix D, allows a designated set of parties X ⊂ P , containing at least one
honest party, to perform 〈·〉-shared evaluation of a given circuit C. In case some corrupted party inX behaves
maliciously, the parties in P identify a pair of parties from X , with at least one of them being corrupted.
The starting point of ΠNR

C is the dishonest majority MPC protocol of [12], which takes 〈·〉-shared inputs
of a given circuit, from a set of parties, say X , having a dishonest majority. The protocol then achieves the
following:

– If all the parties in X behave honestly, then the protocol outputs 〈·〉-shared circuit outputs among X .
– Else the honest parties in X detect misbehaviour by the corrupted parties and abort the protocol.

364

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

We observe that for an aborted execution of the protocol of [12], there exists an honest party in X that can
locally identify a corrupted party from X , who deviated from the protocol. We exploit this property in ΠNR

C

to enable the parties in P identify a pair of parties from X with at least one of them being corrupted.
Protocol ΠNR

C proceeds in two stages, the preparation stage and the evaluation stage, each involving
various other sub-protocols (details available in Appendix D). In the preparation stage, if all the parties in
X behave honestly, then they jointly generate CM + CR shared multiplication triples {(〈a(i)〉X , 〈b(i)〉X ,
〈c(i)〉X)}i=1,...,CM+CR

, such that c(i) = a(i) · b(i) and each (a(i),b(i), c(i)) is random and unknown to the
adversary; here CM and CR are the number of multiplication and random gates in C respectively. Otherwise,
the parties in P identify a pair of parties in X , with at least one of them being corrupted.

Assuming that the desired 〈·〉-shared multiplication triples are generated in the preparation stage, the
parties in X start evaluating C in a shared fashion by maintaining the following standard invariant for each
gate of C: Given 〈·〉-shared inputs of the gate, the parties securely compute the 〈·〉-shared output of the gate.
Maintaining the invariant for the linear gates in C does not require any interaction, thanks to the linearity
of 〈·〉-sharing. For a multiplication gate, the parties deploy a preprocessed 〈·〉-shared multiplication triple
from the preparation stage (for each multiplication gate a different triple is deployed) and use the standard
Beaver’s trick [3], (see protocol ΠBEA in Appendix D) . While applying Beaver’s trick, the parties in X need
to publicly open two 〈·〉-shared values using a reconstruction protocolΠREC〈·〉 (presented in Appendix D). It
may be possible that the opening is non-robust8, in which case the circuit evaluation fails and the parties in
P identify a pair of parties from X with at least one of them being corrupted. For a random gate, the parties
consider an 〈·〉-shared multiplication triple from the preparation stage (for each random gate a different
triple is deployed) and the first component of the triple is considered as the output of the random gate. The
protocol ends once the parties inX obtain 〈·〉-shared circuit outputs 〈y1〉X , . . . , 〈yout〉X ; so no reconstruction
is required at the end.

The complete details of ΠNR
C is provided in Appendix D. The protocol invokes two ideal functionalities

FGENRAND〈·〉 and FBC where the functionality FGENRAND〈·〉 is used to generate 〈·〉-sharing of random values
(again see Appendix D). For our purpose we note that the protocol provides a statistical security of 2−s and
has communication complexity as stated in Lemma 4 and proved in Appendix D. Note that there are two
types of broadcast involved: among the parties in X and among the parties in P .

Lemma 4. For a statistical security parameter s, protocolΠNR
C has communication complexity ofO(|X |2(|C|+

s)κ),BC
(
|X |2(|C|+ s)κ, |X |

)
and BC

(
|X |κ, n

)
.

3.3 The MPC Protocol

Finally, we describe our MPC protocol. Recall that we divide the circuit ckt into sub-circuits ckt1, . . . , cktL
and we let inl and outl denote the number of input and output wires respectively for the sub-circuit cktl.
At the beginning of the protocol, each party [·]-share their private inputs by calling FGEN[·]. The parties
then select a random committee of parties by calling FCOMMITTEE for evaluating the lth sub-circuit via the
dishonest majority MPC protocol of [12]. We use a Boolean flag NewCom in the protocol to indicate if a
new committee has to be decided, prior to the evaluation of lth sub-circuit or the committee used for the
evaluation of the (l− 1)th sub-circuit is to be continued. Specifically a successful evaluation of a sub-circuit
is followed by setting NewCom equals to 0, implying that the current committee is to be continued for the
evaluation of the subsequent sub-circuit. On the other hand, a failed evaluation of a sub-circuit is followed
by setting NewCom equals to 1, implying that a fresh committee has to be decided for the re-evaluation of
the same sub-circuit from the updated set of eligible parties L, which is modified after the failed evaluation.

8 As we may not have honest majority in X , we could not always ensure robust reconstruction during ΠREC〈·〉.

365

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

After each successful sub-circuit evaluation, the corresponding 〈·〉-shared outputs are converted into [·]-
shared outputs via protocol Π〈·〉→[·], while prior to each sub-circuit evaluation, the corresponding [·]-shared
inputs are converted to the required 〈·〉-shared inputs via protocol Π[·]→〈·〉. The process is repeated till the
function output is [·]-shared, after which it is robustly reconstructed (as we have honest majority in P).

Without affecting the correctness of the above steps, but to ensure simulation security (in the UC
model), we add an additional output re-randomization step before the output reconstruction: the parties
call ΠRANDZERO[·] to generate a random [0], which they add to the [·]-shared output (thus keeping the same
function output). Looking ahead, during the simulation in the security proof, this step allows the simulator
to cheat and set the final output to be the one obtained from the functionality, even though it simulates the
honest parties with 0 as the input (see Appendix E for the details).

Let E be the event that at least one party in each of the selected committees during sub-circuit evaluations
is honest; the event E occurs except with probability at most (t + 1) · εc ≈ 2−κ. This is because at most
(t + 1) (random) committees need to be selected (a new committee is selected after each of the t failed
sub-circuit evaluation plus an initial selection is made). It is easy to see that conditioned on E, the protocol
is private: the inputs of the honest parties remain private during the input stage (due to FGEN[·]), while each
of the involved sub-protocols for sub-circuit evaluations does not leak any information about honest party’s
inputs. It also follows that conditioned on E, the protocol is correct, thanks to the binding property of the
commitment and the properties of the involved sub-protocols.

The properties of the protocol Πf are stated in Theorem 1 and the security proof is available in Ap-
pendix E; we only provide the proof of communication complexity here. The (circuit-dependent) commu-
nication complexity in the theorem is derived after substituting the calls to the various ideal functionalities
by the corresponding protocols implementing them. The broadcast complexity has two parts: the broadcasts
among the parties in P and the broadcasts among small committees.

Theorem 1. Let f : Fnp → Fp be a publicly known n-input function with circuit representation ckt over

Fp, with average width w and depth d (thus w = |ckt|
d). Moreover, let ckt be divided into sub-circuits

ckt1, . . . , cktL, with L = t and each sub-circuit cktl having fan-in inl and fan-out outl. Furthermore, let
inl = outl = O(w). Then conditioned on the event E, protocol Πf (κ, s)-securely realizes the functionality
Ff againstA in the (FCRS,FBC,FCOMMITTEE,FGEN[·],FGENRAND〈·〉,FZK.BC)-hybrid model9 in the UC secu-
rity framework. The circuit-dependent communication complexity of the protocol isO(|ckt| · (n·td +κ) ·κ2),
BC
(
|ckt| · n·t·κ2

d , n
)

and BC
(
|ckt| · κ3, κ

)
.

PROOF (COMMUNICATION COMPLEXITY): We analyze each phase of the protocol:

1. Input Commitment Stage: Here each party broadcastsO(κ) bits to the parties inP and so the broadcast
complexity of this step is BC

(
nκ, n

)
.

2. [·]-sharing of Committed Inputs: Here n calls to FGEN[·] are made. Realizing FGEN[·] with the protocol
Π[·], see Lemma 5, this incurs a communication complexity of O(n2κ) and BC

(
n2κ, n

)
.

3. Sub-circuit Evaluations: We first count the total communication cost of evaluating the sub-circuit
cktl with inl input gates and outl output gates.

– Converting the inl [·]-shared inputs to inl 〈·〉-shared inputs will require inl invocations to the protocol
Π[·]→〈·〉. The communication complexity of this step isO(n · c · inl · κ) and BC

(
n · c · inl · κ, n

)
; this

follows from Lemma 3 by substituting |X | = c.
– Since the size of cktl is at most |ckt|L , evaluating the same via protocolΠNR

cktl
will have communication

complexity O(c2(|ckt|L + s)κ), BC
(
c2(|ckt|L + s)κ, c

)
and BC

(
c · κ, n

)
; this follows from Lemma 4

by substituting |X | = c.
9 See Appendix A for the meaning of g-hybrid model in the UC framework.

366

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Protocol Πf (P, ckt)

For session ID sid, every party Pi ∈ P does the following:

Initialization. Set L = P , n = |L|, t = t and NewCom = 1. Divide ckt into L sub-circuits ckt1, . . . , cktL, each of depth
d/L.

CRS Generation. Invoke FCRS with (sid, i) and get back (sid, i,CRS), where CRS = (pk, ck).
Input Commitment. On input x(i), choose random polynomials f (i)(·), g(i)(·), h(i)(·) of degree ≤ t, such that f (i)(0) =

x(i) and compute the commitment C
x(i),g

(i)
0 ,h

(i)
0

= Commck(x
(i); g

(i)
0 , h

(i)
0) where g(i)

0 = g(i)(0), h
(i)
0 = h(i)(0).

– Call FBC with message (sid, i,C
x(i),g

(i)
0 ,h

(i)
0
,P).

– Corresponding to each Pj ∈ P , receive (sid, i, j,C
x(j),g

(j)
0 ,h

(j)
0

) from FBC.

[·]-sharing of Committed Inputs.
– Act as a dealer D and call FGEN[·] with (sid, i, f (i)(·), g(i)(·), h(i)(·)).
– For every Pj ∈ P , call FGEN[·] with (sid, i, j,C

x(j),g
(j)
0 ,h

(j)
0

).

– For every Pj ∈ P , if (sid, i, j,Failure) is received from FGEN[·], substitute a default predefined public sharing [0] of
0 as [x(j)], set [x(j)]i = [0]i and update L = L \ {Pj}, decrement t and n by one. Else receive (sid, i, j, [x(j)]i)
from FGEN[·].

Start of While Loop Over the Sub-circuits. Initialize l = 1. While l ≤ L do:
– Committee Selection. If NewCom = 1, then call FCOMMITTEE with (sid, i,L) and receive (sid, i, C) from FCOMMITTEE.
– [·] to 〈·〉C Conversion of Inputs of Sub-circuit cktl. Let [x1], . . . , [xinl] denote the [·]-sharing of the inputs to cktl:

– For k = 1, . . . , inl, participate inΠ[·]→〈·〉 with (sid, i, [xk]i, C). Output (sid, i, 〈xk〉i) inΠ[·]→〈·〉, if Pi belongs
to C. Else output (sid, i).

– Evaluation of the Sub-circuit cktl. If Pi ∈ C then participate in ΠNR
cktl

with (sid, i, 〈x1〉i, . . . , 〈xinl〉i, C), else partic-
ipate in ΠNR

cktl
with (sid, i, C).

– If (sid, i,Failure, Pa, Pb) is the output during ΠNR
cktl

, then set L = L \ {Pa, Pb}, t = t − 1, n = n − 2,
NewCom = 1 and go to Committee Selection step.

– 〈·〉C to [·] conversion of Outputs of cktl. If (sid, i, Success, 〈y1〉i, . . . , 〈youtl〉i) or (sid, i, Success) is obtained dur-
ing ΠNR

cktl
, then participate in Π〈·〉→[·] with (sid, i, 〈yk〉i) or (sid, i) (respectively) for k = 1, . . . , outl.

– If (sid, i, Success, [yk]i) is the output in Π〈·〉→[·] for every k = 1, . . . , outl, then increment l and set
NewCom = 0.

– If (sid, i,Failure, Pa, Pb) is the output in Π〈·〉→[·] for some k ∈ {1, . . . , outl}, then set L = L \ {Pa, Pb},
t = t− 1, n = n− 2, NewCom = 1 and go to the Committee Selection step.

– If (sid, i,Failure, Pa) is the output in Π〈·〉→[·] for some k ∈ {1, . . . , outl}, then set L = L \ {Pa}, t = t− 1,
n = n− 1, NewCom = 1 and go to the Committee Selection step.

Output Rerandomization. Let [y] denote the [·]-sharing of the output of ckt. Participate in ΠRANDZERO[·] with (sid, i), obtain
(sid, i, [0]i) and locally compute [z]i = [y]i + [0]i.

Output Reconstruction. Interpret [z]i as (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P). Initialize a set Ti to ∅.
– Send (sid, i, j, fi, gi, hi) to every Pj ∈ P . On receiving (sid, j, i, fj , gj , hj) from every party Pj include party Pj

in Ti if Cfj ,gj ,hj 6= Commck(fj ; (gj , hj)).
– Interpolate f(·) such that f(αj) = fj holds for every Pj ∈ P \ Ti. If f(·) has degree at most t, output

(sid, i, z = f(0)) and halt; else output (sid, i,Failure) and halt.

Fig. 6. Protocol for UC-secure realizing Ff

367

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

– Finally converting the outl 〈·〉-shared outputs to [·]-shared outputs require outl invocations to the
protocol Π〈·〉→[·]. This has communication complexity O(n · c · outl · κ), BC

(
outl · c2 · κ, n

)
and

BC
(
n · c · κ, n

)
; this follows from Lemma 1 by substituting |X | = c.

Thus evaluating cktl has communication complexity O((n2 + n · c · inl + n · c · outl + c2(|ckt|L + s))κ),
BC
(
(n2 +n · c · inl + c2 · outl)κ, n

)
and BC

(
c2(|ckt|L + s)κ, c

)
. Assuming inl = O(w) and outl = O(w),

with w = |ckt|
d , this results in O((n2 + n · c · |ckt|d + c2(|ckt|L + s))κ), BC

(
(n2 + n · c · |ckt|d)κ, n

)
and

BC
(
(c2 · (|ckt|L + s))κ, c

)
. The total number of sub-circuit evaluations is at most L+ t, with L successful

evaluations and at most t failed evaluations. Substituting L = t, we get the overall communication
complexity O((|ckt| · (n·t·cd + c2) + n2t+ c2s · t)κ), BC

(
(|ckt| · n·t·cd + n2t)κ, n

)
and BC

(
(|ckt| · c2 +

c2 · s · t)κ, c
)
.

4. Output Rerandomization and Reconstruction: The costs O(Poly(n, κ)) bits.

The circuit-dependent complexity of the whole protocol comes out to be O(|ckt| · (nt·cd + c2)κ) bits of
communication over the point-to-point channels and broadcast-complexity of BC

(
|ckt| · nt·cd · κ, n

)
and

BC
(
|ckt| ·c2 ·κ, c

)
. Since c has to be selected so that εc < 2−κ holds, asymptotically we can set c to beO(κ).

(For any practical purpose, κ = 80 is good enough.) It implies that the (circuit-dependent) communication
complexity is O(|ckt|(ntd + κ)κ2), BC

(
|ckt| · ntκ2

d , n
)

and BC
(
|ckt|κ3, κ

)
. 2

We propose two optimizations for our MPC protocol that improves its communication complexity.

[·]-sharing among a smaller subset of P . While for simplicity, we involve the entire set of parties in P to
hold [·]-shared values in the protocol, it is enough to fix and involve a set of just z parties that guarantees
a honest majority with overwhelming probability. From our analysis in Section 1, we find that z = O(κ).
Indeed it is easy to note that all we require from the set involved in holding a [·]-sharing is honest majority
that can be attained by any set containingO(κ) parties. This optimization replaces n by κ in the complexity
expressions mentioned in Theorem 1. It implies that the (circuit-dependent) communication complexity is
O(|ckt|(κtd + κ)κ2), BC

(
|ckt| · tκ3

d , κ
)

and BC
(
|ckt|κ3, κ

)
. Now instantiating the broadcast functionality in

the above modified protocol with the Dolev-Strong (DS) broadcast protocol (see Appendix B), we obtain
the following:

Corollary 1. If d = ω(t) and if the calls to FBC are realized via the DS broadcast protocol, then the
circuit-dependent communication complexity of Πf is O(|ckt| · κ7).

When we restrict to widths w of the form w = ω(κ3), we can instantiate all the invocations to FBC in the
protocols Π〈·〉→[·] and Π[·]→〈·〉 (invoked before and after the sub-circuit evaluations) by the Fitzi-Hirt (FH)
multi-valued broadcast protocol [19], see Appendix B. This is because, setting w = ω(κ3) ensures that
the combined message over all the instances of Π〈·〉→[·] (respectively Π[·]→〈·〉) to be broadcast by any party
satisfies the bound on the message size of the FH protocol. Incorporating the above, we obtain the following
corollary with better result.

Corollary 2. If d = ω(t) and w = ω(κ3) (i.e. |ckt| = ω(κ3t)), then the circuit-dependent communication
complexity of Πf is O(|ckt| · κ4).

Packed Secret-Sharing. We can employ packed secret-sharing technique of [20] to checkpoint multiple
outputs of the sub-circuits together in a single [·]-sharing. Specifically, if we involve all the parties in P to
hold a [·]-sharing, we can pack n − 2t values together in a single [·]-sharing by setting the degree of the
underlying polynomials to n− t− 1. It is easy to note that robust reconstruction of such a [·]-sharing is still
possible, as there are n− t honest parties in the set P and exactly n− t shares are required to reconstruct an

368

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

(n− t− 1) degree polynomial. For every sub-circuit cktl, the woutl output values are grouped so that each
group contains n− 2t secrets and each group is then converted to a single [·]-sharing.

If we restrict to circuits for which any circuit wire has length at most d/L = d/t (i.e. reaches upto at
most d/L levels), then we ensure that the outputs of circuit cktl can only be the input to circuit cktl+1. With
this restriction, the use of packed secret-sharing becomes applicable at all stages, and the communication
complexity becomes O(|ckt| · (td + κ) · κ2), BC

(
|ckt| · t·κ2

d , n
)

and BC
(
|ckt| · κ3, κ

)
; i.e. a factor of n less

in the first two terms compared to what is stated in Theorem 1. Realizing the broadcasts using DS and FH
protocol respectively, we obtain the following corollaries:

Corollary 3. If d = ω(n
3·t
κ4) and if the calls to FBC are realized via the DS broadcast protocol, then the

circuit-dependent communication complexity of Πf is O(|ckt| · κ7).

Corollary 4. If d = ω(n·t
κ5) andw = ω(n2 ·(n+κ)) (i.e. |ckt| = ω(n

3·t
κ5 (n+κ))), then the circuit-dependent

communication complexity of the protocol Πf is O(|ckt| · κ7).

Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO, by EP-
SRC via grant EP/I03126X, and by Defense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL) under agreement number FA8750-11-2-007910 and the third author was
supported in part by a Royal Society Wolfson Merit Award.

References

1. M. Abe and S. Fehr. Adaptively Secure Feldman VSS and Applications to Universally-Composable Threshold Cryptography.
In Advances in Cryptology - CRYPTO 2004, volume 3152 of LNCS, pages 317–334, 2004.

2. G. Asharov and Y. Lindell. A Full Proof of the BGW Protocol for Perfectly-Secure Multiparty Computation. IACR Cryptology
ePrint Archive, 2011:136, 2011.

3. D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In Advances in Cryptology - CRYPTO ’91, volume
576 of LNCS, pages 420–432, 1991.

4. Z. BeerliováTrubı́niová and M. Hirt. Perfectly-Secure MPC with Linear Communication Complexity. In Theory of Cryptog-
raphy – TCC 2008, volume 4948 of LNCS, pages 213–230, 2008.

5. E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-Linear Unconditionally-Secure Multiparty Computation with a Dishonest
Minority. In Advances in Cryptology - CRYPTO 2012, volume 7417 of LNCS, pages 663–680, 2012.

6. E. Boyle, S. Goldwasser, and S. Tessaro. Communication locality in secure multi-party computation how to run sublinear
algorithms in a distributed setting. In Theory of Cryptography – TCC 2014, volume 8349 of LNCS, pages 356–376, 2014.

7. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In FOCS, pages 136–145, 2001.
8. R. Canetti and M. Fischlin. Universally Composable Commitments. In Advances in Cryptology – CRYPTO 2001, pages 19–40,

2001.
9. J. F. Canny and S. Sorkin. Practical large-scale distributed key generation. In Advances in Cryptology - EUROCRYPT 2004,

volume 3027 of LNCS, pages 138–152, 2004.
10. A. Choudhury. Breaking the O(n|c|) barrier for unconditionally secure asynchronous multiparty computation - (extended

abstract). In Progress in Cryptology - INDOCRYPT 2013, volume 8250 of LNCS, pages 19–37, 2013.
11. I. Damgård, Y. Ishai, M. Krøigaard, J.B. Nielsen, and A. Smith. Scalable Multiparty Computation with Nearly Optimal Work

and Resilience. In Advances in Cryptology – CRYPTO 2008, volume 5157 of LNCS, pages 241–261, 2008.
12. I. Damgård and C. Orlandi. Multiparty Computation for Dishonest Majority: From Passive to Active Security at Low Cost. In

Advances in Cryptology - CRYPTO 2010, volume 6223 of LNCS, pages 558–576, 2010.

10 The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of Defense Advanced Research Projects Agency
(DARPA) or the U.S. Government.

369

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. I. Damgård, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty Computation from Somewhat Homomorphic Encryption. In
Advances in Cryptology – CRYPTO 2012, volume 7417 of LNCS, pages 643–662, 2012.

14. V. Dani, V. King, M. Movahedi, and J. Saia. Brief Announcement: Breaking the O(nm) Bit Barrier, Secure Multiparty
Computation with a Static Adversary. In Principles of Distributed Computing – PODC 2012, pages 227–228, 2012.

15. V. Dani, V. King, M. Movahedi, and J. Saia. Quorums quicken queries: Efficient asynchronous secure multiparty computation.
In ICDN 2014, volume 8314 of LNCS, pages 242–256, 2014.

16. D. Dolev and H. R. Strong. Authenticated Algorithms for Byzantine Agreement. SIAM J. Comput., 12(4):656–666, 1983.
17. Uriel Feige. Noncryptographic selection protocols. In FOCS, pages 142–153, 1999.
18. M. Fitzi. Generalized Communication and Security Models in Byzantine Agreement. PhD thesis, ETH Zurich, 2002. ftp:

//ftp.inf.ethz.ch/pub/crypto/publications/Fitzi03.pdf.
19. Matthias Fitzi and Martin Hirt. Optimally Efficient Multi-valued Byzantine Agreement. In Principles of Distributed Computing

– PODC 2006, pages 163–168. ACM, 2006.
20. M. K. Franklin and M. Yung. Communication Complexity of Secure Computation (Extended Abstract). In Symposium on

Theory of Computing – STOC 1992, pages 699–710. ACM, 1992.
21. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and Fact-Track Multiparty Computations with Applications to

Threshold Cryptography. In Principles of Distributed Computing – PODC ’98, pages 101–111. ACM, 1998.
22. O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, 2004.
23. B. M. Kapron, D. Kempe, V. King, J. Saia, and V. Sanwalani. Fast Asynchronous Byzantine Agreement and Leader Election

with Full Information. ACM Transactions on Algorithms, 6(4), 2010.
24. V. King, S. Lonargan, J. Saia, and A. Trehan. Load Balanced Scalable Byzantine Agreement through Quorum Building, with

Information. In ICDCN, volume 6522 of LNCS, pages 203–214, 2011.
25. V. King and J. Saia. Breaking the O(n2) Bit Barrier: Scalable Byzantine Agreement with an Adaptive Adversary. J. ACM,

58(4):18, 2011.
26. V. King, J. Saia, V. Sanwalani, and E. Vee. Scalable Leader Election. In SODA, pages 990–999, 2006.
27. T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In Advances in Cryptology -

CRYPTO ’91, volume 576 of LNCS, pages 129–140, 1992.
28. A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, 1979.
29. D. R. Stinson. Cryptography - Theory and Practice. Discrete mathematics and its applications series. CRC Press, 2005.

Appendices

A The UC Security Model

We work in the standard Universal Composability (UC) framework of Canetti [7], with static corruption. The
UC framework introduces a PPT environment Z that is invoked on the computational security parameter κ,
the statistical security parameter s and an auxiliary input z and oversees the execution of a protocol in one
of the two worlds. The “ideal” world execution involves dummy parties P1, . . . , Pn, an ideal adversary S
who may corrupt some of the dummy parties, and a functionality F . The “real” world execution involves
the PPT parties P1, . . . , Pn and a real world adversary A who may corrupt some of the parties. In either of
these two worlds, a PPT adversary can corrupt t parties out of the n parties. The environment Z chooses the
input of the parties and may interact with the ideal world/real world adversary during the execution. At the
end of the execution, it has to decide upon and output whether a real or an ideal world execution has taken
place.

We let IDEALF ,S,Z(κ, s, z) denote the random variable describing the output of the environment Z
after interacting with the ideal execution with adversary S, the functionality F , on the computational
security parameter κ, the statistical security parameter s and z. Let IDEALF ,S,Z denote the ensemble
{IDEALF ,S,Z(κ, s, z)}κ,s∈N,z∈{0,1}∗ . Similarly let REALΠ,A,Z(κ, s, z) denote the random variable de-
scribing the output of the environment Z after interacting in a real execution of a protocol Π with adversary
A, the parties P , on the computational security parameter κ, the statistical security parameter s and z. Let
REALΠ,A,Z denote the ensemble {REALΠ,A,Z(κ, s, z)}κ,s∈N,z∈{0,1}∗ .

370

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Definition 4. For n ∈ N, let F be an n-ary functionality and let Π be an n-party protocol. We say that
Π (κ, s)-securely realizes F in the UC security framework, if for every PPT real world adversary A, there
exists a PPT ideal world adversary S, corrupting the same parties, such that the following two distributions
are computationally indistinguishable in κ, with all but 2−s probability:

IDEALF ,S,Z
c
≈ REALΠ,A,Z .

We consider the above definition where it quantifies over different adversaries: passive or active, that corrupts
only certain number of parties. Note that the security offered by the statistical security parameter s does not
depend upon the computational power of the adversary.

Modular Composition: A great advantage of the UC model is that it allows to prove the security of the
protocols in a modular fashion. Specifically, the sequential modular composition theorem [7] states that in
order to analyze the security of a protocol πf for computing a function f that uses a subprotocol πg for
computing another function g, it suffices to consider the execution of πf in a model where a trusted third
party is used to ideally compute g (instead of the parties running the real subprotocol πg). This facilitates
a modular analysis of security: we first prove the security of πg (as per the UC definition) and then prove
the security of πf assuming an ideal party (functionality) for g. This model in which πf is analyzed using
ideal calls to g, instead of executing πg, is called the g-hybrid model because it involves both a real protocol
execution (for computing f) and an ideal trusted third party computing g.

B UC-secure Instantiation of Various Functionalities

B.1 Protocol for Realizing FGEN[·]

We design a protocolΠ[·], presented in Figure 7, for realizing the functionalityFGEN[·] in the UC framework.
We closely follow the standard Pedersen VSS scheme [27] against a threshold static adversary. Specifically,
let C be the existing commitment available to the parties in P such that C = Commck(s; g, h) and let
(s, g, h) be available to D. To [·]-share s, the dealer D selects three random polynomials f(·), g(·) and h(·)
each of degree at most t such that f(0) = s, g(0) = g and h(0) = h. To every party Pi in P , D distributes
the share fi = f(αi) and opening information gi = g(αi) and hi = h(αi). Additionally, D publicly commits
to the shares of all the share-holders, with the corresponding opening information acting as the randomness
for the commitments. Namely D broadcasts {Cfj ,gj ,hj}Pj∈P via FBC.

Every honest party Pi then verifies three conditions: (1). if the commitments correspond to polynomials
of degree at most t (2). if the commitments are consistent with C in the sense that the constant terms of the
polynomials committed via the commitments {Cfj ,gj ,hj}Pj∈P are indeed embedded in C (3). if fi, gi, hi
received over the point-to-point channel is consistent with Cfi,gi,hi received via FBC. The first two tests can
be done appealing to the homomorphic property of the commitment scheme. If any of the first two tests fails,
then Pi concludes that D is corrupted and outputs Failure. If the last test fails (but first two tests succeed),
then Pi complains D (publicly) who resolves the complain by revealing fi, gi, hi via FBC. Subsequently,
the third test is checked with fi, gi, hi received from D publicly. If the test is successful, Pi accepts the new
fi, gi, hi and outputs [s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P). Else Pi outputs Failure.

Intuitively the privacy of the shared secret s for an honest D follows from the fact that A may learn at
most t shares, which constitute t distinct points on f(·) having degree t; so from adversary’s point of view,
we have one “degree of freedom”; i.e. for every possible choice of s, there exists a unique f(·) polynomial
of degree t, which is consistent with the shares received by A. Note that the publicly known commitment

371

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

of the shares do not provide any additional information about the unknown shares to A, thanks to the
(statistical) hiding property of the commitment scheme and the fact that the corresponding randomness lie
on polynomials of degree at most t and A will be provided with at most t points on them, again implying
one degree of freedom.

Protocol Π[·]

The public input to the protocol is a publicly known commitment C available to the parties in P , while the private input for
D is a secret s and randomness pair (g, h), such that C = Commck(s; g, h) holds. For session ID sid, D and the parties in
P do the following:

Round 1 (Share Distribution and Broadcasting Commitments) — D does the following:
– Select three random polynomials f(·), g(·) and h(·) of degree at most t, subject to the condition that f(0) =
s, g(0) = g and h(0) = h.

– Corresponding to everyPi ∈ P , compute the share fi = f(αi) and the opening information gi = g(αi), hi = h(αi)
and the commitment Cfi,gi,hi = Commck(fi; gi, hi).

– Corresponding to every Pi ∈ P , send (sid, i, (fi, gi, hi)) to the party Pi. In addition, call FBC with
(sid,D, {Cfj ,gj ,hj}Pj∈P ,P).

Round 2 (Consistency Verification and Complaints) — Every party Pi ∈ P does the following:
– Receive (sid, i,D, (fi, gi, hi)) from D and (sid, i,D, {Cfj ,gj ,hj}Pj∈P) from FBC.
– Using the homomorphic property of commitments, verify
• if there exists polynomials of degree at most t, say f ′(·), g′(·) and h′(·) such that Cfj ,gj ,hj is

Commck(f
′(αj); g

′(αj), h
′(αj))

a for every Pj ∈ P .
• whether the C is same as Commck(f

′(0); g′(0), h′(0)).
If any of the above tests fail then output (sid, i,Failure) and halt.

– Verify whether Cfi,gi,hi
?
= Commck(fi; gi, hi). If the verification fails then call FBC with

(sid, i, (Unhappy,D),P).
Local Computation (at the end of Round 2) — Every party Pi in P does the following:

– Construct a set Wi initialized to ∅ and add Pj ∈ P to Wi if corresponding to party Pj the message
(sid, i, j, (Unhappy,D)) is received fromb FBC.

– If |Wi| > t, then output (sid, i,Failure) and halt.
Round 3 (Resolving Complaints) — D does the following:

– Corresponding to each Pi ∈ WD, call FBC with the message (sid,D, (Resolve, Pi, fi, gi, hi),P).
Local Computation (at the end of Round 3) — every party Pi ∈ P does the following:

– If there exists a Pk ∈ Wi corresponding to which the message (sid, i,D, (Resolve, Pk, fk, gk, hk)) is received
from FBC such that Cfk,gk,hk 6= Commck(fk; gk, hk), then output (sid, i,Failure) and halt.

– Else output [s]i computed as follows and halt:
• If Pi ∈ P \Wi, then [s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P) where fi, gi, hi is received from D in Round 1.
• If Pi ∈ Wi, then [s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P) where fi, gi, hi is received from D in Round 3.

a This is done using a standard procedure based on the properties of Vandermonde matrix; see for example [21].
b The contents ofWi will be the same for each honest party Pi in P .

Fig. 7. Protocol for UC-secure realizing FGEN[·]

The properties of the protocol Π[·] are formally stated in Lemma 5.

Lemma 5. Let D ∈ P be a dealer with secret s and randomness pair (g, h) and let C be a publicly known
commitment available to the parties in P . Then the protocol Π[·] UC-securely realizes the functionality
FGEN[·] in the FBC-hybrid model. The protocol has communication complexity O(nκ) bits and BC

(
nκ, n

)
.

PROOF: The communication complexity follows easily from the protocol. We next prove the security, con-
sidering the following two cases.

Case I — When D is honest: We first claim that in this case, no honest party will output Failure; this
easily follows from the fact that an honest D will distribute consistent shares and only the corrupted share-

372

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

holders (at most t) will accuse D and such accusations will be resolved correctly by D. Let T ⊂ P be the
set of parties under the control of A during the protocol Π[·]; we present a simulator SHD

[·] (interacting with
the functionality FGEN[·]) for A in Figure 8. The high level idea behind the simulator is the following: the
simulator interacts with FGEN[·] and obtains the shares and opening information of the corrupted parties,
along with all the committed shares and sends the same to the real-world adversary; the simulator then sim-
ulates the rest of the protocol steps of Π[·] on the behalf of the honest parties (including D). Any accusation
by a (corrupted) share-holder can be easily resolved by the simulator, as it knows the corresponding share
and opening information (as obtained from the functionality), which it can reveal. It follows easily that the
simulated view has exactly the same distribution as the view of the real-world adversary in Π[·].

Simulator SHD
[·]

The simulator plays the role of the honest parties (including D) and simulates each step of the protocol Π[·] as follows. The
communication of the Z with the adversary A is handled as follows: Every input value received by the simulator from Z is
written onA’s input tape. Likewise, every output value written byA on its output tape is copied to the simulator’s output tape
(to be read by the environment Z). The simulator then does the following for the session ID sid:

– Interact with FGEN[·] and obtain (sid, i, (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P)) corresponding to every corrupted party Pi ∈ T .
– On the behalf of D, send (sid, i, (fi, gi, hi)) to A, corresponding to every Pi ∈ T . In addition, send

(sid,D, i, {Cfj ,gj ,hj}Pj∈P) to A on the behalf of FBC, corresponding to each Pi ∈ T .
– On receiving (sid, i,P, (Unhappy,D)) as the message to FBC from A on the behalf of any Pi ∈ T , send

(sid,D, i, (Resolve, Pi, fi, gi, hi)) to A as the message from FBC on the behalf of D.

The simulator then outputs A’s output and terminate.

Fig. 8. Simulator for the adversary A corrupting at most t parties in the set T ⊂ P \ D in the protocol Π[·].

Case 2 — When D is Corrupted: We first note that there exists at least t+ 1 honest parties in P and that
there exists only a unique polynomial of degree at most t passing through a set of t + 1 or more distinct
points. With these facts, we next prove the security with respect to a corrupted D. Let T ⊂ P be the set of
parties under the control ofA including D, during the protocol Π[·]; we present a simulator SCD

[·] (interacting
with the functionality FGEN[·]) for A in Figure 9.

It follows easily that the simulated view is computationally indistinguishable from the view of the real-
world adversary; otherwise we can use the corresponding distinguisher to break the binding property of the
underlying commitment scheme. 2

373

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Simulator SCD
[·]

The simulator plays the role of the honest parties and simulates each step of the protocol Π[·] as follows. The communication
of the Z with the adversary A is handled as follows: Every input value received by the simulator from Z is written on A’s
input tape. Likewise, every output value written by A on its output tape is copied to the simulator’s output tape (to be read by
the environment Z). The simulator then does the following for the session ID sid:

– Play the role of n− |T | honest parties and interact with A as per the protocol Π[·].
– If Failure is obtained during the simulated execution of the protocol due to the fact that the committed shares and the

corresponding randomness do not lie on polynomials of degree at most t, then send three arbitrary polynomials of degree
more than t on the behalf of D to the functionality FGEN[·].

– Else define three polynomials f̂(·), ĝ(·) and ĥ(·) of degree at most t, such that f̂(αi) = fi, ĝ(αi) = gi and ĥ(αi) =
hi holds for every honest party Pi 6∈ T , where fi and (gi, hi) are the corresponding share and opening information
respectively which are obtained by Pi during the simulated run of a of Π[·]. Then send the polynomials f̂(·), ĝ(·) and
ĥ(·) on the behalf of D to FGEN[·].

The simulator then outputs A’s output and terminate.

a Note that f̂(·), ĝ(·) and ĥ(·) are well defined as there exists |n| − |T | > t+ 1 honest parties in P .

Fig. 9. Simulator for the adversary A corrupting at most t parties in the set T ⊂ P including D during the protocol Π[·].

B.2 Protocols for Realizing FCOMMITTEE and FBC

The Committee Selection Protocol: Functionality FCOMMITTEE can be realized using various standard
ways; moreover, the functionality will be invoked at most (t + 1) times in our MPC protocol; t times
corresponding to t failed sub-circuit evaluations plus once for initial selection of a committee. As this cost
is independent of the circuit size |ckt| (but rather Poly(n)), we give only a high level sketch of one of the
possible instantiations of FCOMMITTEE, based on a computationally secure pseudo-random number generator
(PRNG) [29]. Assume we have a PRNG Rk(·) with seed k, which outputs values in the range 1, . . . , n.
Then each time a committee needs to be formed, the parties in P can agree on a random seed k; this can
be done via standard method, say by coin-flipping (or executing an instance of Π[·] on the behalf of each
party). Then the parties can (locally) run R with the obtained key, till they obtain the desired committee. It
follows via the security ofR, that the committee selected like this is indeed a uniformly random committee
of parties with high probability. We can simplify further by putting up a random seed in the CRS, rather than
sampling a random seed on the fly every time a committee needs to be formed.

The Broadcast Protocol: Assuming a PKI set-up, the well known Dolev-Strong (DS) broadcast protocol
[16] allows a sender Sen ∈ P to reliably broadcast a messagem of size ` to a set of parties X ⊆ P , provided
X has at least one honest party; the protocol can be used to realize FBC. As stated in [19], using the DS
protocol, it costs the parties in X ∪ {Sen} a total communication of O(|X |3 · ` · κ) bits over the point-to-
point channels to enable the Sen to broadcast m to the parties in X . As the protocol is well known in the
literature, we avoid giving the details here and instead refer the interested readers to [18] for the details. We
also note that [19] suggests an improved proposal for realizing FBC with a communication complexity of
O(|X | · `+ |X |4 · (|X |+κ)) bits, but with a restriction on the size of `, namely ` = ω(|X |2 · (|X |+κ)). We
make use of this proposal for estimating the communication complexity of our MPC protocol in Section 3.3.

C Supporting Sub-Protocols

In this appendix, we present the details for the sub-protocols which enable a number of tasks such as con-
version from [·]-sharing to 〈·〉-sharing and vice-versa and generating a random [·]-sharing of 0.

374

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

C.1 Protocol for Converting a 〈·〉-sharing to a [·]-sharing

Protocol Π〈·〉→[·] is presented in Figure 10.

Protocol Π〈·〉→[·]

For session id sid, every party Pi ∈ P participates with either (sid, i, 〈s〉i) or (sid, i) and does the following:

– If Pi ∈ X , interpret 〈s〉i as (si, ui, vi, {CPi
sj ,uj ,vj}Pj∈X) and invoke FBC with (sid, i, {CPi

sj ,uj ,vj}Pj∈X ,P)

– Receive (sid, i, k, {CPk
sj ,uj ,vj}Pj∈X) from FBC for every Pk ∈ X (who acted as the sender).

– If there exists a pair of parties Pa, Pb ∈ X , such that {CPa
sj ,uj ,vj}Pj∈X 6= {CPb

sj ,uj ,vj}Pj∈X , then output (sid, i,
Failure, Pa, Pb) and halt; if there are multiple such pairs (Pa, Pb) the select the one with the least index a and b. Else set
{Csj ,uj ,vj}Pj∈X = {CPα

sj ,uj ,vj}Pj∈X to be the reference set of commitments, where Pα is the least indexed party in P .
– If Pi ∈ X , act as a D and call FGEN[·] with (sid, i, f (i)(·), g(i)(·), h(i)(·)) where f (i)(·), g(i)(·) and h(i)(·) are random

polynomials of degree at most t, subject to the condition that f (i)(0) = si, g
(i)(0) = ui and h(i)(0) = vi. If Pi ∈ P \X ,

invoke FGEN[·] with (sid, i, k,Csk,uk,vk) for every Pk ∈ X , where Csk,uk,vk is obtained from the reference set of
commitments. Receive (sid, i, k,Failure) or (sid, i, k, [sk]i) from FGEN[·] for every Pk ∈ X

– Output (sid, i,Failure, Pk) and halt if (sid, i, Pk,Failure) is received from FGEN[·] corresponding to any Pk ∈ X .
Otherwise, locally compute [s]i =

P
Pk∈X

[sk]i, output (sid, i, Success, [s]i) and halt.

Fig. 10. Protocol for Converting 〈·〉-sharing to [·]-sharing in the (FBC,FGEN[·])-hybrid Model

C.2 Protocol for Generating 〈·〉-sharing of a Committed Secret

Protocol Π〈·〉 is presented in Figure 11.

375

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Protocol Π〈·〉

For session ID sid, every Pi ∈ P participates with (sid, i,D,Cf,g,h,X) where Cf,g,h is a (publicly known) commitment.
The dealer D participates with (sid,D, f, g, h,X) where f is the secret and (g, h) is the randomness pair, such that C =
Commck(f ; g, h). The parties in P do the following:

Round 1 (Share Distribution and Broadcasting Commitments): Only D does the following:
– Corresponding to every Pi ∈ X , select a random share si and a random pair of opening information ui, vi, subject to

the condition that
P
Pi∈X si = f,

P
Pi∈X ui = g and

P
Pi∈X vi = h, and compute the commitment Csi,ui,vi =

Commck(si;ui, vi). Send (sid, i,D, si, ui, vi) to the party Pi.
– Call FBC with (sid,D, {Csj ,uj ,vj}Pj∈X ,P) to broadcast {Csj ,uj ,vj}Pj∈X to all the parties in P .

Round 2 (Consistency Verification and Complaints): Every party Pi ∈ P does the following:
– Receive (sid, i,D, {Csj ,uj ,vj}Pj∈X) from FBC. Additionally if Pi ∈ X , then receive (sid, i,D, si, ui, vi) from D.

– Verify if�Pj∈XCsj ,uj ,vj
?
= Cf,g,h (homomorphically). If the verification fails, then output (sid, i,D,Failure) and

halt.
– If Pi ∈ X then verify whether Csi,ui,vi

?
= Commck(si;ui, vi). If the verification fails then call FBC with (sid, i,

(Unhappy, i,D),P).
– Construct a setWi initialized to ∅ and add Pj ∈ X toWi if (sid, i, j, (Unhappy, j,D)) is received froma FBC cor-

responding to Pj .
Round 3 (Resolving Complaints): Only D does the following:

– Corresponding to each Pi ∈ WD, call FBC with the message (sid,D, (Resolve, i, si, ui, vi),P).
Local Computation (at the end of Round 3): Every party Pi ∈ P does the following:

– If there exists a Pk ∈ Wi corresponding to which the message (sid, i,D, (Resolve, k, sk, uk, vk)) is received from
FBC such that Csk,uk,vk 6= Commck(sk;uk, vk), then output (sid, i,D,Failure) and halt.

– Else every Pi ∈ P \ X outputs (sid, i,D, Success) and halts, while every Pi ∈ X does the following:
• If Pi ∈ X \ Wi, then set 〈f〉i = (si, ui, vi, {Csj ,uj ,vj}Pj∈X), where (si, ui, vi) was received from D and
{Csj ,uj ,vj}Pj∈X was received from FBC at the end of Round 1. Output (sid, i,D, Success, 〈f〉i) and halt.

• Else if Pi ∈ Wi, then set 〈f〉i = (si, ui, vi, {Csj ,uj ,vj}Pj∈X), where (si, ui, vi) was received from FBC (cor-
responding to D) at the end of Round 3 and {Csj ,uj ,vj}Pj∈X was received from FBC at the end of Round 1.
Output (sid, i, Success,D, 〈f〉i) and halt.

a The contents ofWi will be the same for each honest party Pi in P .

Fig. 11. Protocol Π〈·〉 for Verifiably 〈·〉-sharing an Existing Committed Secret

376

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

C.3 Protocol for Transforming [·]-sharing to 〈·〉-sharing

Protocol Π[·]→〈·〉 is presented in Figure 12.

Protocol Π[·]→〈·〉

For session ID sid, every party Pi ∈ P participates in the protocol with (sid, i, [s]i,X), where [s]i =
(fi, gi, hi, {Cfj ,gj ,hj}Pj∈P) and does the following:

Verifiably 〈·〉-sharing the Share and Opening Information in [s]i. Act as a dealer D and participate in an instance of Π〈·〉
with input (sid, i, fi, gi, hi,X). For every Pk ∈ P , participate in the instance of Π〈·〉 corresponding to the dealer Pk
with input (sid, i, k,Cfk,gk,hk ,X).

Identifying the Correctly 〈·〉-shared Shares of s and Generating 〈s〉X . If Pi ∈ P \ X , then output (sid, i) and halt. Else
construct a setH initialized to ∅.

– Include Pk ∈ P toH if (sid, i, k,Success, 〈fk〉i) is the output for the instance of Π〈·〉 where Pk acted as the dealer.
– Without loss of generality, leta H = {P1, . . . , P|H|} and let c1, . . . , c|H| be the publicly known Lagrange interpola-

tion coefficients, such that c1f1 + . . . + c|H|f|H| = s. Then locally compute 〈s〉i = c1〈f1〉i + . . . + c|H|〈f|H|〉i,
output (sid, i, 〈s〉i) and halt.

a The setH will be of size more than t+ 1.

Fig. 12. Protocol Π[·]→〈·〉 for Converting an [·]-sharing to 〈·〉-sharing.

C.4 Protocol for Generating Random [·]-sharing of 0

As mentioned earlier, the protocol uses the ideal ZK functionality FZK.BC presented in Figure 13.

Functionality FZK.BC

FZK.BC interacts with a prover Pj ∈ P and the set of n verifiers P = {P1, . . . , Pn} and the adversary S and is parameterized
by the commitment key ck of a double-trapdoor homomorphic commitment scheme.

– Upon receiving (sid, j,C, u, v) from the prover Pj and (sid, j, i) from every party Pi ∈ P \ {Pj}, the functionality

sends (sid, i,C) to every party Pi ∈ P and S and halts if C
?
= Commck(0;u, v) is true. Else the functionality sends

(sid, i,⊥) to every party Pi ∈ P and S and halts.

Fig. 13. The Ideal Functionality for ZK Proof of Committing Zero

Now based on the functionalities FGEN[·] and FZK.BC, protocol ΠRANDZERO[·] is presented in Figure 14.

377

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Protocol ΠRANDZERO[·]

For the session id sid, every party Pi ∈ P participates with (sid, i) and does the following:

Publicly Committing 0:
– Set ri = 0 and randomly select ui, vi ∈ Fp and compute Cri,ui,vi = Commck(ri;ui, vi).
– Act as a prover and callFZK.BC with (sid, i,Cri,ui,vi , ui, vi). Corresponding to every prover Pj ∈ P\Pi, participate

in FZK.BC with (sid, j, i).
– Construct a set Ti, initialized to ∅ and include Pj in Ti if corresponding to the prover Pj , (sid, i,Cri,uj ,vj) is

received from FZK.BC.
[·]-sharing 0:

– Select three random polynomials f (i)(·), g(i)(·) and h(i)(·) each of degree at most t, subject to the condition that
f (i)(0) = ri, g

(i)(0) = ui and h(i)(0) = vi.
– Act as a D and call FGEN[·] with (sid, Pi, f

(i)(·), g(i)(·), h(i)(·)). Corresponding to every dealer Pj ∈ Ti, participate
in FGEN[·] with (sid, i, j,Crj ,uj ,vj).

– If corresponding to any Pj ∈ Ti, (sid, i, Pj ,Failure) is received from FGEN[·], then remove Pj from Ti.
– Locally compute [0]i =

P
Pj∈Ti [rj]i, where (sid, i, j, [rj]i) is received from FGEN[·] corresponding to Pj ∈ Ti.

Output (sid, i, [0]i) and halt.

Fig. 14. Protocol ΠRANDZERO[·] for generating a random [·]-sharing of 0.

D Protocol ΠNR
C for 〈·〉-shared Evaluation of a Circuit

As evident from the high level description of protocol ΠNR
C in Section 3.2, the major step of the protocol

ΠNR
C is the preparation stage for generating the shared-triplets. Towards constructing the preparation stage

protocol and protocol ΠNR
C , we begin with the building blocks and sub-protocols most of which are taken

from [12] and rest are modified according to our need. Many of the sub-protocols are described with respect
to a set of parties X ⊂ P , where we assume that X contains at least one honest party.

Strong Semi-honest Secure Two-party Multiplication Protocol. Protocol ΠMULT(a, b) → (c1, c2) is a
two-party protocol. The inputs of the first and second party are a and b respectively. The outputs to the first
and second party are c1 and c2 respectively. It holds that c1 is random in Fp and c1 + c2 = a · b. Informally
the protocol satisfies the following properties (for the complete formal details see [12]):

– The protocol is secure even if the adversary maliciously chooses the randomness for the corrupted parties
(this is the reason [12] calls the protocol as strong semi-honest secure).

– The view of the protocol commits the adversary to his randomness and given the view and the random-
ness it is possible to verify whether any party deviated from the protocol.

In our context, the second property ofΠMULT is very crucial, as it enables an honest party involved inΠMULT
to identify any malicious behavior of its partner in the protocol when the individual randomness are revealed.
There are various standard ways for instantiating ΠMULT(a, b), based on variety of standard assumptions,
such as homomorphic encryption, oblivious transfer (OT), etc. An instantiation based on Paillier encryption
with communication complexity O(κ) is provided in [12] (for details see [12]).

Semi-honest Secure Triple Generation Protocol. The protocol ΠTRIPLE (see Figure 15) uses the two
party protocol ΠMULT as a sub-protocol and allows a set of parties X ⊂ P to generate one 〈·〉-shared
multiplication triplet (〈a〉X , 〈b〉X , 〈c〉X). The protocol is executed assuming semi-honest adversary. The
protocol is based on the following idea: every party Pi ∈ X selects a random ai and bi and commits
the same. Then we set a and b to be the sum of all ais and bis. For setting c as a · b, every pair of parties
Pi, Pj ∈ X need to securely compute the “cross-terms” ai·bj and aj ·bi, for which they execute two instances

378

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ofΠMULT. Once Pi computes its ci, it publicly commits the same. Instantiating the calls toΠMULT with that
of [12] (based on the Paillier encryption), protocol ΠTRIPLE has communication complexity of O(|X |2κ)
and BC

(
|X |κ, |X |

)
.

Protocol ΠTRIPLE

The public input to the protocol is a set of parties X ⊂ P containing at least one honest party. For the session id sid, every
party Pi ∈ X participates with (sid, i) and does the following:

– Randomly select shares ai, bi.
– For all Pj ∈ X \ Pi, run ΠMULT(ai, bj)→ (dij , eji) as party 1.
– For all Pj ∈ X \ Pi, run ΠMULT(aj , bi)→ (dji, eij) as party 2.
– Set ci = ai · bi +

P
Pj∈X\Pi dij +

P
Pj∈X\Pi eij .

– Randomly select qi, ri, si, ti, ui and vi and compute the commitments Cai,qi,ri = Commck(ai; qi, ri),Cbi,si,ti =
Commck(bi; si, ti) and Cci,ui,vi = Commck(ci;ui, vi). Call FBC with (sid, i,Cai,qi,ri ,Cbi,si,ti ,Cci,ui,vi ,X).

– Corresponding to each Pj ∈ X , receive (sid, i, j,Caj ,qj ,rj ,Cbj ,sj ,tj ,Ccj ,uj ,vj) from FBC.
– Set 〈a〉i = (ai, qi, ri, {Caj ,qj ,rj}Pj∈X), 〈b〉i = (bi, si, ti, {Cbj ,sj ,tj}Pj∈X) and 〈c〉i =

(ci, ui, vi, {Ccj ,uj ,vj}Pj∈X). Output (sid, i, 〈a〉i, 〈b〉i, 〈c〉i) and halt.

Fig. 15. Protocol for Generating One 〈·〉-shared Multiplication Triple Assuming No Active Corruptions.

Functionality for Generating 〈·〉-sharing of a Random Value. Functionality FGENRAND〈·〉 (presented in
Figure 16) generates an 〈·〉-shared random value within a designated set of parties X ⊂ P , where each party
in X “contributes” its “part” of the share and opening information for the shared random value.

Functionality FGENRAND〈·〉

The functionality interacts with a designated set of partiesX ⊂ P containing at least one honest party and the adversary S and
is parametrized by the commitment key ck of a double-trapdoor commitment scheme. For the session id sid, the functionality
does the following:

– On receiving (sid, i, si, ui, vi) from each party Pi ∈ X , compute s =
P
Pi∈X si, u =

P
Pi∈X ui and v =

P
Pi∈X vi

and Cs,u,v = Commck(s;u, v). In addition, for each Pi ∈ X , compute Csi,ui,vi = Commck(si;ui, vi). Finally send
(sid, i,Cs,u,v, {Csj ,uj ,vj}Pj∈X) to every Pi ∈ X and halt.

Fig. 16. Functionality for Generating 〈·〉-shared Random Value for a Designated Set X ⊂ P with Dishonest-majority.

In [12], a realization of FGENRAND〈·〉 based on UC-secure multi-party commitment scheme was presented
in the common reference string (CRS) model. The UC secure multi-party commitment scheme is further
constructed using a CCA-secure encryption and the double-trapdoor homomorphic commitment scheme
introduced in Section 2. Specifically, the following was shown; we refer to [12] for the details of the instan-
tiation of FGENRAND〈·〉.

Lemma 6 ([12]). Assuming CCA-secure encryption and double-trapdoor homomorphic commitment scheme,
it is possible to (κ, s)-securely realize FGENRAND〈·〉 in the (FCRS,FBC)-hybrid model in the UC frame-
work. The protocol generates ` 〈·〉-shared random values and has communication complexity BC

(
|X |(` +

s)κ, |X |
)
.

Protocol for Reconstructing 〈·〉-shared Value. Protocol ΠREC〈·〉 takes as input an 〈·〉-sharing, say 〈s〉X
and either allows the honest parties in X to robustly reconstruct s or ensures that the honest parties in X can
(locally) identify at least one corrupted party in X . The protocol is based on the following standard idea:

379

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

let 〈s〉i = (si, ui, vi, {Csj ,uj ,vj}Pj∈X) be the information available to party Pi ∈ X corresponding to 〈s〉X .
Then each Pi broadcasts si, ui, vi to the parties in X via FBC. Let each party Pi receive s̄j , ūj , v̄j from Pj .
Pi then verifies if Csj ,uj ,vj = Commck(s̄j ; ūj , v̄j). If the verification fails, Pi identifies Pj to be corrupted
and outputs (Failure, i, j); otherwise Pi sums up all the shares to obtain s and outputs (Success, i, s). In
the rest of the description, we will say that the parties in X participate in ΠREC〈·〉 with 〈s〉X and each
Pi ∈ X outputs either (Success, i, s) or (Failure, i, j) to mean the above. The protocol has communication
complexity BC

(
|X |κ, |X |

)
.

Beaver’s Multiplication Protocol. Protocol ΠBEA(〈x〉X , 〈y〉X , 〈a〉X , 〈b〉X , 〈c〉X) is a standard protocol
for securely computing 〈x · y〉X from 〈x〉X and 〈y〉X , at the cost of two public reconstruction. The protocol
assumes that the parties in X ⊂ P have access to an 〈·〉X -shared random multiplication triple (a, b, c)
unknown to the adversary, with c = a ·b. The protocol is based on the principle that x ·y = (x−a+a) ·(y−
b+ b) = de+ db+ ae+ c, where d = (x− a) and e = (y − b). Hence if the parties in X reconstruct d and
e, then they can locally compute 〈x · y〉X = de+ d · 〈b〉X + e · 〈a〉X + 〈c〉X . The security of x and y follows
even after the reconstruction of d and e, as x and y are masked by random and private a and b respectively.
To reconstruct d and e, the parties in X first locally compute 〈d〉X = 〈x − a〉X and 〈e〉X = 〈y − b〉X ,
followed by invoking ΠREC〈·〉 with inputs 〈d〉X and 〈e〉X . Depending on whether the instances of ΠREC〈·〉
are successful or not, an honest party in X may output (Success, i, 〈x ·y〉i) or (Failure, i, j). In the rest of the
description, we will say that the parties in X participate in ΠBEA(〈x〉X , 〈y〉X , 〈a〉X , 〈b〉X , 〈c〉X) and each
Pi output either (Success, i, 〈x · y〉i) or (Failure, i, j) to mean the above. The protocol has communication
complexity BC

(
|X |κ, |X |

)
.

D.1 The Preparation Stage of Protocol ΠNR
C

We are now ready to discuss the preparation stage of our protocol ΠNR
C . We pursue the same outline as

followed by the preparation stage of the MPC protocol of [12] and describe the same briefly below. This
is followed by the required adaptations in our context. The preparation stage of [12] provides security with
abort. Namely the protocol generates the required 〈·〉-shared triplets if all the parties behave honestly; oth-
erwise if the honest parties identify any wrong-doing then they simply abort.

– Triple Generation: The involved parties generate many random 〈·〉-shared triplets by executing many
instances of ΠTRIPLE, assuming no active corruptions.

– Verification of the Triples via Cut-and-choose: A random fraction of the triplets are verified via cut-
and-choose to detect any cheating attempts. Specifically, a random subset of generated triplets are se-
lected and the parties are asked to disclose the randomness that they used in the instances ofΠTRIPLE for
generating the selected triplets. If any cheating is detected then the involved parties abort, otherwise they
proceed to the next step. If the test passes then with high probability it is ensured that the majority of the
remaining untested triplets are “good” in the sense that they are honestly generated.

– Proof of Knowledge: The goal of this test is to ensure that for each remaining triplet, every party has the
knowledge of their shares, thus ensuring independence required for UC security. More specifically, dur-
ing the generation of an untested triplet, a corrupted party Pi could broadcast an arbitrary Cai,?,?,Cbi,?,?

or Cci,?,?, being oblivious to ai, bi and ci. This is prevented by the following steps: First parties gener-
ate random 〈·〉-shared values (by calling FGENRAND〈·〉) and then they open the difference of the triplets
and those random shared values via protocol ΠREC〈·〉. Opening these differences is indeed a very sim-
ple proof of knowledge (see [12]). A cheating is detected if some of the opening fail. In that case the
involved parties abort, otherwise they proceed to the next step.

380

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

– Verification of the Triplets via Sacrificing Trick: At this stage, the remaining triplets are verified
for correctness via the well-known “sacrificing” trick [13]. Namely for every pair of remaining shared
triplets (a, b, c) and (x, y, z), the parties generate a random r and recompute an 〈·〉-sharing of a · b, by
assuming rx, ry, r2z as a multiplication triplet; protocol ΠBEA is used for the same. Ideally if (a, b, c)
and (x, y, z) are multiplication triplets, then the difference of the sharing of c and the recomputed ab
should be a sharing of zero, which is verified by the parties publicly (using protocol ΠREC〈·〉). If any
cheating is detected then the parties abort, else they proceed to the next step after discarding (x, y, z),
whose security is sacrificed during the verification of (a, b, c). It follows that if the test passes then except
with probability 1/p over the choice of r, the triplet (a, b, c) is indeed a correct multiplication triplet (see
[12] for the details).

– Privacy Amplification: At this stage, the parties jointly perform privacy amplification and “distill”
CM +CR fully random private triplets from a set ofO((CM +CR) +X) triplets, where X of them might
not be private11; recall that CM and CR are the number of multiplication and random gates respectively
in the circuit C. For this, FGENRAND〈·〉 along with ΠBEA is used. If any cheating is detected during ΠBEA,
then the parties abort.

In our context, it is not enough to abort when a wrong-doing is detected. If some party Pi ∈ X identifies
any party Pj ∈ X cheating in any of the steps for preparation stage, Pi alarms the parties in P by raising
a complaint against Pj . This allows the parties in P to localize the fault to a pair of parties (Pi, Pj). To
simplify the fault-localization, we set a designated party PRef ∈ X with the smallest index Ref as the referee
to locally identify any fault and report the same to the parties in P . The fault localization step in each stage
of the preparation stage is emphasized below.

– Fault Localization During the Verification of the Triples via Cut-and-choose: The parties in X first
run the steps for the cut-and-choose triple-verification as in [12]. If any party Pi locally identifies any
fault then it raises an alarm for the parties in P . On receiving the alarm, every party in X broadcasts (to
the parties in X) their entire view (including the randomness used) in the generation of the triplets under
testing. The referee PRef then “recomputes” every message a party Pi ∈ X should send to every other
party Pj ∈ X and compares them with what Pi claims to send and what Pj claimed to receive. In case
there is any mis-match, then PRef raises a complaint against both Pi and Pj among P and urges Pi and
Pj to respond. Now depending upon the response, the parties can localize the fault to either (PRef , Pi) or
(PRef , Pj) or (Pi, Pj). The important observation is that fault will never be localized to a pair of honest
parties from X . This is because the property of ΠMULT ensures that if both the participating parties are
honest then they never conflict with each other. A located pair will contain at least one corrupted party.

– Fault Localization in Proof of Knowledge: The parties in X execute the same steps as in [12] for prov-
ing the knowledge of their shares. If any party Pi ∈ X locally identifies any fault during the instances
of ΠREC〈·〉 (used to open the differences of triplets and random shared values), then Pi raises an alarm
among the set P , while the referee PRef is assigned the task of publicly reporting the identity of the party
Pj it has caught cheating. The fault is then localized to (Pj , PRef). If an honest Pi raises an alarm, but
a corrupted PRef does not identify any cheater, then the fault is localized to (Pi, PRef). It is easy to note
that a located pair will contain at least one corrupted party.

– Fault Localization During the Verification of the Triplets via Sacrificing Trick: Here the parties in
X first apply the sacrificing trick on each pair of remaining triplets. Now there are three situations under
which a party Pi ∈ X can detect a fault. (a) The instances of ΠBEA is unsuccessful. In this case, the

11 For the specific instantiation of ΠMULT based on Paillier encryption, this is indeed the case if one of the participating parties in
ΠMULT is corrupted; see [12] for the details.

381

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

parties in P localize the fault in the same way as in the previous step. Namely Pi raises an alarm while
PRef is asked to identify the cheating party. (b) The instances of ΠREC〈·〉 to open the difference of ab and
c fails; the fault-localization in this case is also the same as in the previous step. (c) The difference of ab
and c is non-zero. Clearly in this case, at least one of the involved triplet (in the pair) is not generated
correctly and so the parties in P perform the fault-localization in the same way as in the cut-and-choose
step. Namely, all the parties in X publicly open (to the parties in X) their entire view produced during
the generation of the two triplets and PRef is then asked to find a pair of “conflicting” parties.

– Fault Localization in Privacy Amplification: The parties in X execute the steps for privacy amplifica-
tion [12]. If any cheating is detected by a party Pi ∈ X during the involved instances of ΠBEA, then the
parties in P perform the fault localization in the same way as it is done during for a failed instance of
ΠBEA in the previous stage.

The protocol steps for the preparation stage are given in Figure 17, where we give the formal steps for the
fault localization with respect to only the first two phases; the formal steps for the fault localization for the
remaining phases is not provided to avoid repetition.

In the protocol, B and λ are two parameters. In [12], it was shown that their preparation stage provides
a statistical security of 2−B log2(1+λ). They set B and λ as B = 3.6s and λ = 1/4 to achieve a statistical
security of 2−s. Since our preparation stage is almost the same as that of [12] bar the fault-localization steps
(which does not affect the statistical security at all), it follows easily via [12] that our preparation stage
also provides a statistical security of 2−B log2(1+λ). Intuitively this is due to the following reason: define a
triplet to be a good one if the adversary could open it correctly during the Cut-and-choose step and make
an honest party accept (this implies that such a triplet is generated honestly), otherwise call the triplet a
bad triplet (i.e. such triplets are not generated honestly and so adversary may know some information about
honest partys’ shares for such triplets). Then it follows from [12] that if the protocol reaches the Privacy
Amplification phase, then the probability that the triplets considered during this phase has more than B bad
(and hence non-private) triplets is at most (1 + λ)−B . As a result, adversary may know at most B points on
the polynomials F (·) and G(·) of degree at most d, implying CM + CR degree of freedom in the view of
the adversary. Note that as suggested in [12], instead of creating “big” polynomials F (·) and G(·) of huge
degrees, we can partition the remaining triplets inM into batches of smaller size and accordingly use many
polynomials of small degree, without affecting the security properties; we prefer to present the Privacy
Amplification phase the way presented in [12].

382

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Preparation Stage of ΠNR
C

The public input to the protocol is a set of parties X ⊂ P containing at least one honest party and a referee PRef ∈ X , with
the smallest index Ref. For the session id sid, every party Pi ∈ P participates with (sid, i) and does the following:

Triple-generation Assuming No Active Corruption — If Pi ∈ X then participate in the protocolΠTRIPLE (1+λ)(4(CM +
CR) + 4B − 2) times to generate a setM of (1 + λ)(4(CM + CR) + 4B − 2) 〈·〉-shared triplets.

Testing the Triplets via Cut-and-Choose — If Pi ∈ X then do the following:
– Call FGENRAND〈·〉 to sample a random string str that determines a subset T ⊂M of size λ(4(CM + CR) + 4B − 2).

SetM =M\T . Let ViewTi denote the randomness used by Pi and the messages received from the other parties in
X , during the instances of ΠTRIPLE used for generating the triplets in T . Reveal ViewTi to the parties in X by calling
FBC with (sid, i,ViewTi ,X).

– Corresponding to eachPj ∈ X , receive (sid, i, j,ViewTj) fromFBC. Using {ViewTj }Pj∈X , reproduce every message
that should have been sent by every sender Pa ∈ X to every receiver Pb ∈ X during the generation of the triplets
in T , and compare it with the corresponding value that the recipient Pb claims to have received. If any conflict is
detected, then do the following for the smallest indexed conflicting parties Pa, Pb:
• If Pi 6= PRef , then call FBC with (sid, i,Err,P) to indicate to the parties in P that a conflict has been detected.
• Else call FBC with (sid,Ref,Err, Pa, Pb, l, x, x,P) to indicate that referee Pi identified Pa, Pb ∈ X the least

indexed conflicting parties and a message with index l where Pa should have sent x but Pb claimed to receive
x 6= x.

– If the message (sid, i,Ref,Err, Pa, Pb, l, x, x) is received fromFBC and if Pa = Pi or Pb = Pi, then callFBC with
(sid, i,Agree, PRef ,P) to indicate that you agree with PRef , else call FBC with (sid, i,Disagree, PRef ,P).

Fault Localization —
– If the message (sid, i,Ref,Err, Pa, Pb, l, x, x) is received from FBC and subsequently (a) if

(sid, i, a,Disagree, PRef) is received from FBC, then output (sid, i,Failure, PRef , Pa) and halt (b) if
(sid, i, b,Disagree, PRef) is received from FBC, then output (sid, i,Failure, PRef , Pb) and halt. Else output
(sid, i,Failure, Pa, Pb) and halt.

– If no message of the form (sid, i,Ref,Err, ?, ?, ?, ?, ?) is received fromFBC, but corresponding to some Pj ∈ X the
message (sid, i, j,Err) is received from FBC, then output (sid, i,Failure, PRef , Pj) and halt.

Proof of Knowledge — If Pi ∈ X then do the following for every (untested) triplet (〈a〉X , 〈b〉X , 〈c〉X) in M: Sample
three random 〈·〉-shared values 〈r〉X , 〈s〉X , 〈u〉X by invoking FGENRAND〈·〉. Participate in instances of ΠREC〈·〉 with 〈r −
a〉X , 〈s− b〉X and 〈u− c〉X . If (sid,Failure, i, j) is the output in any of the instances of ΠREC〈·〉, then do the following:

– If Pi 6= PRef then call FBC with (sid, i, j,Err,P) to indicate that a cheating has been detected.
– Else if Pi = PRef then call FBC with (sid,Ref,Err, j,P) to indicate Pj is identified as a cheater; if there are several

such Pjs then select the one with the minimum index j.
Fault Localization —If a message (sid, i,Ref,Err, j,P) is received from FBC, then output (sid, i,Failure, PRef , Pj) and

halt. Else if a message (sid, i, j,Err) is received from FBC, then output (sid, i,Failure, Pi, Pj) and halt.
Verification Via sacrificing Trick — If Pi ∈ X then do the following for every pair of triplets

(〈a〉X , 〈b〉X , 〈c〉X) and (〈x〉X , 〈y〉X , 〈z〉X) in M: Call FGENRAND〈·〉 and sample a randoma r. Participate in
ΠBEA(〈a〉X , 〈b〉X , 〈rx〉X , 〈ry〉X , 〈r2z〉X) for computing 〈c〉X followed by participation in ΠREC〈·〉 with 〈c − c〉X . If
no cheating has been identified during ΠBEA, ΠREC〈·〉 and if c − c = 0, then store (〈a〉X , 〈b〉X , 〈c〉X) for future use and
drop (〈x〉X , 〈y〉X , 〈z〉X) fromM. Else proceed to the fault-localization step.

Fault Localization — If the parties in X have raised a complaint due to the failure of ΠBEA or ΠREC〈·〉, then localize the
fault in the same way as in the case of fault-localization for the Proof of Knowledge step. Else localize the fault in the
same way as in the Cut-and-Choose step by asking the parties in X to open their entire view of the disputed triplet.

Privacy Amplification — The parties in X are now left with 2(CM + CR) + 2B − 1 triplets {(〈ak〉X , 〈bk〉X ,
〈ck〉X)}k=1,...,2(CM+CR)+2B−1 inM. Let d = (CM + CR) +B − 1. If Pi ∈ X then do the following:

– Invoke FGENRAND〈·〉 2(d+ 1) times to generate 〈f (1)〉X , . . . , 〈f (d+1)〉X and 〈g(1)〉X , . . . , 〈g(d+1)〉X .
– Let F (·) and G(·) be the polynomials of degree at most d such that F (αk) = f (k) and G(αk) = g(k) for k =

1, . . . , d + 1. Locally compute 〈F (αd+2)〉X , . . . , 〈F (α2d+1)〉X and 〈G(αd+2)〉X , . . . , 〈G(α2d+1)〉X . For k =
1, . . . , 2d + 1, participate in ΠBEA(〈F (αk)〉X , 〈G(αk)〉X , 〈a(k)〉X , 〈b(k)〉X , 〈c(k)〉X) for computing 〈h(k)〉X =
〈F (αk) ·G(αk)〉X .

– If any cheating is identified during ΠBEA, then proceed to the fault localization step. Else let H(·) be the poly-
nomial of degree at most 2d such that H(αi) = h(i) for i = 1, . . . , 2d + 1. Then output (sid, i, Success,
{(〈a(k)〉X , 〈b(k)〉X , 〈c(k)〉X)}k=1,...,CM+CR) and halt, where a(k) = F (−αk),b(k) = G(−αk) and c(k) =
H(−αk).

Fault Localization — If any complaint is raised due to the failure of ΠBEA, then localize the fault as in the Proof of
Knowledge step. Else every Pi ∈ P \ X output (sid, i, Success) and halt.

a It is enough to sample a single r for all the pairs of available triplets.

Fig. 17. Generating CM + CR 〈·〉-shared Multiplication Triples with Statistical Security 2−B log2(1+λ).

383

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

D.2 Protocol ΠNR
C

In this section the protocol ΠNR
C is presented in Figure 18, where during the circuit-evaluation stage, we fol-

low the idea outlined earlier in section 3.2. Note that during the circuit evaluation, an instance of ΠBEA may
fail, in which case the parties in P localize the fault via the referee PRef in the same way as it was done in
the preparation stage.

Protocol ΠNR
C

The public input to the protocol is a set of parties X ⊂ P containing at least one honest party and an arithmetic circuit C over
Fp consisting of in input gates, out output gates, CM multiplication gates and CR random gates. In addition, 〈x1〉X , . . . , 〈xin〉X
are the 〈·〉-shared inputs for C. Let PRef ∈ X be the party with the smallest index Ref who is set as the referee to localize any
fault occurred during the protocol.

For the session id sid, party Pi ∈ P participates with (sid, i) and does the following:

Preparation Stage: execute the steps of Figure 17.
Computation Stage: If (sid, i, Success, {(〈a(k)〉X , 〈b(k)〉X , 〈c(k)〉X)}k=1,...,CM+CR) or (sid, i, Success) is obtained at the

end of preparation stage, then do the following:
– 〈·〉-shared Evaluation of the Circuit C — If Pi ∈ X then do the following for every gate in the circuit C:
• Input Gate: For l = 1, . . . , in, associate 〈xl〉X with the corresponding input gate of C.
• Random Gate: For the kth random gate in C where k ∈ {1, . . . ,CR}, associate 〈a(k)〉X as the output of the

random gate.
• Addition Gate: If 〈x〉X and 〈y〉X are the 〈·〉-shared inputs of the gate, then locally compute 〈x + y〉X =
〈x〉X + 〈y〉X and associate it as the output of the addition gate.

• Multiplication Gate: For the kth multiplication gate in C with the 〈·〉-shared inputs 〈x〉X and 〈y〉X
where k ∈ {1, . . . ,CM}, associate the triplet (〈a(CR+k)〉X , 〈b(CR+k)〉X , 〈c(CR+k)〉X). Participate in
ΠBEA(〈x〉X , 〈y〉X , 〈a(CR+k)〉X , 〈b(CR+k)〉X , 〈c(CR+k)〉X) to compute 〈x · y〉X . If (sid, i,Failure, j) with Pj ∈
X is obtained during the instance of ΠBEA then do the following:
∗ If Pi 6= PRef then call FBC with (sid, i,Err,P) to indicate that a cheating has been detected while execut-

ing ΠBEA.
∗ Else if Pi = PRef then callFBC with (sid,Ref,Err, j,P) to indicate that Pj is identified as a cheater while

executing ΠBEA; if there are several such Pjs then select the one with the minimum index j.
– Fault Localization —
• If there exists a multiplication gate in C corresponding to which a message (sid, i,Ref,Err, j) is received on

the behalf of PRef from FBC then output (sid, i,Failure, PRef , Pj) and halt.
• Else if there exists a multiplication gate in C corresponding to which a message (sid, i, j,Err) is received from
FBC on the behalf of Pj ∈ X , but no message of the form (sid, i,Ref,Err, ?, ?) is received from FBC on the
behalf of PRef , then output (sid, i,Failure, PRef , Pj) and halt.

• Else if Pi ∈ P \X then output (sid, i, Success) and halt; otherwise output (sid, i, Success, 〈y1〉X , . . . , 〈yout〉X)
and halt, where 〈y1〉X , . . . , 〈yout〉X are the 〈·〉-shared outputs associated with the output gates of C.

Fig. 18. Protocol for Secure 〈·〉-shared Evaluation of a Given Circuit C with Statistical Security 1− 2−B log2(1+λ).

The correctness of the protocol follows via the binding property of the commitment and the detailed
informal discussion above, while we appeal to [12] for the proof of privacy in UC secure framework. We
now prove Lemma 4 (the lemma statement is available in Section 3), by setting λ = 1/4 and B = 3.6s as
done in [12], so that the protocol provides a statistical security of 2−s.

Proof of Lemma 4: We prove the communication complexity of the preparation stage, with the obser-
vation that CM + CR = O(|C|). During the Triple-generation phase, O(CM + CR + B) instances of
ΠTRIPLE are executed by the parties in X , thus requiring communication complexity ofO(|X |2(|C|+B)κ)
and BC

(
|X |(|C|+B)κ, |X |

)
.

384

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

During the Cut-and-Choose phase, O(CM + CR + B) calls to FGENRAND〈·〉 are made for generating
O(CM + CR + B) random 〈·〉-shared commitments with statistical security 2−B log2(1+λ), incurring com-
munication complexity of BC

(
|X |(|C| + B)κ, |X |

)
. In addition, the parties in X need to broadcast among

themselves their entire view of ΠTRIPLE with respect to O(CM + CR +B) triplets. This incurs a communi-
cation complexity of BC

(
|X |2(|C| + B)κ, |X |

)
. During the fault-localization step, the parties in X need to

broadcast O(κ) bits to the parties in P , thus requiring communication complexity of BC
(
|X |κ, n

)
.

During the Proof of Knowledge phase, O(CM + CR + B) calls to FGENRAND〈·〉 are made and O(CM +
CR +B) instances of ΠREC〈·〉 are executed by the parties in X , thus requiring a communication complexity
of BC

(
|X |(|C|+B)κ, |X |

)
. In addition, during the fault-localization step, the parties in X need to broadcast

O(κ) bits to the parties in P , thus requiring communication complexity of BC
(
|X |κ, n

)
.

During the Correctness phase, O(CM + CR + B) instances of ΠBEA and ΠREC〈·〉 are executed by
the parties in X . In addition, the parties in X may need to publicly open among themselves the entire
view of ΠTRIPLE with respect to a disputed pair of triplet. Thus this phase has communication complexity
of BC

(
|X |(|C| + B)κ, |X |

)
, with an additional communication complexity of BC

(
|X |κ, n

)
for the fault-

localization step. It follows easily that the Privacy Amplification phase as well as the circuit evaluation
stage has communication complexity of BC

(
|X |(|C| + B)κ, |X |

)
for executing the steps within X and has

communication complexity of BC
(
|X |κ, n

)
for any possible fault-localization.

During the computation stage, CM instances of ΠBEA are executed and fault-localization is done at most
once. It thus follows that setting B = 3.6s, the protocol has communication complexity O(|X |2(|C| +
s)κ),BC

(
|X |2(|C|+ s)κ, |X |

)
and BC

(
|X |κ, n

)
. 2

E Proof of Theorem 1

Security. We prove the security by designing a simulator for the protocol Πf . Let T ⊂ P be the set of
parties under the control of A during the protocol Πf ; we present a simulator Sf (interacting with the
functionality Ff) for A in Figure 19. The high level idea for the simulator is the following: the simula-
tor takes the input {x(i)}Pi∈T and interacts with Ff to obtain the function output y. The simulator then
invokes A with the inputs {x(i)}Pi∈T and simulates each message that A would have received in the pro-
tocol Πf from the honest parties and from the functionalities called therein, step by step. Notice that the
simulator Sf also needs to simulate the protocol steps of the honest parties for the sub-protocols Π[·]→〈·〉,
Π〈·〉→[·], ΠNR

cktl
and ΠRANDZERO[·]. Specifying the simulator steps for these subprotocols would make the de-

scription of Sf complicated. So for the ease of presentation, we define three sub-simulators S[·]→〈·〉 (Fig. 20),
S〈·〉→[·] (Fig. 21), and SRANDZERO[·] (Fig. 22) which are invoked by Sf for simulating the steps of the honest
parties for the instances of Π[·]→〈·〉, Π〈·〉→[·] and ΠRANDZERO[·] respectively; technically, the steps specified
for S[·]→〈·〉,S〈·〉→[·] and SRANDZERO[·] are actually done by the main simulator Sf . While invoking these “sub-
simulators”, Sf will provide its entire internal state to them and the sub-simulators then return back their
internal state (after the required simulation) to the main simulator. Similarly, we also assume the presence
of a simulator SNR

cktl
, which can be invoked by Sf to simulate the steps of the honest parties for the protocol

SNR
cktl

. We do not explicitly give the steps of SNR
cktl

, but rather appeal to the simulator of the MPC protocol
of [12] because the protocol steps of ΠNR

cktl
are almost the same as the MPC protocol of [12], bar the fault-

localization steps. However, simulating the steps of fault-localization is straight forward, since the simulator
will know the entire states of all the honest parties inΠNR

cktl
and so any wrong-doings by the corrupted parties

can be easily identified by the simulator exactly as it was identified by an honest party in ΠNR
cktl

.

It is easy to show that IDEALFf ,Sf ,Z
c
≈ REALΠf ,A,Z in the (FCRS,FBC,FCOMMITTEE,FGEN[·],FGENRAND〈·〉,

FZK.BC)-hybrid settings due to the privacy of the the secret sharing schemes and the statistical hiding prop-

385

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Simulator Sf

The simulator plays the role of the honest parties and simulates each step of the protocol Πf as follows. The communication
of the Z with the adversary A is handled as follows: Every input value received by the simulator from Z is written on A’s
input tape. Likewise, every output value written by A on its output tape is copied to the simulator’s output tape (to be read by
the environment Z). The simulator then does the following for the session ID sid:

Initialization. Sf sets its internal variables L = P , n = n, t = t and NewCom = 1.
CRS Generation. On receiving (sid, i) from every Pi ∈ T , simulator Sf , on behalf of FCRS, computes Gen(1κ) →

(ck, τ0, τ1) and G(1κ)→ (pk, sk), sets CRS = (ck, pk) and sends (sid, i, CRS) to every Pi ∈ T .
Input commitment. On behalf of every honest party Pi ∈ P \ T , Sf picks three random polynomials over

Fp, f (i)(·), g(i)(·), h(i)(·) of degree t such that f (i)(0) = 0 and imitates the behavior of the honest par-
ties. That is, Sf computes the commitment Cf(i)(0),g(i)(0),h(i)(0) = Commck(f

(i)(0); g(i)(0), h(i)(0)) and sends
(sid, i,Cf(i)(0),g(i)(0),h(i)(0)) to every corrupted Pj ∈ T on behalf of FBC. When a corrupted Pi ∈ T invokes FBC

with (sid, i,Cf(i)(0),g(i)(0),h(i)(0),P), simulator Sf acts on behalf of FBC and sends Cf(i)(0),g(i)(0),h(i)(0) to every
Pj ∈ T .

[·]-sharing of Inputs. For every honest Pi ∈ P \ T , simulator Sf acts on behalf of functionality FGEN[·] with
(sid, i, f (i)(·), g(i)(·), h(i)(·)) and hands (sid, j, i, [f (i)(0)]j) to every Pj ∈ T . Then for every corrupted Pi ∈ T , on
receiving (sid, i, f (i)(·), g(i)(·), h(i)(·)) from Pi (as the dealer), Sf , on behalf of FGEN[·], sends (sid, j, i, [f (i)(0)]i) to
every Pj ∈ T , after verifying the polynomials f (i)(·), g(i)(·), h(i)(·) with respect to the corresponding commitment
Cf(i)(0),g(i)(0),h(i)(0) (as done by the functionality FGEN[·]). Locally, simulator maintains the following information:

– Sf stores the input of corrupted Pi ∈ T as x(i) = f (i)(0), where f (i)(·) is received from corrupted Pi. Further it
sets the input of honest Pi ∈ P \ T as x(i) = 0.

– For every Pi ∈ P , it stores the entire [x(i)].
Sf hands {x(i)}Pi∈T to the MPC functionality Ff on behalf of the corrupted parties and gets back the outputs y from
the functionality. Next Sf computes the remaining circuit using 0s as the inputs of the honest parties and {x(i)}Pi∈T
as the inputs of the corrupted parties. For these inputs, it knows the value to be associated with each wire of the circuit.
Thus it knows the circuit output ȳ resulted from the above set of inputs, namely 0s as the inputs of the honest parties and
{x(i)}Pi∈T as the inputs of the corrupted parties.

Start of while loop over the sub-circuits. Set l = 1 and while l < L, Sf continues as follows:
– Committee Selection. If NewCom = 1, on receiving (sid, i,L) from every party Pi ∈ T , Sf on behalf of FCOMMITTEE

picks c parties from its local set L at random and assigns them to C. It then sends (sid, Pi, C) to every Pi ∈ T .
– [·] to 〈·〉C Conversion of Inputs of cktl. Let [x1], . . . , [xinl] denote [·]-sharing of the inputs to the sub-circuit cktl. For

k ∈ {1, . . . , inl}, Sf invokes the sub-simulator S[·]→〈·〉 (Fig. 20) that simulates the steps of the honest parties
in Π[·]→〈·〉, with (sid, {[xk]i}Pi∈P\T , C) (namely with the shares corresponding to the honest parties). The sub-
simulator returns Sf with (sid, {〈xk〉i}Pi∈C∧(P\T)).

– Evaluation of the Sub-circuit cktl. The simulator Sf invokes the simulator SNR
cktl

(namely the simulator of the MPC
protocol of [12] with the appropriate modifications in our context to do fault localization) for simulating the steps of
the honest parties in the protocol ΠNR

cktl
.

– 〈·〉C to [·] conversion of Outputs of cktl. Sf invokes S〈·〉→[·] with (sid, {〈yk〉i}Pi∈C∧(P\T), C) for every k ∈
{1, . . . , outl} and gets back either (sid, {[yk]i}Pi∈P\T) or (sid, i,Failure, Pa, Pb) or (sid, i,Failure, Pa) and does
the following:

– If (sid, {[yk]i}Pi∈P\T) is received for every k, increment l = l + 1, set NewCom = 0, store the sharings and
return to the while loop.

– If (sid, i,Failure, Pa, Pb) is received for some k ∈ outl, update L as L = L \ {Pa, Pb}, t as t = t − 1, n as
n = n− 2.

– If (sid, i,Failure, Pa) is received for some k ∈ outl, update L as L = L\ {Pa}, t as t = t− 1, n as n = n− 1.
– Set NewCom = 1 and go to Committee Selection Step.

Output Rerandomization Let [ȳ] denote the [·]-sharing of the output of ckt. Sf invokes SRANDZERO[·] with input (sid, y− ȳ).
SRANDZERO[·] simulates the honest parties in protocol ΠRANDZERO[·] and returns to Sf (sid, {[y − ȳ]i}Pi∈(P\T)). Sf locally
computes [y]i = [ȳ]i + [y − ȳ]i for every Pi ∈ P \ T .

Output Computation. On behalf of every honest Pi, Sf sends (sid, i, j, fi, gi, hi) to every Pj ∈ T where [y]i =
(fi, gi, hi, {Cfj ,gj ,hj}Pj∈P). Clearly every Pi ∈ T will recover y at the end due to the output rerandomization step.

The simulator then outputs A’s output and terminate.

Fig. 19. Simulator for the adversary A corrupting at most t parties in the set T ⊂ P in the protocol Πf .

386

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

erty of the underlying commitment scheme. For the correctness of the protocol, we rely on the trapdoor
security and binding properties of the underlying double trapdoor commitment scheme.

Simulator S[·]→〈·〉

For session id sid, on receiving (sid, {[s]i}Pi∈P\T ,X) from Sf , S[·]→〈·〉 interacts with the corrupted parties in T on behalf of
the honest parties in an instance of Protocol Π[·]→〈·〉. The simulator S[·]→〈·〉 is aware of the internal state of the honest parties
corresponding to the [s]. The simulator proceeds as follows:

Verifiably 〈·〉-sharing the Share and Opening Information in [s]i. First, S[·]→〈·〉 acts on behalf of every honest Pi as the
dealer in an instance of Π〈·〉 with (sid, [s]i,X) such that [s]i = (fi, gi, hi, {Cfj ,gj ,hj}Pj∈P). It also simulates every
honest party Pi in an instance of Π〈·〉 where a corrupted Pk ∈ T acts as a dealer.

Identifying the Correctly 〈·〉-shared Shares of s and Generating 〈s〉X . If a corrupted Pi ∈ T is caught cheating during
conflict resolution step, then exclude it from a set H that is initialized to P . Otherwise, for every corrupted Pi ∈ T ,
let it receive 〈fi〉k on behalf of every honest Pk ∈ (P \ T) ∧ X . Without loss of generality, leta H = {P1, . . . , P|H|}
and let c1, . . . , c|H| be the publicly known Lagrange interpolation coefficients, such that c1f1 + . . . + c|H|f|H| = s.
Then the simulator locally computes 〈s〉i = c1〈f1〉i + . . . + c|H|〈f|H|〉i on behalf of every honest Pi ∈ X and returns
(sid, {〈s〉i}Pi∈X∧(P\T)) to Sf .

a The setH will be of size more than t+ 1.

Fig. 20. Simulator S[·]→〈·〉 to be Invoked by the MPC Simulator Sf for Simulating the Steps of Sub-protocol Π[·]→〈·〉 in Πf

Simulator S〈·〉→[·]

For session id sid, on receiving (sid, {〈s〉i}Pi∈X∧(P\T),X) from Sf , S〈·〉→[·] interacts with the corrupted parties in T on
behalf of the honest parties in an instance of Protocol Π〈·〉→[·]. Note that the simulator is aware of the internal state of the
honest parties corresponding to the 〈s〉. The simulator proceeds as follows:

– S〈·〉→[·], on behalf of every honest Pi ∈ X , interprets 〈s〉i as (si, ui, vi, {CPi
sj ,uj ,vj}Pj∈X) and sends

(sid, k, i, {CPi
sj ,uj ,vj}Pj∈X) to every Pk ∈ T (acting on behalf of functionality FBC that would have been called by

Pi in the hybrid protocol). On receiving (sid, i, {CPi
sj ,uj ,vj}Pj∈X ,P) from every Pi ∈ T , S〈·〉→[·] acts on behalf of FBC

and sends (sid, k, i, {CPi
sj ,uj ,vj}Pj∈X) to every Pk ∈ T .

– If there exists a pair of parties Pa, Pb ∈ X , such that Pa is honest and Pb ∈ T and {CPa
sj ,uj ,vj}Pj∈X 6=

{CPb
sj ,uj ,vj}Pj∈X , then return (sid,Failure, Pa, Pb) to Sf and halt.

– On behalf of every honest Pi ∈ X , S〈·〉→[·] acts as a D and selects f (i)(·), g(i)(·) and h(i)(·) such that they are random
polynomials of degree at most t, subject to the condition that f (i)(0) = si, g

(i)(0) = ui and h(i)(0) = vi. Then on behalf
of FGEN[·], S〈·〉→[·] creates the [si] exactly in the way FGEN[·] would compute on input (sid, i, f (i)(·), g(i)(·), h(i)(·))
from Pi as the dealer. Then it hands (sid, k, i, [si]k) to every Pk ∈ T . On receiving (sid, i, f (i)(·), g(i)(·), h(i)(·)) from
a corrupted Pi ∈ T acting as D, S〈·〉→[·] acts exactly as FGEN[·] and returns either (sid, i, k,Failure) or (sid, i, k, [sk]i)
to every Pi ∈ T . S〈·〉→[·] returns (sid,Failure, Pk) to Sf when (sid, i, k,Failure) was generated for any Pk ∈ T .
Otherwise, it locally computes [s]i =

P
Pk∈X

[sk]i for every honest Pi ∈ P \T , returns (sid, {[s]i}Pi∈Parties\T) to Sf
and halts.

Fig. 21. Simulator S〈·〉→[·] to be Invoked by the MPC Simulator Sf for Simulating the Steps of Sub-protocol Π〈·〉→[·] in Πf

387

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Simulator SRANDZERO[·]

For the session id sid, on receiving (sid, y− ȳ) from Sf , SRANDZERO[·] interacts with the corrupted parties in T on behalf of the
honest parties in an instance of Protocol ΠRANDZERO[·]. The simulator proceeds as follows:

Publicly Committing 0:
– On behalf of honest party Ph (it just chooses any honest party from the set P) randomly selects uh, vh ∈ Fp, sets
rh = y− ȳ and computes Crh,ui,vi = Commck(y− ȳ;ui, vi). On behalf of every other honest party Pi, it randomly
selects ui, vi ∈ Fp, sets ri = 0 and computes Cri,ui,vi = Commck(ri;ui, vi). On behalf of FZK.BC corresponding
to every honest Pi, it then sends (sid, i,Cri,ui,vi) to every Pj ∈ T . On receiving (sid, i,Cri,ui,vi , ui, vi) from
every corrupted Pi ∈ T , it acts as FZK.BC and verifies if Cri,ui,vi = Commck(0;ui, vi). It the tests passes, then
the simulator on behalf of FZK.BC sends (sid, i,Cri,ui,vi) to every Pj ∈ T . Otherwise, it sends (sid, i,⊥) to every
Pj ∈ T .

– It then constructs a set T , initialized to ∅ and include in T all the honest parties in P and Pi ∈ T if Cri,ui,vi =
Commck(0;ui, vi) was true for Pi.

[·]-sharing 0:
– On behalf of honest party Pi, it selects three random polynomials f (i)(·), g(i)(·) and h(i)(·) each of degree at

most t, subject to the condition that f (i)(0) = ri, g
(i)(0) = ui and h(i)(0) = vi. On behalf of FGEN[·] for an

honest Pi, it sends (sid, j, i, f
(i)
j , g

(i)
j , h

(i)
j) to every Pj ∈ T . Then for every corrupted Pi ∈ T , on receiving

(sid, i, f (i)(·), g(i)(·), h(i)(·)) fromPi (as the dealer), SRANDZERO[·], on behalf ofFGEN[·], sends (sid, j, i, [f (i)(0)]i) to
every Pj ∈ T , after verifying the polynomials f (i)(·), g(i)(·), h(i)(·) with respect to the corresponding commitment
Cri,ui,vi (as done by the functionality FGEN[·]). If the polynomials fails the test, remove Pi from T .

– It locally computes [y − ȳ]i =
P
Pj∈T [rj]i and returns (sid, {[y − ȳ]i}Pi∈P\T) to Sf and halt.

Fig. 22. Simulator for ΠRANDZERO[·]

388

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Between a Rock and a Hard Place: Interpolating Between MPC and FHE

A. Choudhury, J. Loftus, E. Orsini, A. Patra and N.P. Smart

Dept. Computer Science,
University of Bristol,

United Kingdom.
{Ashish.Choudhary,Emmanuela.Orsini,Arpita.Patra}@bristol.ac.uk,

{loftus,nigel}@cs.bris.ac.uk

Abstract. We present a computationally secure MPC protocol for threshold adversaries which is parametrized
by a value L. When L = 2 we obtain a classical form of MPC protocol in which interaction is required for
multiplications, as L increases interaction is reduced, in that one requires interaction only after computing a higher
degree function. When L approaches infinity one obtains the FHE based protocol of Gentry, which requires no
interaction. Thus one can trade communication for computation in a simple way. Our protocol is based on an
interactive protocol for “bootstrapping” a somewhat homomorphic encryption (SHE) scheme. The key contribution
is that our presented protocol is highly communication efficient enabling us to obtain reduced communication when
compared to traditional MPC protocols for relatively small values of L.

1 Introduction

In the last few years computing on encrypted data via either Fully Homomorphic Encryption (FHE) or Multi-Party
Computation (MPC) has been subject to a remarkable number of improvements. Firstly, FHE was shown to be possible
[29]; and this was quickly followed by a variety of applications and performance improvements [9, 12, 11, 30, 31, 39,
40]. Secondly, whilst MPC has been around for over thirty years, only in the last few years we have seen an increased
emphasis on practical instantiations; with some very impressive results [8, 22, 37].

We focus on MPC where n parties wish to compute a function on their respective inputs. Whilst the computational
overhead of MPC protocols, compared to computing “in the clear”, is relatively small (for example in practical proto-
cols such as [25, 37] a small constant multiple of the “in the clear” cost), the main restriction on practical deployment
of MPC is the communication cost. Even for protocols in the preprocessing model, evaluating arithmetic circuits over
Fp, the communication cost in terms of number of bits per multiplication gate and per party is a constant multiple of
the bit length, log p, of the data being manipulated for a typically large value of the constant. This is a major drawback
of MPC protocols since communication is generally more expensive than computation. Theoretical results like [19]
(for the computational case) and [20] (for the information theoretic case) bring down the per gate per party communi-
cation cost to a very small quantity; essentially O(logn

n · log |C| · log p) bits for a circuit C of size |C|. While these
results suggest that the communication cost can be asymptotically brought down to a constant for large n, the constants
are known to be large for any practical purpose. Our interest lies in constructing efficient MPC protocols where the
efficiency is measured in terms of exact complexity rather than the asymptotic complexity.

In his thesis, Gentry [28] showed how FHE can be used to reduce the communication cost of MPC down to
virtually zero for any number of parties. In Gentry’s MPC protocol all parties encrypt to each other their inputs under a
shared FHE public key. They then compute the function homomorphically, and at the end perform a shared decryption.
This implies an MPC protocol whose communication is limited to a function of the input and output sizes, and not to
the complexity of the circuit. However, this reduction in communication complexity comes at a cost, namely the huge
expense of evaluating homomorphically the function. With current understanding of FHE technology, this solution is
completely infeasible in practice.

A variant of Gentry’s protocol was presented by Asharov et al. in [1] where the parties outsource their computation
to a server and only interact via a distributed decryption. The key innovation in [1] was that independently generated

This article is based on an earlier article: Asiacrypt 2013, IACR 2013, http://dx.doi.org/10.1007/
978-3-642-42045-0_12.

389

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

(FHE) keys can be combined into a “global” FHE key with distributed decryption capability. We do not assume such
a functionality of the keys (but one can easily extend our results to accommodate this); instead we focus on using
distributed decryption to enable efficient multi-party bootstrapping. In addition the work of [1], in requiring an FHE
scheme, as opposed to the SHE scheme of our work, requires the assumption of circular security of the underlying
FHE scheme (and hence more assumptions).

In [25], following on the work in [7], the authors propose an MPC protocol which uses an SHE scheme as an
“optimization”. Based in the preprocessing model, the authors utilize an SHE scheme which can evaluate circuits of
multiplicative depth one to optimize the preprocessing step of an essentially standard MPC protocol. The optimiza-
tions, and use of SHE, in [25] are focused on the case of computational improvements. In this work we invert the use
of SHE in [25], by using it for the online phase of the MPC protocol, so as to optimize the communication efficiency
for any number of parties.

In essence we interpolate between the two extremes of traditional MPC protocols (with high communication but
low computational costs) and Gentry’s FHE based solution (with high computation but low communication costs).
Our interpolation is dependent on a parameter, which we label as L, where L ≥ 2. At one extreme, for L = 2 our
protocol resembles traditional MPC protocols, whilst at the other extreme, for L = ∞ our protocol is exactly that
of Gentry’s FHE based solution. We emphasize that our construction is general in that any SHE can be used which
supports homomorphic computation of depth two circuits and threshold decryption. Thus the requirements on the
underlying SHE scheme are much weaker than the previous SHE (FHE) based MPC protocols, such as the one by
Asharov et al. [1], which relies on the specifics of LWE (learning with errors) based SHE i.e. key-homomorphism and
demands homomorphic computation of depth L circuits for big enough L to bootstrap.

The solution we present is in the preprocessing model; in which we allow a preprocessing phase which can compute
data which is neither input, nor function, dependent. This preprocessed data is then consumed in the online phase. As
usual in such a model our goal is for efficiency in the online phase only. We present our basic protocol and efficiency
analysis for the case of passive threshold adversaries only; i.e. we can tolerate up to t passive corruptions where t < n.
We then note that security against t active adversaries with t < n/3 can be achieved for no extra cost in the online
phase. For the active security case, essentially the same communication costs can be achieved even when t < n/2, bar
some extra work (which is independent of |C|) to eliminate the cheating parties when they are detected. The security
of our protocols are proven in the standard UC framework [13].

We note that our focus is on the MPC protocols providing robustness and fairness1, which is impossible to achieve
in general without assuming t < n/2 [15, 32]. Indeed in several real-life applications it may be desirable to have these
properties. However we stress that we could deal with the dishonest majority setting (i.e. t < n) by utilizing additional
zero-knowledge proof techniques to show that the distributed decryptions are performed correctly; however as our
goal is to achieve low exact communication complexity (as opposed to low asymptotic complexity) we feel that such
a discussion would deviate from the thrust of our work. In adding the corresponding associated proofs of correctness
we would still achieve an asymptotic improvement in communication complexity over other MPC protocols with
dishonest majority; but this is not our focus and so in the rest of the paper, we avoid discussing about the setting of
dishonest majority.

Finally we note that our results on communication complexity, both in a practical and in an asymptotic sense, in
the computational setting are comparable (if not better) than the best known results in the information theoretic and
computational settings. Namely the best known optimally resilient statistically secure MPC protocol with t < n/2
has (asymptotic) communication complexity of O(n) per multiplication [5], whereas ours is O(n/L) (see Section 9
for the analysis of our protocol). With near optimal resiliency of t < (1

3 − ε)n, the best known perfectly secure MPC
protocol has (asymptotic) communication complexity of O(polylog n) per multiplication [20], but a huge constant
is hiding under the O. In the computational settings, with near optimal resiliency of t < (1

2 − ε)n, the best known
MPC protocol has (asymptotic) communication complexity of O(polylog n) per multiplication [19], but again a huge
constant is hiding under the O. All these protocols can not win over ours when exact communication complexity is
compared for even small values of L.

1 Informally robustness means that the adversary cannot deny the honest parties from obtaining the correct output, while fairness
guarantees that either everyone receives the output or no one obtains the output.

390

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Overview: Our protocol is intuitively simple. We first take an L-levelled SHE scheme (strictly it has L + 1 levels,
but can evaluate circuits with L levels of multiplications) which possesses a distributed decryption protocol for the
specific access structure required by our MPC protocol. We assume that the SHE scheme is implemented over a ring
which supports N embeddings of the underlying finite field Fp into the message space of the SHE scheme. Almost all
known SHE schemes support such packing of the finite field into the plaintext slots in an SIMD manner [30, 40]; and
such packing has been crucial in the implementation of SHE in various applications [21, 25, 31].

Clearly with such a setup we can implement Gentry’s MPC solution for circuits of multiplicative depth L. All that
remains is how to “bootstrap” from circuits with multiplicative depth L to arbitrary circuits. The standard solution
would be to bootstrap the FHE scheme directly, following the blueprint outlined in Gentry’s thesis. However, in the
case of applications to MPC we could instead utilize a protocol to perform the bootstrapping. In a nutshell that is
exactly what we propose.

The main issue then is show how to efficiently perform the bootstrapping in a distributed manner; where efficiency
is measured in terms of computational and communication performance. Naively performing an MPC protocol to
execute the bootstrapping phase will lead to a large communication overhead, due to the inherent overhead in dealing
with homomorphic encryptions. But on its own this is enough to obtain our asymptotic interpolation between FHE
and MPC; we however aim to provide an efficient and practical interpolation. That is one which is efficient for small
values of L. It turns out that a special case of a suitable bootstrapping protocol can be found as a sub-procedure of the
MPC protocol in [25]. We extract the required protocol, generalise it, and then apply it to our MPC situation.

To ease exposition we will not utilize the packing from [30] to perform evaluations of the depth L sub-circuits;
we see this as a computational optimization which is orthogonal to the issues we will explore in this paper. In any
practical instantiation of the protocol of this paper such a packing could be used, as described in [30], in evaluating the
circuit of multiplicative depth L. However, we will use this packing to perform the bootstrapping in a communication
efficient manner.

The bootstrapping protocol runs in two phases. In the first (offline) phase we repeatedly generate sets of ciphertexts,
one set for each party, such that all parties learn the ciphertexts but only the given party learns their underlying
messages (which are assumed to be packed). The offline phase can be run in either a passive, covert or active security
model, irrespective of the underlying access structure of the MPC protocol following ideas from [22]. In the second
(online) phase the data to be bootstrapped is packed together, a random mask is added (computed from the offline
phase data), a distributed decryption protocol is executed to obtain the masked data which is then re-encrypted, the
mask is subtracted and then the data is unpacked. All these steps are relatively efficient, with communication only
being required for the distributed decryption.

To apply our interactive bootstrapping method efficiently we need to make a mild assumption on the circuit being
evaluated; this is similar to the assumptions used in [19, 20, 26]. The assumption can be intuitively seen as saying
that the circuit is relatively wide enough to enable packing of enough values which need to be bootstrapped at each
respective level. We expect that most circuits in practice will satisfy our assumption, and we will call the circuits which
satisfy our requirement “well formed”.

We pause to note that the ability to open data within the MPC protocol enables one to perform more than a simple
evaluation of an arithmetic circuit. This observation is well known in the MPC community, where it has been used
to obtain efficient protocols for higher level functions [14, 18]. Thus enabling a distributed bootstrapping also enables
one to produce more efficient protocols than purely FHE based ones.

We instantiate our protocol with the BGV scheme [10] and obtain sufficient parameter sizes following the method-
ology in [22, 31]. Due to the way we utilize the BGV scheme we need to restrict to MPC protocols for arithmetic
circuits over a finite field Fp, with p ≡ 1 (mod m) with m = 2 ·N and N = 2r for some r. The distributed decryp-
tion method uses a “smudging” technique which means that the modulus used in the BGV scheme needs to be larger
than what one would need to perform just the homomorphic operations. Removing this smudging technique, and hence
obtaining an efficient protocol for distributed decryption, for any SHE scheme is an interesting open problem; with
many potential applications including that described in this paper.

We show that even for a very small value of L, in particular L = 5, we can achieve better communication effi-
ciency than many practical MPC protocols in the preprocessing model. Most practical MPC protocols such as [8, 25,
37] require the transmission of at least two finite field elements per multiplication gate between each pair of parties.
In [25] a technique is presented which can reduce this to the transmission of an average of three field elements per

391

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

multiplication gate per party (and not per pair of parties). Note the models in [8] (three party, one passive adversary)
and [25, 37] (n party, dishonest majority, active security) are different from ours (we assume honest majority, active
security); but even mapping these protocols to our setting of n party honest majority would result in the same com-
munication characteristics. We show that for relatively small values of L, i.e. L > 8, one can obtain a communication
efficiency of less than one field element per gate and party (details available in Section 9).

Clearly, by setting L appropriately one can obtain a communication efficiency which improves upon that in [19,
20]; albeit we are only interested in communication in the online phase of a protocol in the preprocessing model whilst
[19, 20] discuss total communication cost over all phases. But we stress this is not in itself interesting, as Gentry’s
FHE based protocol can beat the communication efficiency of [19, 20] in any case. What is interesting is that we can
beat the communication efficiency of the online phase of practical MPC protocols, with very small values of L indeed.
Thus the protocol in this paper may provide a practical tradeoff between existing MPC protocols (which consume high
bandwidth) and FHE based protocols (which require huge computation).

Our protocol therefore enables the following use-case: it is known that SHE schemes only become prohibitively
computationally expensive for large L; indeed one of the reasons why the protocols in [22, 25] are so efficient is
that they restrict to evaluating homomorphically circuits of multiplicative depth one. With our protocol parties can
a priori decide the value of L, for a value which enables them to produce a computationally efficient SHE scheme.
Then they can execute an MPC protocol with communication costs reduced by effectively a factor of L. Over time
as SHE technology improves the value of L can be increased and we can obtain Gentry’s original protocol. Thus our
methodology enables us to interpolate between the case of standard MPC and the eventual goal of MPC with almost
zero communication costs.

2 Well Formed Circuits

In this section we define what we mean by well formed circuits, and the pre-processing which we require on our
circuits. We take as given an arithmetic circuit C defined over a finite field Fp. In particular the circuit C is a directed
acyclic graph consisting of edges made up of nI input wires, nO output wires, and nW internal wires, plus a set of
nodes being given by a set of gates G. The gates are divided into sets of Add gates GA and Mult gates GM , with
G = GA ∪ GM , with each Add/Mult gate taking two wires (or a constant value in Fp) as input and producing one
wire as output. The circuit is such that all input wires are open on their input ends, and all output wires are open on
their output ends, with the internal wires being connected on both ends. We let the depth of the circuit d be the length
of the maximum path from an input wire to an output wire. Our definition of a well formed circuit is parametrized by
two positive integer values N and L.

We now associate inductively to each wire in the circuit an integer valued label as follows. The input wires are
given the label one; then all other wires are given a label according to the following rule (where we assume a constant
input to a gate has label L)

Label of output wire of Add gate = min(Label of input wires),
Label of output wire of Mult gate = min(Label of input wires)− 1.

Thus the minimum value of a label is 1− d (which is negative for a general d). Looking ahead, the reason for starting
with an input label of one is when we match this up with our MPC protocol this will result in low communication
complexity for the input stage of the computation.

We now augment the circuit, to produce a new circuit Caug which will have labels in the range [1, . . . , L], by
adding in some special gates which we will call Refresh gates; the set of such gates are denoted as GR. A Refresh gate
takes as input a maximum of N wires, and produces as output an exact copy of the specified input wires. The input
requirement is that the input wires must have label in the range [1, . . . , L], and all that the Refresh gate does is relabel
the labels of the gate’s input wires to be L. At the end of the augmentation process we require the invariant that all
wire labels in Caug are then in the range [1, . . . , L], and the circuit is now essentially a collection of “sub-circuits” of
multiplicative depth at most L − 1 glued together using Refresh gates. However, we require that this is done with as
small a number of Refresh gates as possible.

Definition 1 (Well Formed Circuit). A circuit C will be called well formed if the number of Refresh gates in the
associated augmented circuit Caug is at most 2·|GM |

L·N .

392

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

We expect that “most” circuits will be well formed due to the following argument: We first note that the only gates
which concern us are multiplication gates; so without loss of generality we consider a circuit C consisting only of
multiplication gates. The circuit has d layers, and let the width of C (i.e. the number of gates) at layer i be wi.
Consider the algorithm to produce Caug which considers each layer in turn, from i = 1 to d and adds Refresh gates
where needed. When reaching level i in our algorithm to produce Caug we can therefore assume (by induction) that all
input wires at this layer have labels in the range [1, . . . , L]. To maintain the invariant we only need to apply a Refresh
operation to those input wires which have label one. Let pi denote the proportion of wires at layer i which have label
one when we perform this process. It is clear that the number of required Refresh gates which we will add into Caug

at level i will be at most d2 · pi ·wi/Ne, where the factor of two comes from the fact that each multiplication gate has
two input wires.

Assuming a large enough circuit we can assume for most layers that this proportion pi will be approximately 1/L,
since wires will be refreshed after their values have passed through L multiplication gates. So summing up over all
levels, the expected number of Refresh gates in Caug will be:

d∑
i=1

⌈
2 · wi
L ·N

⌉
≈ 2
L ·N

·
d∑
i=1

wi =
2 · |GM |
L ·N

.

Note, we would expect that for most circuits this upper bound on the number of Refresh gates could be easily met.
For example our above rough analysis did not take into account the presence of gates with fan-out greater than one
(meaning there are less wires to Refresh than we estimated above), nor did it take into account utilizing unused slots
in the Refresh gates to refresh wires with labels not equal to one.

Determining an optimum algorithm for moving from C to a suitable Caug, with a minimal number of Refresh
gates, is an interesting optimization problem which we leave as an open problem; however clearly the above outlined
greedy algorithm will work for most circuits.

3 Threshold L-Levelled Packed Somewhat Homomorphic Encryption (SHE)

In this section, we present a detailed explanation of the syntax and requirements for our Threshold L-Levelled Packed
Somewhat Homomorphic Encryption Scheme. The scheme will be parametrized by a number of values; namely the
security parameter κ, the number of levels L, the amount of packing of plaintext elements which can be made into
one ciphertext N , a statistical security parameter sec (for the security of the distributed decryption) and a pair (t, n)
which defines the threshold properties of our scheme. In practice the parameter N will be a function of L and κ. The
message space of the SHE scheme is defined to be M = FNp , and we embed the finite field Fp into M via a map
χ : Fp −→M. See Section 7 for a discussion as to the various choices one has for χ when we specialise to the BGV
SHE scheme.

Let C(L) denote the family of circuits consisting of addition and multiplication gates whose labels follow the con-
ventions in Section 2; except that input wires have label L and whose minimum wire label is zero. Thus C(L) is the
family of standard arithmetic circuits of multiplicative depth at most L which consist of 2-input addition and multi-
plication gates over Fp, whose wire labels lie in the range [0, . . . , L]. Informally, a threshold L-levelled SHE scheme
supports homomorphic evaluation of any circuit in the family C(L) with the provision for distributed (threshold) de-
cryption, where the input wire values vi are mapped to ciphertexts (at level L) by encrypting χ(vi).

As remarked in the introduction we could also, as in [30], extend the circuit family C(L) to include gates which
process N input values at once as

N -Add (〈u1, . . . , uN 〉, 〈v1, . . . , vN 〉) := 〈u1 + v1, . . . , uN + vN 〉,
N -Mult (〈u1, . . . , uN 〉, 〈v1, . . . , vN 〉) := 〈u1 × v1, . . . , uN × vN 〉.

But such an optimization of the underlying circuit is orthogonal to our consideration. However, the underlying L-
levelled packed SHE scheme supports such operations on its underlying plaintext (we will just not consider these
operations in our circuits being evaluated).

We can evaluate subcircuits in C(L); and this is how we will describe the homomorphic evaluation below (this
will later help us to argue the correctness property of our general MPC protocol). In particular if C ∈ C(L), we

393

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

can deal with sub-circuits Csub of C whose input wires have labels lin1 , . . . , l
in
`in

, and whose output wires have labels
lout1 , . . . , lout`out

, where lini , l
out
i ∈ [0, . . . , L]. Then given ciphertexts c1, . . . , c`in encrypting the messages m1, . . . ,m`in ,

for which the ciphertexts are at level lin1 , . . . , l
in
`in

, the homomorphic evaluation function will produce ciphertexts
ĉ1, . . . , ĉ`out , at levels lout1 , . . . , lout`out

, which encrypt the messages corresponding to evaluating Csub on the compo-
nents of the vectors m1, . . . ,m`in in a SIMD manner. More formally:

Definition 2 (Threshold L-levelled Packed SHE). An L-levelled public key packed somewhat homomorphic en-
cryption (SHE) scheme with the underlying message space M = FNp , public key space PK, secret key space SK,
evaluation key space EK, ciphertext space CT and distributed decryption key spaceDKi for i ∈ [1, . . . , n] is a collec-
tion of the following PPT algorithms, parametrized by a computational security parameter κ and a statistical security
parameter sec:

1. SHE.KeyGen(1κ, 1sec, n, t)→ (pk, ek, sk, dk1, . . . , dkn): The key generation algorithm outputs a public key pk ∈
PK, a public evaluation key ek ∈ EK, a secret key sk ∈ SK and n keys (dk1, . . . , dkn) for the distributed
decryption, with dki ∈ DKi.

2. SHE.Encpk(m, r) → (c, L): The encryption algorithm computes a ciphertext c ∈ CT , which encrypts a plaintext
vector m ∈M under the public key pk using the randomness2 r and outputs (c, L) to indicate that the associated
level of the ciphertext is L.

3. SHE.Decsk(c, l) → m′: The decryption algorithm decrypts a ciphertext c ∈ CT of associated level l where
l ∈ [0, . . . , L] using the decryption key sk and outputs a plaintext m′ ∈ M. We say that m′ is the plaintext
associated with c.

4. SHE.ShareDecdki(c, l) → µ̄i: The share decryption algorithm takes a ciphertext c with associated level l ∈
[0, . . . , L], a key dki for the distributed decryption, and computes a decryption share µ̄i of c.

5. SHE.ShareCombine((c, l), {µ̄i}i∈[1,...,n]) → m′: The share combine algorithm takes a ciphertext c with associ-
ated level l ∈ [0, . . . , L] and a set of n decryption shares and outputs a plaintext m′ ∈M.

6. SHE.Evalek(Csub, (c1, l
in
1), . . . , (c`in , l

in
`in

)) → (ĉ1, l
out
1), . . . , (ĉ`out , l

out
`out

): The homomorphic evaluation algo-
rithm is a deterministic polynomial time algorithm (polynomial in L, `in, `out and κ) that takes as input the
evaluation key ek, a sub-circuit Csub of a circuit C ∈ C(L) with `in input gates and `out output gates as well as
a set of `in ciphertexts c1, . . . , c`in , with associated level lin1 , . . . , l

in
`in

, and outputs `out ciphertexts ĉ1, . . . , ĉ`out ,
with associated levels lout1 , . . . , lout`out

respectively, where each lini , l
out
i ∈ [0, . . . , L] is the label associated to the

given input/output wire in Csub.
Algorithm SHE.Eval associates the input ciphertexts with the input gates of Csub and homomorphically evaluates
Csub gate by gate in an SIMD manner on the components of the input messages. For this, SHE.Eval consists
of separate algorithms SHE.Add and SHE.Mult for homomorphically evaluating addition and multiplication
gates respectively. More specifically, given two ciphertexts (c1, l1) and (c2, l2) with associated levels l1 and l2
respectively where l1, l2 ∈ [0, . . . , L] then3:

– SHE.Addek((c1, l1), (c2, l2)) → (cAdd,min (l1, l2)): The deterministic polynomial time addition algorithm
takes as input (c1, l1), (c2, l2) and outputs a ciphertext cAdd with associated level min (l1, l2).

– SHE.Multek((c1, l1), (c2, l2)) → (cMult,min (l1, l2) − 1): The deterministic polynomial time multiplication
algorithm takes as input (c1, l1), (c2, l2) and outputs a ciphertext cMult with associated level min (l1, l2)− 1.

– SHE.ScalarMultek((c1, l1),a) → (cScalar, l1): The deterministic polynomial time scalar multiplication algo-
rithm takes as input (c1, l1) and a plaintext a ∈ M and outputs a ciphertext cScalar with associated level
l1.

7. SHE.Packek((c1, l1), . . . , (cN , lN)) → (c,min(l1, . . . , lN)): If ci is a ciphertext with associated plaintext χ(mi),
then this procedure produces a ciphertext (c,min(l1, . . . , lN)) with associated plaintext m = (m1, . . . ,mN).

8. SHE.Unpackek(c, l) → ((c1, l), . . . , (cN , l)): If c is a ciphertext with associated plaintext m = (m1, . . . ,mN),
then this procedure produces N ciphertexts (c1, l), . . . , (cN , l) such that ci has associated plaintext χ(mi).

2 In the paper, unless it is explicitly specified, we assume that some randomness has been used for encryption.
3 Without loss of generality we assume that we can perform homomorphic operations on ciphertexts of different levels, since we

can always deterministically downgrade the ciphertext level of any ciphertext to any value between zero and its current value
using SHE.LowerLevelek.

394

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

9. SHE.LowerLevelek((c, l), l′) → (c, l′): This procedure, for l′ < l, produces a ciphertext with the same associated
plaintext as (c, l), but at level l′. 2

We require the following homomorphic property to be satisfied:

– Somewhat Homomorphic SIMD Property: Let Csub : F`inp → F`outp be any sub-circuit of a circuit C in the family
C(L) with respective inputs m1, . . . ,m`in ∈ M, such that Csub when evaluated N times in an SIMD fashion on
the N components of the vectors m1, . . . ,m`in , produces N sets of `out output values m̂1, . . . , m̂`in ∈ M.
Moreover, for i ∈ [1, . . . , `in] let ci be a ciphertext of level lini with associated plaintext vector mi and let
(ĉ1, l

out
1), . . . , (ĉ`out , l

out
`out

) = SHE.Evalek(Csub, (c1, l
in
1), . . . , (c`in , l

in
`in

)). Then the following holds with prob-
ability one for each i ∈ [1, . . . , `out]:

SHE.Decsk(ĉi, louti) = m̂i.

We also require the following security properties:

– Key Generation Security: Let S and Di be the random variables which denote the probability distribution with
which the secret key sk and the ith key dki for the distributed decryption is selected from SK and DKi by
SHE.KeyGen for i = 1, . . . , n. Moreover, for a set I ⊆ {1, . . . , n}, let DI denote the random variable which
denote the probability distribution with which the set of keys for the distributed decryption, belonging to the
indices in I , are selected from the corresponding DKis by SHE.KeyGen. Then the following two properties hold:
• Correctness: For any set I ⊆ {1, . . . , n} with |I| ≥ t + 1, H(S|DI) = 0. Here H(X|Y) denotes the

conditional entropy of a random variable X with respect to a random variable Y [16].
• Privacy: For any set I ⊂ {1, . . . , n} with |I| ≤ t, H(S|DI) = H(S).

– Semantic Security: For every set I ⊂ {1, . . . , n} with |I| ≤ t and all PPT adversaries A, the advantage of A in
the following game is negligible in κ:
• Key Generation: The challenger runs SHE.KeyGen(1κ, 1sec, n, t) to obtain (pk, ek, sk, dk1, . . . , dkn) and sends

pk, ek and {dki}i∈I to A.
• Challenge: A sends plaintexts m0,m1 ∈ M to the challenger, who randomly selects b ∈ {0, 1} and sends

(c, L) = SHE.Encpk(mb, r) for some randomness r to A.
• Output: A outputs b′.

The advantage of A in the above game is defined to be | 12 − Pr[b′ = b]|.
– Correct Share Decryption: For any (pk, ek, sk, dk1, . . . , dkn) obtained as the output of SHE.KeyGen, the following

should hold for any ciphertext (c, l) with associated level l ∈ [0, . . . , L]:

SHE.Decsk(c, l) = SHE.ShareCombine((c, l), {SHE.ShareDecdki(c, l)}i∈[1,...,n]).

– Share Simulation Indistinguishability: There exists a PPT simulator SHE.ShareSim, which on input a subset
I ⊂ {1, . . . , n} of size at most t, a ciphertext (c, l) of level l ∈ [0, . . . , L], a plaintext m and |I| decryp-
tion shares {µ̄i}i∈I outputs n − |I| simulated decryption shares {µ̄∗j}j∈I with the following property: For any
(pk, ek, sk, dk1, . . . , dkn) obtained as the output of SHE.KeyGen, any subset I ⊂ {1, . . . , n} of size at most t, any
m ∈M and any (c, l) where m = SHE.Decsk(c, l), the following distributions are statistically indistinguishable:

({µ̄i}i∈I ,SHE.ShareSim((c, l),m, {µ̄i}i∈I))
s
≈
(
{µ̄i}i∈I , {µ̄j}j∈I

)
,

where for all i ∈ [1, . . . , n], µ̄i = SHE.ShareDecdki(c, l). We require in particular that the statistical distance
between the two distributions is bounded by 2−sec. Moreover

SHE.ShareCombine((c, l), {µ̄i}i∈I ∪ SHE.ShareSim((c, l),m, {µ̄i}i∈I))

outputs the result m. Here I denotes the complement of the set I; i.e. I = {1, . . . , n} \ I .

In Section 7 we instantiate the abstract syntax with a threshold SHE scheme based on the BGV scheme [10]. We
pause to note the difference between our underlying SHE, which is just an SHE scheme which supports distributed
decryption, and that of [1] which requires a special key homomorphic FHE scheme.

395

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

4 MPC from SHE – The Semi-honest Settings

In this section we present our generic MPC protocol for the computation of any arbitrary depth d circuit using an
abstract threshold L-levelled SHE scheme. For the ease of exposition we first concentrate on the case of semi-honest
security, and then we deal with active security in Section 5.

Functionality Ff

Ff interacts with the parties P1, . . . , Pn and the adversary S and is parametrized by an n-input function f : Fnp → Fp.

– Upon receiving (sid, i, xi) from the party Pi for every i ∈ [1, . . . , n] where xi ∈ Fp, compute y = C(x1, . . . , xn), send
(sid, y) to all the parties and the adversary S and halt. Here C denotes the (publicly known) well formed arithmetic circuit
over Fp representing the function f .

Fig. 1. The Ideal Functionality for Computing a Given Function

Without loss of generality we make the simplifying assumption that the function f to be computed takes a single
input from each party and has a single output; specifically f : Fnp → Fp. The ideal functionality Ff presented in
Figure 1 computes such a given function f , represented by a well formed circuitC. We will present a protocol to realise
the ideal functionality Ff in a hybrid model in which we are given access to an ideal functionality FSETUPGEN which
implements a distributed key generation for the underlying SHE scheme. In particular the FSETUPGEN functionality
presented in Figure 2 computes the public key, secret key, evaluation key and the keys for the distributed decryption
of an L-levelled SHE scheme, distributes the public key and the evaluation key to all the parties and sends the ith key
dki (for the distributed decryption) to the party Pi for each i ∈ [1, . . . , n]. In addition, the functionality also computes
a random encryption c1 with associated plaintext 1 = (1, . . . , 1) ∈ M and sends it to all the parties. Looking ahead,
c1 will be required while proving the security of our MPC protocol. The ciphertext c1 is at level one, as we only need it
to pre-multiply the ciphertexts which are going to be decrypted via the distributed decryption protocol; thus the output
of a multiplication by c1 need only be at level zero. Looking ahead, this ensures that (with respect to our instantiation
of SHE) the noise is kept to a minimum at this stage of the protocol.

Functionality FSETUPGEN

FSETUPGEN interacts with the parties P1, . . . , Pn and the adversary S and is parametrized by an L-levelled SHE scheme.

– Upon receiving (sid, i) from the party Pi for every i ∈ [1, . . . , n], compute (pk, ek, sk, dk1, . . . , dkn) =
SHE.KeyGen(1κ, 1sec, n, t) and (c1, 1) = SHE.LowerLevelek((SHE.Encpk(1, r), 1) for 1 = (1, . . . , 1) ∈ M and
some randomness r. Finally send (sid, pk, ek, dki, (c1, 1)) to the party Pi for every i ∈ [1, . . . , n] and halt.

Fig. 2. The Ideal Functionality for Key Generation

4.1 The MPC Protocol in the FSETUPGEN-hybrid Model

Here we present our MPC protocol Π SH
f in the FSETUPGEN-hybrid model. Let C be the (well formed) arithmetic circuit

representing the function f andCaug be the associated augmented circuit (which includes the necessary Refresh gates).
The protocolΠ SH

f (see Figure 3) runs in two phases: offline and online. The computation performed in the offline phase
is completely independent of the circuit and (private) inputs of the parties and therefore can be carried out well ahead
of the time (namely the online phase) when the function and inputs are known. If the parties have more than one

396

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

input/output then one can apply packing/unpacking at the input/output stages of the protocol; we leave this minor
modification to the reader.

In the offline phase, the parties interact with FSETUPGEN to obtain the public key, evaluation key and their respective
keys for performing distributed decryption, corresponding to a threshold L-levelled SHE scheme. Next each party
sends encryptions of ζ random elements and then additively combines them (by applying the homomorphic addition
to the ciphertexts encrypting the random elements) to generate ζ ciphertexts at level L of truly random elements
(unknown to the adversary). Here ζ is assumed to be large enough, so that for a typical circuit it is more than the
number of refresh gates in the circuit, i.e. ζ > GR. Looking ahead, these random ciphertexts created in the offline
phase are used in the online phase to evaluate refresh gates by (homomorphically) masking the messages associated
with the input wires of a refresh gate.

During the online phase, the parties encrypt their private inputs and distribute the corresponding ciphertexts to all
other parties. These ciphertexts are transmitted at level one, thus consuming low bandwidth, and are then elevated to
level L by the use of a following Refresh gate (which would have been inserted by the circuit augmentation process).
Note that the inputs of the parties are in Fp and so the parties first apply the mapping χ (embedding Fp into the message
spaceM of SHE) before encrypting their private inputs.

The input stage is followed by the homomorphic evaluation of Caug as follows: The addition and multiplication
gates are evaluated locally using the addition and multiplication algorithm of the SHE. For each refresh gate, the parties
execute the following protocol to enable a “multiparty bootstrapping” of the input ciphertexts: the parties pick one of
the random ciphertext created in the offline phase (for each refresh gate a different ciphertext is used) and perform
the following computation to refresh N ciphertexts with levels in the range [1, . . . , L] and obtain N fresh level L
ciphertexts, with the associated messages unperturbed:

– Let (c1, l1), . . . , (cN , lN) be the N ciphertexts with associated plaintexts χ(z1), . . . , χ(zN) with every zi ∈ Fp,
that need to be refreshed (i.e. they are the inputs of a refresh gate).

– The N ciphertexts are then (locally) packed into a single ciphertext c, which is then homomorphically masked
with a random ciphertext from the offline phase.

– The resulting masked ciphertext is then publicly opened via distributed decryption, This allows for the creation of
a fresh encryption of the opened value at level L.

– The resulting fresh encryption is then homomorphically unmasked so that its associated plaintext is the same as
original plaintext prior to the original masking.

– This fresh (unmasked) ciphertext is then unpacked to obtain N fresh ciphertexts, having the same associated
plaintexts as the original N ciphertexts ci but at level L.

By packing the ciphertexts together we only need to invoke distributed decryption once, instead ofN times. This leads
to a more communication efficient online phase, since the distributed decryption is the only operation that demands
communication. Without affecting the correctness of the above technique, but to ensure security, we add an additional
step while doing the masking: the parties homomorphically pre-multiply the ciphertext c with c1 before masking.
Recall that c1 is an encryption of 1 ∈ M generated by FSETUPGEN and so by doing the above operation, the plaintext
associated with c remains the same. During the simulation in the security proof, this step allows the simulator to set the
decrypted value to the random mask (irrespective of the circuit inputs), by playing the role of FSETUPGEN and replacing
c1 with c0, a random encryption of 0 = (0, . . . , 0). Furthermore, this step explains the reason why we made provision
for an extra multiplication during circuit augmentation by insisting that the refresh gates take inputs with labels in
[1, . . . , L], instead of [0, . . . , L]; the details are available in the simulation proof of security of our MPC protocol.

Finally, the function output y is obtained by another distributed decryption of the output ciphertext. However, this
step is also not secure unless the ciphertext is randomized again by pre-multiplication by c1 and adding n encryptions
of 0 where each party contributes one encryption. In the simulation, the simulator gives encryption of χ(y) on behalf
of one honest party and replaces c1 by c0, letting the output ciphertext correspond to the actual output y, even though
the circuit is evaluated with zero as the inputs of the honest parties during the simulation (the simulator will not know
the real inputs of the honest parties and thus will simulate them with zero). A similar idea was also used in [23]; details
can be found in the security proof.

Intuitively, privacy follows because at any stage of the computation, the keys of the honest parties for the distributed
decryption are not revealed and so the adversary will not be able to decrypt any intermediate ciphertext. Correctness

397

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Protocol Π SH
f

Let Caug denote an augmented circuit for a well formed circuit C over Fp representing f and let SHE be a threshold L-levelled
SHE. Moreover, let P = {P1, . . . , Pn} be the set of n parties For the session ID sid the parties do the following:

Offline Computation: Every party Pi ∈ P does the following:
– Call FSETUPGEN with (sid, i) and receive (sid, pk, ek, dki, (c1, 1)).
– Randomly select ζ plaintexts mi,1, . . . ,mi,ζ ∈ M, and compute (cmi,k , L) = SHE.Encpk(mi,k, ri,k). Send

(sid, i, (cmi,1 , L), . . . , (cmi,ζ , L)) to all parties in P .
– Upon receiving (sid, j, (cmj,1 , L), . . . , (cmj,ζ , L)) from all parties Pj ∈ P , apply SHE.Add for 1 ≤ k ≤ ζ, on

(cm1,k , L), . . . , (cmn,k , L), set the resultant ciphertext as the kth offline ciphertext cmk with the (unknown) associated plain-
text mk = m1,k + · · ·+ mn,k.

Online Computation: Every party Pi ∈ P does the following:
– Input Stage: On having input xi ∈ Fp, compute (cxi , 1) = SHE.LowerLevelek(SHE.Encpk(χ(xi), ri), 1) with randomness
ri and send (sid, i, (cxi , 1)) to each party. Receive (sid, j, (cxj , 1)) from each party Pj ∈ P .

– Computation Stage: Associate the ciphertexts received with the corresponding input wires ofCaug and then homomorphically
evaluate the circuit Caug gate by gate as follows:
• Addition Gate and Multiplication Gate: Given (c1, l1) and (c2, l2) associated with the input wires of the gate where

l1, l2 ∈ [1, . . . , L], locally compute (c, l) = SHE.Addek((c1, l1), (c2, l2)) with l = min (l1, l2) for an addition gate and
(c, l) = SHE.Multek((c1, l1), (c2, l2)) with l = min (l1, l2) − 1 for a multiplication gate; for the multiplication gate,
l1, l2 ∈ [2, . . . , L], instead of [1, . . . , L]. Associate (c, l) with the output wire of the gate.

• Refresh Gate: For the kth refresh gate in the circuit, the kth offline ciphertext (cmk , L) is used. Let (c1, l1), . . . , (cN , lN)
be the ciphertexts associated with the input wires of the refresh gate where l1, . . . , lN ∈ [1, . . . , L]:
∗ Packing: Locally compute (cz, l) = SHE.Packek({(ci, li)}i∈[1,...,N]) where l = min (l1, . . . , lN).
∗ Masking: Locally compute (cz+mk , 0) = SHE.Addek(SHE.Multek((cz, l), (c1, 1)), (cmk , L))
∗ Decrypting: Locally compute the decryption share µ̄i = SHE.ShareDecdki(cz+mk , 0) and send (sid, i, µ̄i)

to every other party. On receiving (sid, j, µ̄j) from every Pj ∈ P , compute the plaintext z + mk =
SHE.ShareCombine((cz+mk , 0), {µ̄j}j∈[1,...,n]).

∗ Re-encrypting: Locally re-encrypt z + mk by computing (ĉz+mk , L) = SHE.Encpk(z + mk, r) using a publicly
known (common) randomness r, (This can simply be the zero string for our BGV instantiation, we only need to map
the known plaintext into a ciphertext element).

∗ Unmasking: Locally subtract (cmk , L) from (ĉz+mk , L) to obtain (ĉz, L).
∗ Unpacking: Locally compute (ĉ1, L), . . . , (ĉN , L) = SHE.Unpackek(ĉz, L) and associate (ĉ1, L), . . . , (ĉN , L) with

the output wires of the refresh gate.
– Output Stage: Let (c, l) be the ciphertext associated with the output wire of Caug where l ∈ [1, . . . , L].
• Randomization: Compute a random encryption (ci, L) = SHE.Encpk(0, r

′
i) of 0 = (0, . . . , 0) and send (sid, i, (ci, L))

to every other party. On receiving (sid, j, (cj , L)) from every Pj ∈ P , apply SHE.Add on {(cj , L)}j∈[1,...,n] to obtain
(c0, L). Compute (ĉ, 0) = SHE.Addek(SHE.Multek((c, l), (c1, 1)), (c0, L)).

• Output Decryption: Compute γ̄i = SHE.ShareDecdki(ĉ, 0) and send (sid, i, γ̄i) to every party. On receiving (sid, j, γ̄j)
from every Pj ∈ P , compute y = SHE.ShareCombine((ĉ, 0), {γ̄j}j∈[1,...,n]), output y and halt, where y = χ−1(y).

Fig. 3. The Protocol for Realizing Ff against a Semi-Honest Adversary in the FSETUPGEN-hybrid Model

398

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

follows from the properties of the SHE and the fact that the level of each ciphertext in the protocol remains in the
range [1, . . . , L], thanks to the refresh gates. So even though the circuit C may have any arbitrary depth d > L, we can
homomorphically evaluate C using an L-levelled SHE.

We work in the standard Universal Composability (UC) framework of Canetti [13], with static corruption. The UC
framework introduces a PPT environment Z that is invoked on the security parameter 1κ and an auxiliary input z and
oversees the execution of a protocol in one of the two worlds. The “ideal” world execution involves dummy parties
P1, . . . , Pn, an ideal adversary S who may corrupt some of the dummy parties, and a functionalityF . The “real” world
execution involves the PPT parties P1, . . . , Pn and a real world adversary A who may corrupt some of the parties. In
either of these two worlds, a PPT adversary can corrupt t parties out of the n parties. The environment Z chooses the
input of the parties and may interact with the ideal/real adversary during the execution. At the end of the execution, it
has to decide upon and output whether a real or an ideal world execution has taken place.

We let IDEALF,S,Z(1κ, z) denote the random variable describing the output of the environment Z after in-
teracting with the ideal execution with adversary S, the functionality F , on the security parameter 1κ and z. Let
IDEALF,S,Z denote the ensemble {IDEALF,S,Z(1κ, z)}κ∈N,z∈{0,1}∗ . Similarly let REALΠ,A,Z(1κ, z) denote the
random variable describing the output of the environment Z after interacting in a real execution of a protocol Π with
adversary A, the parties P , on the security parameter 1κ and z. Let REALΠ,A,Z denote the ensemble {REALΠ,A,Z
(1κ, z)}κ∈N,z∈{0,1}∗ .

Definition 3. For n ∈ N, let F be an n-ary functionality and let Π be an n-party protocol. We say that Π securely
realizes F if for every PPT real world adversary A, there exists a PPT ideal world adversary S, corrupting the same
parties, such that the following two distributions are computationally indistinguishable:

IDEALF,S,Z
c
≈ REALΠ,A,Z .

We consider the above definition where it quantifies over different adversaries: passive or active, that corrupts only
certain number of parties.

Theorem 1. Let f : Fnp → Fp be a function over Fp represented by a well formed arithmetic circuit C of depth d over
Fp. Let Ff (presented in Figure 1) be the ideal functionality computing f and let SHE be a threshold L-levelled SHE
scheme. Then the protocol Π SH

f UC-secure realizes Ff against a static, semi-honest adversary A, corrupting upto
t < n parties in the FSETUPGEN-hybrid Model.

Proof. We prove the theorem with respect to a generic L-levelled SHE scheme and first consider the correctness.
Suppose in the protocol party Pi has input xi ∈ Fp. Then we claim the following invariant to hold for each wire w of
the circuit Caug during the execution of the protocol: if (c, l) is the ciphertext associated with w during the execution
of the protocol where level l ∈ [1, . . . , L], then SHE.Decsk(c, l) = χ(z), where z ∈ Fp is the value that would have
been associated with w during the evaluation of Caug with input x = (x1, . . . , xn). Before proving the claim, we first
recall that due to the introduction of the Refresh gates in Caug and the way circuit is evaluated, every wire in the circuit
Caug has label in the range [1, . . . , L] and the corresponding ciphertext associated with the wire (during the protocol
execution) has level in the range [1, . . . , L]. In addition the level of the ciphertext associated to a wire is equal to the
label of the wire.

Our invariant is clearly true for the input wires. Assuming that the evaluation of the refresh gates is correct, the
invariant is also true for the output of the Refresh gates. That the invariant holds for the rest of the circuit follows from
the homomorphic property of the SHE scheme. Finally, the correctness of the refresh gate evaluation follows from the
correctness of SHE.Pack, SHE.Unpack, the homomorphic of the underlying SHE; and the fact that all the ciphertexts
that are used in evaluating a refresh gate have levels in the range [0, . . . , L].

We next prove the security. Let A be a real-world semi-honest adversary corrupting t < n parties and let T ⊂
P denote the set of corrupted parties. We now present an ideal-world adversary (simulator) SSH

f for A in Figure 4.
The high level idea for the simulator is the following: the simulator takes the input {xi}Pi∈T and interacts with Ff to
obtain the function output y. The simulator then invokes A with the inputs {xi}Pi∈T and simulates each message that
A would have received in the protocol Π SH

f from the honest parties and from the functionality FSETUPGEN, stage by
stage.

399

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Simulator S SH
f

Let SHE be an L-levelled SHE scheme. The simulator plays the role of the honest parties and simulates each step of the
protocol Π SH

f as follows. The communication of the Z with the adversary A is handled as follows: Every input value re-
ceived by the simulator from Z is written on A’s input tape. Likewise, every output value written by A on its output tape is
copied to the simulator’s output tape (to be read by the environmentZ). The simulator then does the following for the session ID sid:

Offline Computation:

– On receiving the message (sid, i) to FSETUPGEN from A for each Pi ∈ T , the simulator invokes (pk, ek, sk,
dk1, . . . , dkn) = SHE.KeyGen(1κ, 1sec, n, t), computes (c0, 1) = SHE.LowerLevelek(SHE.Encpk(0, ·), 1), and on the behalf
of FSETUPGEN sends (sid, pk, ek, {dki}Pi∈T , (c0, 1)) to A.

– For each Pj 6∈ T , the simulator computes (cmjk , L) = SHE.Encpk(mj,k, ·) for k ∈ [1, . . . , ζ] for a randomly chosen
mj,k ∈M and sends (sid, j, (cmj,1 , L), . . . , (cmj,ζ , L)) to A on the behalf of the honest parties.

– On receiving (sid, i, (cmi,1 , L), . . . , (cmi,ζ , L)) from A for every Pi ∈ T , the simulator decrypts the ciphertexts to get
their associated plaintexts mi,1, . . . ,mi,ζ ; i.e. mi,k = SHE.Decsk(cmi,k , L). The simulator then applies SHE.Add on
(cm1,k , L), . . . , (cmn,k , L) and sets the resultant ciphertext as the kth offline ciphertext. Furthermore it sets mk = m1,k +
. . .+ mn,k as the kth offline plaintext.

Online Computation:

– Input Stage: For every party Pj ∈ P \ T , the simulator computes a random encryption (cxj , 1) =
SHE.LowerLevelek(SHE.Encpk(χ(0), ·), 1) and sends (sid, j, (cxj , 1)) to A on the behalf of every Pj ∈ P \ T . The sim-
ulator receives (sid, i, (cxi , 1)) from A and obtains the associated plaintext xi. On the behalf of the parties Pi ∈ T , the
simulator sends (sid, i, xi) to the functionality Ff and receives y, where xi = χ−1(xi) ∈ Fp,

– Computation Stage: The simulator performs the local computation (required for the addition, multiplication and refresh gates)
as specified in the protocol in order to be synchronized with the adversary with respect to the ciphertexts associated with the
wires in the circuit. For the refresh gates, the simulator simulates to A the communication from the honest parties as follows:
• Refresh Gate: Let this be the kth refresh gate and let (cmk , L) be the kth offline ciphertext with the associated plaintext

mk, which are known to the simulator while simulating the offline computation. Let (c, 0) be the ciphertext obtained after
the masking operation. Since c1 is replaced by c0 in the simulation, c is associated with message mk. For each Pi ∈ T ,
on receiving (sid, i, µ̄i) fromA as the decryption shares of (c, 0), the simulator computes the simulated decryption shares
{µ̄∗j}Pj 6∈T = SHE.ShareSim((c, 0),mk, {µ̄i}Pi∈T). The simulator then sends the simulated shares {µ̄∗j}Pj 6∈T to A as
the decryption shares on the behalf of the honest parties.

– Output Stage:
• Randomization: On receiving (sid, i, (ci, L)) for every Pi ∈ T from A, the simulator computes encryptions of χ(0) for

every honest party, except for one honest party, say Ph, it encrypts χ(y). The simulator sends these ciphertexts to A on
the behalf of the honest parties and then follows the protocol steps to obtain (ĉ, 0) corresponding to the output wire. Note
that the plaintext associated with ĉ is χ(y), since c1 is replaced by c0 in the simulation and one of the ciphertexts on the
behalf of an honest party (for randomization) encrypts χ(y).

• On receiving the decryption share (sid, i, γ̄i) for every Pi ∈ T from A, the simulator computes the simulated decryp-
tion shares {γ̄∗j }Pj∈P\T = SHE.ShareSim((ĉ, 0), χ(y), {γ̄i}Pi∈T) for the the honest parties Pj ∈ P \ T and sends
(sid, j, γ̄∗j) as the decryption shares to A.

The simulator then outputs A’s output.

Fig. 4. Simulator for the semi-honest adversary A corrupting t parties in the set T ⊂ P .

400

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

We will now prove that IDEALFf ,SSH
f ,Z

c
≈ REALΠSH

f ,A,Z via a series of hybrids. The output of each hybrid is
always just the output of the environment Z . Starting with HYB0 = REALΠSH

f ,A,Z , we gradually make changes to
define HYB1, HYB2, HYB3 and HYB4.

HYB1: Same as HYB0, except that the decryption shares of the honest parties corresponding to the ciphertext ĉ asso-
ciated with the output wire (obtained after the randomization) are computed using SHE.ShareSim, by inputting to
it the decryption shares of the corrupted parties corresponding to ĉ, the ciphertext ĉ and the plaintext χ(y), where
y is the function output.

HYB2: Same as HYB1, except that c1 obtained from FSETUPGEN is replaced by c0 and the circuit is computed as
in protocol with c0 being used in place of c1. Moreover, during the randomization step while performing the
distributed decryption of the output wire ciphertext, the randomizing ciphertext (ci, L) of one of the honest parties
(which is an encryption of 0), say Ph, is replaced by a random encryption of χ(y) .

HYB3: Same as HYB2, except that SHE.ShareSim is used while computing the decryption shares of the honest
parties for performing the distributed decryption during the evaluation of the refresh gates.

HYB4: Same as HYB3, except that the real inputs of the honest parties are replaced by χ(0) during the Input Stage
and the circuit is evaluated using encryptions of the χ(0)s as the encrypted inputs of the honest parties.

Our proof will conclude, as we show that every two consecutive hybrids are computationally indistinguishable and
HYB4 = IDEALFf ,SSH

f ,Z .

HYB0
c
≈ HYB1: This follows from the share simulation indistinguishability property of SHE.

HYB1
c
≈ HYB2: To show the indistinguishability, we rely on the semantic security of SHE. In fact, we use a vari-

ant of the semantic security notion, where the adversary gives two pairs of messages to the challenger and the
challenger picks a random pair and gives the encryptions for that pair to the adversary. We call this as the double
message semantic security. It follows by a standard hybrid argument that a scheme offering semantic security also
offers double message semantic security with a security loss of a factor of two.
We now show how a distinguisher Z for the hybrids HYB1 and HYB2 can be used to break the double message
semantic security of the underlying SHE. Let R be the attacker that wants to break the double message semantic
security of the underlying SHE;R usesZ to do so as follows:R receives the public key pk, evaluation key ek and t
keys corresponding to the corrupted parties for performing the distributed decryption. The attackerR then invokes
Z (in her head), which gives back the input set (x1, . . . , xn) ∈ Fnp for all the parties. Using this outputR computes
the function output y and prepares two pairs of messages for the challenger, (1,0) and (0, χ(y)) and hands them
over to the challenger. Let R receive back the encrypted pair (c′, L), (c, L) from the challenger. The algorithm R
now applies SHE.LowerLevel to reduce the first of these to level one, (by abuse of notation we shall still refer to
it as c′). Now R evaluates the circuit by generating offline data honestly and using (c′, 1) in place of (c1, 1) (that
was to be returned by FSETUPGEN) and (c, L) in place of the randomization ciphertext (namely an encryption of 0)
on the behalf of the honest party Ph (which Ph would have given to randomize the output wire ciphertext). Finally
R outputs what Z outputs.
It is easy to note that if the challenger had given encryptions of the first pair of messages, namely (1,0), then Z is
in HYB1, else it is in HYB2. Thus the distinguishing probability of Z is translated to the winning probability
of R in the double message semantic security game. This implies that our claim is true and there exists no PPT
distinguisher Z for the above two hybrids.

HYB2
c
≈ HYB3: This can be shown by relying on the share simulation indistinguishability property of SHE and

by defining GR hybrids over the number of refresh gates, where the ith hybrid is same as HYB2, except that
SHE.ShareSim is invoked for the first i refresh gates (assuming topological ordering of the gates) to compute the
decryption shares of the honest parties and for the (i + 1)th refresh gate onwards, the decryption shares of the
honest parties are computed as in real protocol using SHE.ShareDec.

HYB3
c
≈ HYB4: We resort to the semantic security of the underlying SHE scheme. We let H = |P \ T | denote the

number of honest parties and without loss of generality assume that the first H parties are the honest parties. We
introduce H + 1 hybrids HYB0

3 = HYB3,HYB1
3, . . . ,HYBH3 = HYB4 over the number of honest parties so

that the ith hybrid HYBi3 is same as the (i − 1)th hybrid HYBi−1
3 , except that the input of the ith honest party

is replaced by χ(0). We now show that HYBi−1
3

c
≈ HYBi3 for i ∈ [1, . . . ,H] which will let us conclude that

401

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

HYB3
c
≈ HYB4. We fix an i and show that any Zi that tells apart HYBi−1

3 and HYBi3 can be turned into an
attacker that can break semantic security of the SHE scheme.
Let R be the attacker that wants to break the semantic security of the SHE. The attacker participates in the se-
mantic security game and receives from the challenger pk, ek and t keys corresponding to the corrupted parties
for performing the distributed decryption. It then invokes Zi (in head) to receive the inputs for the parties, say
(x1, . . . , xn) and computes the function output y. The attacker prepares two messages, χ(0) and χ(xi) for the
challenger, the latter being received from Zi as the input of Pi (namely xi). In return, the attacker gets back
(cxi , L) which either encrypts χ(0) or χ(xi). Now the attacker computes encryptions of χ(0) for the first (i− 1)
parties, for Pi the attacker uses cxi received from the challenger and for the remaining parties, the attacker com-
putes encryptions of χ(xi+1), . . . , χ(xn). The attacker R then honestly evaluates the circuit on these encrypted
inputs, ensuring all the similarities between HYBi−1

3 and HYBi3. Namely, the the attacker performs the offline
computation honestly and uses (c0, 1) (an encryption of 0) instead of (c1, 1) (as received from the FSETUPGEN).
Moreover, while performing the randomization during the distributed decryption of the output wire ciphertext, the
attacker uses an encryption of χ(y) as the randomizing ciphertext on the behalf of the honest party Ph (instead of
an encryption of 0), so as to make the output wire ciphertext an encryption of χ(y). Furthermore, the attacker uses
SHE.ShareSim to compute the decryption shares for the honest parties while performing the distributed decryp-
tion for the refresh gates and for the output wire. Note that the attacker will know the plaintext associated with the
ciphertext to be decrypted (both for the refresh gates as well as for the output wire) while using SHE.ShareSim,
even without knowing the actual circuit input of the party Pi (namely the plaintext associated with the challenge
ciphertext (cxi , L)) used for the circuit evaluation. This is because now c0 (instead of c1) is multiplied with the
ciphertexts that are to be decrypted in the protocol and so the post-multiplication ciphertexts have associated plain-
text 0, irrespective of the actual circuit inputs. This allowsR to invoke SHE.ShareSim on a ciphertext for which it
knows the associated plaintext even without knowing the inputs to the circuit. More specifically, for every refresh
gate,R now knows the plaintext associated with the ciphertext to be decrypted, since it solely depends on the data
created in offline computation which will be known to R. On the other hand, for the output wire, R knows the
plaintext associated with the ciphertext to be decrypted, since it is nothing but the circuit output χ(y). Finally at
the end of the circuit evaluation as above,R outputs what Zi outputs.
Now note that if the challenge ciphertext (cxi , L) is an encryption of χ(xi), then Zi is in HYBi−1

3 , else it is in
HYBi3. The above reduction thus shows that R can distinguish between encryptions of χ(xi) and χ(0) with the
same probability with which Zi can distinguish between HYBi−1

3 and HYBi3. This implies that our claim is true.
HYB4

s
≈ IDEALFf ,SSH

f ,Z : Follows from the inspection that the following steps have been performed in HYB4 as
well IDEALFf ,SSH

f ,Z : (1) c1 is replaced by c0, (2) the inputs of the honest parties are replaced by χ(0)s, (3)
SHE.ShareSim is invoked to compute the decryption shares of the honest parties corresponding to all the refresh
gates as well as in the output computation stage and (4) One of the honest party’s randomizing ciphertext is an
encryption of χ(y) instead of an encryption of 0.

Thus we have proved the following claim that in turn concludes the theorem.

Claim. IDEALFf ,SSH
f ,Z

c
≈ REALΠSH

f ,A,Z .
ut

5 MPC from SHE – The Active Setting

The functionalities from Section 4 are in the passive corruption model. In the presence of an active adversary, the
functionalities will be modified as follows: the respective functionality considers the input received from the majority
of the parties and performs the task it is supposed to do on those inputs. For example, in the case of Ff , the func-
tionality considers for the computation those xis, corresponding to the Pis from which the functionality has received
the message (sid, i, xi); on the behalf of the remaining Pis, the functionality substitutes 0 as the default input for the
computation. Similarly for FSETUPGEN, the functionality performs its task if it receives the message (sid, i) from the
majority of the parties. These are the standard notions of defining ideal functionalities for various corruption scenar-
ios and we refer [32] for the complete formal details; we will not present separately the ideal functionality Ff and
FSETUPGEN for the malicious setting.

402

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

A closer look at Π SH
f shows that we can “compile” it into an actively secure MPC protocol tolerating t active

corruptions if we ensure that every corrupted party “proves” in a zero knowledge (ZK) fashion that it constructed the
following correctly: (1) The ciphertexts in the offline phase; (2) The ciphertexts during the input stage and (3) The
randomizing ciphertexts during the output stage.

Apart from the above three requirements, we also require a “robust” version of the SHE.ShareCombine method
which works correctly even if up to t input decryption shares are incorrect. In Section 6 we show that for our specific
SHE scheme, the SHE.ShareCombine algorithm (based on the standard error-correction) is indeed robust, provided
t < n/3. For the case of t < n/2 we also show that by including additional steps and zero-knowledge proofs
(namely proof of correct decryption), one can also obtain a robust output. Interestingly the MPC protocol requires
the transmission of at most O(n3) such additional zero-knowledge proofs; i.e. the communication needed to obtain
robustness is independent of the circuit. We stress that t < n/2 is the optimal resilience for computationally secure
MPC against active corruptions (with robustness and fairness) [15, 33]. To keep the protocol presentation and its
proof simple, we assume a robust SHE.ShareCombine (i.e. for the case of t < n/3), which applies error correction
for the correct decryption. In the same section, we further present a more efficient offline phase attaining a linear
communication overhead (asymptotically) in the number of preprocessed ciphertexts.

Functionality FRZK

FRZK interacts with a prover Pi ∈ {P1, . . . , Pn} and the set of n verifiers P = {P1, . . . , Pn} and the adversary S.

– Upon receiving (sid, i, (x,w)) from the prover Pi ∈ {P1, . . . , Pn}, the functionality sends (sid, i, x) to all the verifiers in
P and S if R(x,w) is true. Else it sends (sid, i,⊥) and halts.

Fig. 5. The Ideal Functionality for ZK

The actively secure MPC protocol is given in Figure 5, it uses an ideal ZK functionality FRZK, parametrized with
an NP-relation R. We apply this ZK functionality to the following relations to obtain the functionalities FRencZK and
FRzeroencZK . We note that UC-secure realizations of FRencZK and FRzeroencZK can be obtained in the CRS model, similar
techniques to these are used in [2]. Finally we do not worry about the instantiation of FSETUPGEN as we consider it a
one time set-up, which can be done via standard techniques (such as running an MPC protocol).

– Renc = {((c, l), (x, r)) | (c, l) = SHE.Encpk(x, r) if l = L ∨ (c, l) = SHE.LowerLevelek(SHE.Encpk(x,
r), 1) if l = 1}: we require this relation to hold for the offline stage ciphertexts (where l = L) and for the input
stage ciphertexts (where l = 1).

– Rzeroenc = {((c, L), (x, r)) | (c, L) = SHE.Encpk(x, r) ∧ x = 0}: we require this relation to hold for the
randomizing ciphertexts during the output stage.

We are now ready to present the protocol ΠMAL
f (see Figure 6) in the (FSETUPGEN,FRencZK ,FRzeroencZK)-hybrid model

and assuming a robust SHE.ShareCombine based on error-correction (i.e. for the case t < n/3).

Theorem 2. Let f : Fnp → Fp be a function represented by a well-formed arithmetic circuit C over Fp. Let Ff
(presented in Figure 1) be the ideal functionality computing f and let SHE be a threshold L-levelled SHE scheme
such that SHE.ShareCombine is robust. Then the protocol ΠMAL

f UC-secure realises Ff in the (FSETUPGEN,FRencZK ,

FRzeroencZK)-hybrid Model against a static, active adversary A corrupting t parties.

Proof. Since the robust SHE.ShareCombine works correctly even in the presence of t active corruptions, the correct-
ness of our MPC protocol follows from the properties of FRencZK and FRzeroencZK by using the same arguments as used
in Theorem 1. More specifically, the properties of FRencZK ensures that during the offline computation, each corrupted
Pi knows the plaintext mik associated with the ciphertext cmik

. Due to the same reason, each corrupted Pi knows the
plaintext (namely the input) χ(xi) associated with the ciphertext cxi . Moreover, the property of FRzeroencZK ensures that

403

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Protocol ΠMAL
f

Let C be the well formed arithmetic circuit over Fp representing the function f , let Caug denote an augmented circuit associated
with C, and let SHE be a threshold L-levelled SHE scheme. For session ID sid the parties in P = {P1, . . . , Pn} do the following:

Offline Computation: Every party Pi ∈ P does the following:

– Call FSETUPGEN with (sid, i) and receive (sid, pk, ek, dki, (c1, 1)).
– Same as in the offline phase of Π SH

f , except that for every message mik for k ∈ [1, . . . , ζ] and the corresponding ciphertext
(cmik , L) = SHE.Encpk(mik, rik), callFRencZK with (sid, i, ((cmik , L), (mik, rik))). Receive (sid, j, (cmjk , L)) fromFRencZK

for k ∈ [1, . . . , ζ] corresponding to each Pj ∈ P . If (sid, j,⊥) is received from FRencZK for some Pj ∈ P , then consider ζ
publicly known level L encryptions of random values fromM as (cmjk , L) for k ∈ [1, . . . , ζ].

Online Computation: Every party Pi ∈ P does the following:

– Input Stage: On having input xi ∈ Fp, compute level L ciphertext (cxi , 1) = SHE.LowerLevelek(SHE.Encpk(χ(xi), ri), 1)
with randomness ri and call FRencZK with the message (sid, i, ((cxi , 1), (χ(xi), ri))). Receive (sid, j, (cxj , 1)) from FRencZK

corresponding to each Pj ∈ P . If (sid, j,⊥) is received from FRencZK for some Pj ∈ P , then consider a publicly known level
1 encryption of χ(0) as (cxj , 1) for such a Pj .

– Computation Stage: Same as Π SH
f , except that now the robust SHE.ShareCombine is used.

– Output Stage: Let (c, l) be the ciphertext associated with the output wire of Caug where l ∈ [1, . . . , L].
• Randomization: Compute a random encryption (ci, L) = SHE.Encpk(0, r

′
i) of 0 = (0, . . . , 0) and call FRzeroencZK

with the message (sid, i, ((ci, L), (0, r′i))). Receive (sid, j, (cj , L)) from FRzeroencZK corresponding to each Pj ∈ P . If
(sid, j,⊥) is received from FRzeroencZK for some Pj ∈ P , then consider a publicly known level L encryption of 0 as
(cj , L) for such a Pj .

• The rest of the steps are same as in Π SH
f , except that now the robust SHE.ShareCombine is used.

Fig. 6. The Protocol for Realizing Ff against an Active Adversary in the (FSETUPGEN,FRencZK ,FRzeroencZK)-hybrid Model

404

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

each corrupted Pi has indeed contributed an encryption of 0 as a randomizing ciphertext during the distributed decryp-
tion of the output wire ciphertext. The homomorphic property of the SHE ensures that the addition and multiplication
gates are evaluated correctly. We next argue that even the refresh gates are evaluated correctly. This follows because
once the parties have access to the offline data, each refresh gate can be evaluated correctly if the parties are able to
decrypt the corresponding masked ciphertext cz+m. However since SHE.ShareCombine works even in the presence
of t active corruptions, it follows that the parties can decrypt cz+m. Due to the same reason, the parties will be able to
decrypt the ciphertext associated with the output wire and hence can obtain the function output.

We next prove the security. Let A be a real-world active adversary up to t parties and let T ⊂ P denote the set
of corrupted parties. We now present an ideal-world adversary (simulator) SMAL

f for A in Figure 7; for simplicity, we
assume that an SHE with a robust, non-interactive SHE.ShareCombine (i.e. for t < n/3) has been used in the MPC
protocol. The indistinguishability between the real and ideal world now follows mostly by the similar arguments given
for semi-honest case (see the proof of Theorem 1).

ut

405

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Simulator SMAL
f

Let SHE be a threshold L-levelled SHE scheme. The simulator plays the role of the honest parties and simulates each step of the
protocol ΠMAL

f as follows. The communication of the Z with the adversary A is handled as follows: Every input value received by
the simulator from Z is written on A’s input tape. Likewise, every output value written by A on its output tape is copied to the
simulator’s output tape (to be read by the environment Z). The simulator then does the following for session ID sid:

Offline Computation:

– On receiving the message (sid, i) to FSETUPGEN from A for each Pi ∈ T , invoke (pk, ek, sk, dk1, . . . , dkn) = SHE.KeyGen(
1κ, n), compute (c0, 1) = SHE.LowerLevelek(SHE.Encpk(0, ·), 1), and send (sid, pk, ek, {dki}Pi∈T , (c0, 1)) to A.

– For each party Pj 6∈ T and k ∈ [1, . . . , ζ], compute (cmjk , L) = SHE.Encpk(mjk, ·) for a randomly chosen mjk ∈ M and
send (sid, j, (cmjk , L)) toA on the behalf ofFRencZK . For each Pi ∈ T on receiving (sid, i, (cmik , L), (mik, rik)) as a message

to FRencZK from A for k ∈ [1, . . . , ζ], verify if (cmik , L)
?
= SHE.Encpk(mik, rik). If the verification fails for some Pi ∈ T

then send (sid, i,⊥) ζ times (corresponding to ζ ciphertexts) to A and set ζ publicly known level L encryptions of random
values fromM as (cmik , L) for k ∈ [1, . . . , ζ] . Compute the kth ciphertext and the kth plaintext of the offline phase as in
ΠMAL
f . The later can be computed by the simulator since it knows all the plaintexts.

Online Computation:

– Input Stage:
• For every party Pj ∈ P \ T , compute a random encryption (cxj , 1) = SHE.LowerLevelek(SHE.Encpk(χ(0), ·), 1) and

send (sid, j, (cxj , 1)) to A on the behalf of FRencZK . For each Pi ∈ T on receiving (sid, i, (cxi , 1), (χ(xi), ri)) as a

message to FRencZK from A, verify (cxi , 1)
?
= SHE.LowerLevelek(SHE.Encpk(χ(xi), ri)) and send (sid, i,⊥) to A if

verification fails. Use publicly known ciphertext (cxi , 1) encrypting xi = χ(0) on the behalf of any such Pi.
• Send (sid, i, xi) to Ff on the behalf of each Pi ∈ T and receive the function output y.

– Computation Stage: The simulator acts in the same way as in S SH
f except that whenever A sends the decryption shares

corresponding to the parties in T during the evaluation of the refresh gates, the simulator ignores them; instead it computes the
decryption shares by itself using the keys dki (for the distributed decryption) corresponding to Pi ∈ T (the simulator knows
dki for every Pi ∈ T since it generated them by itself). These new decryption shares are then fed to SHE.ShareSim to obtain
the simulated decryption shares corresponding to the honest parties, which the simulator then sends to A on behalf of the
honest parties.

– Output Stage:
• Randomization: Let H = P \ T be the set of honest parties and let Ph be some party in H . For every Pj ∈ H \ {Ph}

compute a random encryption (cj , L) = SHE.Encpk(0, ·), while for Ph ∈ H compute a random encryption (ch, L) =
SHE.Encpk(χ(y), ·). For every Pj ∈ H , send (sid, j, (cj , L)) to A on the behalf of FRzeroencZK .

• For each Pi ∈ T on receiving (sid, i, (ci, L), (0, r′i)) as a message to FRzeroencZK from A, verify if (ci, L)
?
=

SHE.Encpk(0, r
′
i). If the verification fails for some Pi ∈ T then send (sid, i,⊥) to A and consider a publicly known

level L encryption of 0 as (ci, L) for such a Pi.
• On receiving the decryption shares from A corresponding to the parties Pi ∈ T , the simulator ignores them and instead

recomputes them using the dkis and feed them to SHE.ShareSim to compute the simulated decryption shares for the
honest parties. Finally it sends the simulated shares to A on behalf of the honest parties.

The simulator then outputs A’s output.

Fig. 7. Simulator for the active adversary A corrupting t parties in the set T ⊂ P .

406

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

6 Obtaining a Robust Protocol

In this section we discuss how to achieve a robust SHE.ShareCombine for our precise SHE scheme, then we present a
modified offline phase with linear communication overhead.

Recall that in our concrete SHE scheme, the SHE.ShareCombine algorithm takes as input a set of shares ob-
tained via Shamir Secret sharing over the ring Rq0 . From this observation it is clear, by the standard error correction
properties of the Reed-Solomon codes (upon which the Shamir secret sharing is based), that one can obtain a robust
SHE.ShareCombine algorithm immediately in the case of t < n/3.

All that remains is to present a robust SHE.ShareCombine for the case t < n/2. We present the protocol (note
that SHE.ShareCombine will be now a protocol instead of a local algorithm as it may involve interaction among the
parties) in Figure 8 that uses the dispute-control framework proposed in [3] and the fact that Reed-Solomon codes can
detect up to t < n/2 errors. The protocol also invokes the ZK functionality for the relationRsharedec a limited number
of times for the proof of correct (distributed) decryption, where Rsharedec is given below.

Rsharedec = {(((c, l), µ̄i), dki) | µ̄i = SHE.ShareDecdki(c, l)}

Unlike the functionality FRZK defined in Figure 5 that treats all the parties in P as the verifiers, it is enough if the
functionality for Rsharedec is defined in a single prover and a single verifier setting. However we avoid elaborating
more on this to keep simplicity.

Our robust SHE.ShareCombine realises the following idea: For distributed decryption, as usual, every party sends
the decryption shares to every other party. A party Pi on receiving the decryption shares first check whether all of
them lie on a unique polynomial of degree at most t (namely error detection). If no error is detected then the secret can
be safely reconstructed. However if some error is detected then Pi “complains” to the parties, asking them to prove
the correctness of their respective decryption shares sent earlier; the parties respond back with ZK proofs by calling
the FRsharedecZK functionality. Now Pi can “identify” the incorrect decryption share providers and ignore their shares
in the future instances of distributed decryption. Each party Pi keeps a list Hi of the parties who it believes to be
honest so far. Proper care has to be taken to ensure that the honest parties do not respond back “too many times” to
the “false” complaints issued by the corrupted parties. This is resolved via keeping counters for the complaints. The
idea is that an honest Pj will complain to an honest Pi at most t times and thus all the complaints from Pj after tth
complaint clearly indicates that the complaint is false and Pj is corrupted. It is now easy to see that by using this trick,
the total number of calls to FRsharedecZK in the MPC protocol will be O(n3), which is independent of the circuit size;
this is because a party may have to provide ZK proof to another party (by calling FRsharedecZK) in at most t instances of
distributed decryption. For large circuit sizes the extra communication cost to obtain a robust SHE.ShareCombine in
the case n/3 ≤ t < n/2 can be safely ignored.

407

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

SHE.ShareCombine

Each party Pi maintains its local copy Hi of a list all the parties which it currently assumed to be honest. Initially each Hi =
{P1, . . . , Pn}. Apart from this, every party Pi maintains n counters cnti,1, . . . , cnti,n, where cnti,j is used to maintain a count
of number of times an error message has been received from the party Pj ; initially all these counters are set to 0. To execute an
SHE.ShareCombine((c, l), {µ̄j}j∈{1...,n}) operation, where µ̄j has been sent by Pj , party Pi performs the following steps:

– Ignore all µ̄j wherePj 6∈ Hi. If the remaining µ̄js lie on a unique polynomial of degree at most t, then output the corresponding
secret (namely the constant term of the polynomial). Otherwise, send a message (sid, i,Errori, (c, l)) to every party Pj ∈ Hi.

– If an error message (sid, j,Errorj , (c, l)) has been received from some Pj ∈ Hi then check whether cnti,j < t. If cnti,j < t,
then call FRsharedecZK with the message (sid, i, j, (((c, l), µ̄i), dki)) and set cnti,j := cnti,j + 1. Else if cnti,j ≥ t then remove
Pj from the listHi.

– If an error message (sid, i,Errori, (c, l)) has been sent in the first step, then execute the following: receive
(sid, j, i, ((c, l), µ̄j)) from FRsharedecZK for every Pj ∈ Hi. If for some Pj ∈ Hi, the message (sid, j, i,⊥) is received from
FRsharedecZK then remove Pj from Hi. Using the µ̄js corresponding to the Pj ∈ Hi, interpolate the polynomial of degree at
most t, output its constant term as the secret.

Fig. 8. Robust SHE.ShareCombine For t < n/2

6.1 An Improved Offline Phase (sketch)

From the analysis in Section 9, we find that the online communication complexity of our protocol is Cost = O(n ·
|GM |) (in the asymptotic sense). We now sketch that how we can modify our offline computation so that asymptotically
the communication complexity of the offline phase is O(n · ζ), where ζ > GR is the number of random ciphertexts
generate in the offline phase. We need the following three tools:

– Multi-valued Broadcast with O(n) Overhead [27]: This protocol allows a sender Sen ∈ {P1, . . . , Pn} to send a
message m of size ` “identically” to all the n parties (even if Sen is corrupted). The protocol can tolerate up to
t < n/2 faults (even if the adversary is computationally unbounded) and has communication complexity O(n`)
provided ` = Ω(n3).

– Randomness Extraction [33, 24]: Given a set of n encryptions of random values t of which may be known to the
adversary, the randomness extraction algorithm based on superinvertible matrix [33] or Vandermonde matrix [24]
allows the parties to (locally) compute encryptions of (n− t) random values unknown to the adversary.

– Non-interactive Zero Knowledge Proofs: We require UC-secure instantiation of FRencZK , such that a party Pi ∈
{P1, . . . , Pn} on computing encryptions of ` random values can publicly prove to anyone that it knows the associ-
ated plaintexts by “attaching” a proof of sizeO(`). Such proofs can be obtained, for example using the techniques
of [2].

Now the offline phase protocol will proceed as follows: every party Pi computes encryptions of L random elements
along with a NIZK proof that it knows the associated plaintexts where L = ζ

(n−t) . Party Pi then broadcasts the
ciphertexts along with the proof by acting as a Sen and invoking the instance of a multi-valued broadcast protocol.
The ciphertexts received from the different parties are then perceived as L batches of ciphertexts, where the lth batch
consists of the lth ciphertext broadcasted by each party for l ∈ [1, . . . ,L]. Finally, the randomness extraction algorithm
on each batch of ciphertext to obtain (n−t) random ciphertexts from each batch and in total L·(n−t) = ζ ciphertexts.
Assuming L = Ω(n3), the total communication cost for the offline phase is now O(n · ζ): each instance of broadcast
protocol has communication complexity O(n · L) = O(L), as (n − t) = Θ(n). It is easy to see that the output
ciphertexts are indeed random as there exists at least (n− t) honest parties corresponding to each batch of ciphertexts.
Note that we do not require any powerful (but somewhat complex) tools like player elimination, as used in the MPC
protocol of [33] (whose communication complexity is also O(n · ζ)).

408

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

7 Instantiating our FHE using BGV

In this section we show an instantiation of SHE based on the scheme of Brakerski, Gentry and Vaikuntanathan (BGV)
([10]). As in [6] we make use of Shamir secret sharing to share the secret key among the parties and pseudorandom
secret sharing (PRSS) [17] to non-interactively share a pseudorandom value from a chosen interval. We describe a
variant of the BGV-type cryptosystems based on the ring learning with error (RLWE) assumption ([36]), naturally
supporting the packing operations described in Section 3.

7.1 Preliminaries

Plaintext Space: We define the polynomial ring R := Z[x]/(f(x)), where f(x) is a monic irreducible polynomial. For
our purposes it will suffice to fix f(x) as the cyclotomic polynomial Φm(x) = xm/2 + 1 with m a power of two. We
set N = φ(m) = m/2, where φ is the Euler totient function. The ring R is the ring of integers of the mth cyclotomic
number field Q(ζm), with ζm anmth root of unity. Denote byRq := R/qR, for an integer q the reduction ofRmodulo
q, i.e. the set of all integer polynomials of degree at most N − 1 with coefficients in (−q/2, q/2].

Looking ahead the plaintext space of the scheme will be defined to be Rp := R/pR for some prime p such that
p ≡ 1 mod m. Since p ≡ 1 (mod m), the polynomial Φm(x) splits into distinct linear factors Fi(x) modulo p:

M := Rp ∼= Zp[x]/F1(x)× · · · × Zp[x]/FN (x) ∼= FNp ,

where each factor corresponds to an independent “plaintext slot”, holding an element of the finite field Fp. Thus
each message m ∈ M actually corresponds to N messages in Fp and can be represented as an N -vector (m
mod Fi)i=1,...,N . By the Chinese Remainder Theorem addition and multiplication in Rp correspond to SIMD (Single
Instruction Multiple Data) operations on the slots and this allows to process N input values at once as described in
Section 3.

If we consider the Galois group Gal of Q(ζm), then Gal = Gal(Q(ζm)/Q) ∼= Z∗m and it is formed by the mappings
σi : a(x) 7→ a(xi) mod Φm(x) for all i ∈ Z∗m. It is well known ([30]) that Gal transitively acts on plaintext slots, i.e.
∀i, j ∈ {1, . . . , N} there exists an element σi→j ∈ Gal which sends an element in slot i to an element in slot j.

Random Values: During our construction we will need to sample elements from different distributions over Rq . We
will use the following distributions over R, and then map to Rq as appropriate.

– HWT (h,N): This generates a vector of length N with elements chosen from {−1, 0, 1} such that the number of
non-zero elements is equal to h.

– ZO(0.5, N): This generates a vector of length N with elements chosen from {−1, 0, 1} such that the coefficient
probabilities are p−1 = 1/4, p0 = 1/2 and p1 = 1/4.

– DG(σ2, N): This generates a vector of length N with elements chosen according to the discrete Gaussian distri-
bution DZN ,σ .

– RC(0.5, σ2, N): This generates a triple of elements (a, b, c) where a is sampled from ZOs(0.5, N) and b and c
are sampled from DGs(σ2, N).

– U(q,N): This generates a vector of length N with elements generated uniformly modulo q.

Pseudorandom Secret Sharing Over Polynomial Rings: Pseudorandom secret sharing was first introduced in [17]. Given
a setup, a PRSS scheme allows parties to generate almost unlimited number of Shamir sharings of pseudorandom val-
ues at the cost of no communication. Furthermore, the setup is generated once and for all and therefore can be reused
many times. While known PRSS works over fields or rings [17, 6], for our purposes we will require a PRSS defined
over the polynomial rings Rql

.
In [17] the construction of a PRSS was presented. This was used in [6] to construct a PRSS over Zq , where

q =
∏
pi for n parties, such that each pi is prime with pi > n. This construction immediately extends to Rq by

computing the underlying PRF N times. For completeness we overview the construction here: Given an element
s ∈ Rq , we use [s] for the Shamir’s sharing of s, [s]i = si for the ith component of the sharing of s, i = 1, . . . , n. We

409

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

assume a prior one-time setup which distributes a vector of shared keys kA = (k0,A, . . . , kN−1,A) to each party in A
for every subset A of size n − t. These keys will be used as the keys of a keyed pseudorandom function PRF family,
{ψk(·)}k∈K. The pseudorandomness of the output of the following algorithm can be reduced to the PRF security of
the underlying PRF at the cost of security loss by a factor of 1/N .

1. The parties in P agree on N elements tj ∈ Zq for j ∈ {0, . . . , N − 1}.
2. For j = 0, . . . , N−1, every party Pi ∈ P computes [sj]i =

∑
A⊂P:|A|=n−t,Pi∈A ψkj,A(tj) ·fA(i). Where fA(X)

denotes the polynomial of degree at most t, such that fA(0) = 1 and fA(l) = 0 for every Pl 6∈ A.
3. For j = 0, . . . , N − 1, the value sj =

∑
A⊂P:|A|=n−t,Pi∈A ψkj,A(tj) denotes the jth pseudorandom shared value

from Zq . Define the associated element in Rq by the polynomial
∑
sjX

j .

If the underlying PRF family has range [−T, . . . , T] over Zq then the output of the above PRSS is an element in Rq
whose coefficients lie in the range [−

(
n
t

)
T,
(
n
t

)
T]. To ease notation we write s =

∑
A⊂P:|A|=n−t,Pi∈A ψkA(t) for the

shared value in Rq , and [s]i =
∑
A⊂P:|A|=n−t,Pi∈A ψkA(t) · fA(i) for the shares themselves. We note that in general(

n
t

)
becomes exponentially large, specially if t is a constant fraction of n; however in most practical applications of

threshold cryptography, the number of parties n is indeed expected to be small.

Canonical Embedding Norm: Here we recall some results on cyclotomic fields that we need to estimate the parameters
of our protocol instantiations. For details regarding properties of canonical norms we refer to [31, 30, 25]. Given a
polynomial a ∈ R we denote by ‖a‖∞ = max0≤i≤N−1 |ai| the standard l∞-norm. All estimates of noise are taken
with respect to the canonical embedding norm ‖a‖can∞ = ‖σ(a)‖∞, where σ is the canonical embedding R → Cφ(m)

defined by σ : a 7→ a(ζkm), k ∈ Z∗m and ζm a fixed primitive mth root of unity. When a ∈ Rq , for some modulus q,
we need the canonical embedding norm reduced modulo q:

|a|canq = min{‖a′‖can∞ : a′ ∈ R and a′ ≡ a (mod q)}.

To map from norms in the canonical embedding to norms on the coefficients of the polynomials defining the elements
in R we note that we have ‖a‖∞ ≤ cm · ‖a‖can∞ , where cm is the ring constant. Since we fix the choice of our base
field polynomial as a 2kth cyclotomic polynomial, we have cm = 1.

7.2 The Basic L-levelled Packed BGV-type Cryptosystem

We review the BGV L-levelled Packed SHE scheme. The scheme is parametrized by a security parameter κ, for a fixed
number of levels L+ 1. Note, we use L+ 1 levels in our scheme description to make the presentation consistent with
the abstract scheme from Section 3. For l = 0, . . . , L, fix a chain of moduli ql =

∏l
i=0 pi, with pi a prime number.

Encryption generates level L ciphertexts with respect to the largest modulus qL. In the lth level of the scheme cipher-
texts consist of two elements in Rql

, l = 0, . . . , L. Throughout homomorphic evaluation we will force a universal
bound B on the noise contained in ciphertexts (when measured in the canonical embedding norm reduced modulo q)
after a SHE.LowerLevel execution. Since ‖a‖∞ ≤ ‖a‖can∞ ≤ B this provides an upper bound also on the coefficients
used in the underlying decryption algorithm, for such outputs of SHE.LowerLevel. For a description of the algorithm
SHE.LowerLevel see [31]; where it is called modulus switching.

However, when applying decryption, or distributed decryption, we will apply the procedure to a ciphertext which
is not the direct output of a SHE.LowerLevel operation. In particular we assume that the canonical norm of the noise
of an element passed to the decryption procedure will be bounded by Bdec. The decryption procedures will then return
the correct output if we have Bdec ≤ q0/2. For distributed decryption we will need to “boost” this bound to 2exp ·Bdec,
where exp is a “closeness parameter” relating to the statistical security parameter sec. Thus distributed decryption will
be work if and only if 2exp · Bdec < q0/2. Below we specify the basic algorithms for the BGV scheme; we will then
discuss the extensions to cope with the full syntax of our scheme in Definition 2.

Before presenting the methods we need to pause briefly to remind the reader about modulus switching: A ciphertext
at level l is given by a pair c = (c0, c1) ∈ R2

ql
and the decryption procedure computes, for the global secret key sk ∈ R,

[c0 − sk · c1]ql
= c0 − sk · c1 (mod ql)

410

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

where we take the symmetric modular operation in the range [−ql/2, . . . , ql/2]. The value [c0− sk · c1]ql
can be inter-

preted as an element in R, and the associated noise value of the ciphertext is the canonical norm of this element. After
each homomorphic operation the norm of the noise in the ciphertexts increases. To reduce it the modulus switching
technique ([11, 10]) is used. This procedure takes as input a ciphertext c = (c0, c1) ∈ R2

ql
, with estimated noise ν and

transforms it into a ciphertext c′ ∈ R2
ql′

at level l′, with noise magnitude ν′, by scaling down c by a factor ql′/ql and
then rounding to get back an integer ciphertext. The ciphertext c′ = (c′0, c

′
1) satisfies [c0 − sk · c1]ql

≡ [c′0 − sk · c′1]ql′

mod p and ν′ < ν. This modulus switching operation corresponds to our operation SHE.LowerLevel from Definition
2.

1. SHE.KeyGen(1κ) → (pk, ek, sk): Outputs a secret key sk ← HWT (h,N), a common public key pk = (a, b)
such that a← Us(qL, N) and b = a · sk + p · e, with e← DG(σ2, N). This algorithm also outputs the evaluation
key ek which consists of N + 1 public “key-switching matrices” Wsk2→sk and Wσi(sk)→sk and σi ∈ Gal for
i = 1, . . . , N . See [31] for how these are defined.

2. SHE.Encpk(m)→ (c, L): Given a plaintext m ∈ Rp, the encryption algorithm samples (v, e0, e1)← RCs(0.5, σ2, N)
and then computes in RqL ,

c0 = b · v + p · e0 + m and c1 = a · v + p · e1.

3. SHE.Decsk(c, l) → m′: Note, this algorithm is never called in our scheme, we just present it here so as to define
correctness and to define what we mean by a message associated to a ciphertext. The algorithm takes as input a
ciphertext c = (c0, c1) ∈ R2

ql
and outputs a plaintext m′ ∈ Rp. This algorithm uses the secret key sk to compute

µ = c0 − sk · c1 = m′ + p · (e · v + e0 − s · e1) = m′ + p · u

in Rql
and then obtains m′ = (µ mod p). We denote by ν the estimated noise magnitude obtained by using

the canonical embedding norm and we require that ν < Bdec. This decryption procedure will correctly work if
Bdec < ql/2.

4. SHE.Evalek(Csub, (c1, l
in
1), . . . , (c`in , l

in
`in

)) → (ĉ1, l
out
1), . . . , (ĉ`out , l

out
`out

): This consists of three separate algo-
rithm SHE.Add, SHE.Mult and SHE.ScalarMult for homomorphically evaluating addition and multiplication
gates.

– SHE.Addek((c1, l1), (c2, l2)): It produces a ciphertext cAdd in R2
ql

, with l = min{l1, l2}. This is performed by
first applying c′i = SHE.LowerLevelek((ci, li), l) and then taking the coordinate-wise addition of c′1 and c′2.
The noise magnitude of the resulting ciphertext is at most the sum of the noise in c1 and c2.

– SHE.Multek((c1, l1), (c2, l2)): This produces a ciphertext cMult in R2
ql

, with l = min{l1, l2} − 1. This is done
in one of two ways (so as to minimize the overall parameter sizes in our scheme).
• If l 6= 1 then one first applies c′i = SHE.LowerLevelek((ci, li), l), then the resulting ciphertexts are ten-

sored. This results in a ciphertext c̃ is a vector of higher dimension ([12]) and corresponding to a valid
ciphertext of the SIMD-product of the associated plaintexts m1 ·m2 with respect to a secret key sk′ that
is the tensor product of the secret key sk with itself. The Key Switching procedure ([31]) is then applied,
using the matrix Wsk2→sk, to obtain a valid ciphertext cMult ∈ R2

ql
with respect to the original secret key

sk. The noise magnitude in cMult is at approximately product of norms of the noise in c′1 and c′2.
• If l = 1 then one applies the tensor operation to c1 and c2 directly, then the key switching is performed

and only then is a SHE.LowerLevel operation performed. This results in us needing a larger prime p1 than
one would otherwise need, but more importantly a smaller p0.

– SHE.ScalarMultek((c, l),a): If c = (c0, c1) then one can obtain a homomorphic scalar multiplication by
evaluating c′ = (a·c0,a·c1). This procedure increases the noise, but not by as much as a normal multiplication.
Therefore we shall ignore the noise increase produced by scalar multiplication in our analysis.

Using the evaluation key we can also define an addition homomorphic operation as in [30, 31],

– SHE.Permuteek((c, l), σ) → (ĉPermute, l): Given σ ∈ Gal and a ciphertext c = (c0, c1) ∈ R2
ql

, corresponding to a
plaintext m ∈ Rp, this generates a ciphertext ĉPermute = (ĉ0, ĉ1) ∈ R2

ql
corresponding to σ(m), with respect to the

secret key σ(sk). Key switching is then applied, using the keyswitching matrix Wσ(sk)→sk to produce a ciphertext,
ĉPermute decryptable under sk.

411

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

7.3 Defining SHE.Pack and SHE.Unpack for BGV

Despite our scheme being a packed SHE scheme it can still evaluate unpacked ciphertexts; indeed many of the in-
stances of packed SHE schemes were originally conceived in the unpacked case by taking the map χ to be χ(m) =
(m,m, . . . ,m), i.e. the diagonal embedding. For example this is the case with the schemes in [39, 12, 11, 9] etc all
of which have packed counterparts. However, such a choice of χ is not efficient if one is interested in packing and
unpacking encryptions of elements in Fp. We wish to define two functions SHE.Pack and SHE.Unpack; the first of
which takes N ciphertexts ci at level li with the associated plaintext vector χ(mi) for mi ∈ Fp, and produces a single
ciphertext c at level min(li) with the associated plaintext vector m = (m1, . . . ,mN) ∈ M. The second function
performs the reverse operation.

In what follows we let ei denote the i-th unit vector inM, i.e. the element which is zero except for a one in the i-th
position. To ease notation we let⊕ and⊗ denote the operations of applying the SHE.Add and SHE.Mult/SHE.ScalarMult
operations respectively, we also let σ(c) denote applying the SHE.Permute operation to a ciphertext c and map σ ∈ Gal.
If we define χ by the diagonal embedding then SHE.Pack can be defined in the following way

SHE.Pack(c1, . . . , cN) =
N⊕
i=1

ei ⊗ ci,

i.e. SHE.Pack is an O(N) operation. However, SHE.Unpack needs to be performed as follows for i = 1, . . . , N ,

SHE.Unpack(c) =

 N⊕
j=1

σ1→j(e1 ⊗ c), . . . ,
N⊕
j=1

σN→j(eN ⊗ c)

i.e. SHE.Unpack is an O(N2) operation. On the other hand, if we define χ to be the map χ(m) = (m, 0, . . . , 0) then
we can define SHE.Pack and SHE.Unpack by the following O(N) operations;

SHE.Pack(c1, . . . , cN) =
N⊕
i=1

σi→j(ci), SHE.Unpack(c) = (e1 ⊗ c, σ2→1(e2 ⊗ c), . . . , σN→1(eN ⊗ c)) .

Thus we will utilize the mapping χ(m) = (m, 0, . . . , 0) in our proposal.

7.4 Distributed Decryption Protocol

All that remains to define our Threshold L-levelled Packed SHE system based on BGV is to present the distributed de-
cryption protocol. Note that we do not use the key-homomorphic properties of RLWE schemes as previously used in [1,
35, 2]. Instead, we follow the approach of [6], where the authors construct a threshold variant of Regev’s cryptosystem
([38]); we adapt this method to our situation.

At a high level the method works as follows: we modify the SHE.KeyGen algorithm so that it also outputs for each
party Pi a key dki for performing distributed decryption. The key dki consists of two components; i.e. dki = (ski,ki).
The values ski form a Shamir sharing over the ring Rq0 of the secret key sk, with threshold t. The value ki are the
associated keys for the PRSS described above. Given a common ciphertext c = (c0, c1) ∈ Rql

as input (for decryption),
the parties first apply SHE.LowerLevel to reduce the ciphertext to level zero. Then each party Pi computes a decryption
share µ̄i using his private ski and a PRSS over Rq0 as described earlier. The underlying PRF we assume produces
values in the range [

− (2exp − 1) ·Bdec

p ·
(
n
t

) ,
(2exp − 1) ·Bdec

p ·
(
n
t

)]
,

where Bdec is the bound on the canonical norm of an element being decrypted mentioned earlier, and hence an upper
bound on the size of the coefficients of the noise polynomial reconstructed during the standard decryption procedure.
See Section 8 for a detailed discussion of Bdec. The choice of this range of the underlying PRF family means that
the values output by the PRSS will be shares of elements in Rql

whose coefficients lie in the range [−(2exp − 1) ·

412

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Bdec/p, (2exp − 1) ·Bdec/p]. Note, that
(
n
t

)
for t ≈ n/2 grows very fast, and so the for the above range of the PRF to

be suitably large we require that n is small. In our discussion we implicitly assume n to be small, say n < 10.
Recall distributed decryption is defined by two algorithms SHE.ShareDec and SHE.ShareCombine. These are

defined by the following procedures:

– SHE.ShareDecdki((c, l))→ µ̄i:
1. Apply SHE.LowerLevelek((c, l), 0) to obtain the ciphertext (c0, c1) at level zero (unless c is already at level

zero).
2. Compute µi = [µ]i = [c0 − sk · c1]i = c0 − ski · c1 where the computation is in Rq0 .
3. Execute the PRSS, using the PRF keys ki, to obtain a Shamir’s share ri of a “random” value r ∈ Rq0 such

that r =
∑

kA
ψkA(t) and ‖r‖∞ < ((2exp − 1) · Bdec)/p, for some agreed vector of values t which are a

function of the input ciphertext c.
4. Compute µ̄i = [µ̄]i = [µ+ p · r]i = µi + p · ri and output µ̄i as the decryption share.

– SHE.ShareCombine((c, l), {µ̄i}i∈[1,...,n]) → m′: given a set n of decryption shares µ̄i and (in the malicious
setting) an error correction procedure, reconstruct µ̄ = µ + p · r by applying the error correction procedure to
{µ̄i}i∈[1...,n] and output m′ = (µ̄ mod p).

Note decryption will work as long as the reconstructed value µ̄ is less than q0/2, i.e. we require 2exp · Bdec < q0/2
(see the next section for details).

We pause to note the different situations where one obtains correct message recovery from SHE.ShareCombine.
In the case of passive adversaries we will show (in the next section) that the above distributed decryption procedure
is secure as long as t < n. Since we are using Shamir sharing, in the presence of t < n/3 active corruptions, using
the natural error correction properties (namely Reed-Solomon (RS) error correction), we can correctly recover the
message at the end of SHE.ShareCombine.

When t < n/2 a little more work is involved; if an adversary sends an incorrect share then this can be detected,
again because we are using Shamir as the underlying secret sharing scheme. At this point the parties execute a party
elimination strategy in which they require each other to prove in zero-knowledge that the provided share is correct.
Once the cheater party(s) have been determined they are eliminated from the protocol and the protocol resumes. Thus
for active adversaries and t < n/2 we may require a grand total of an extra n2 · t zero-knowledge proofs to be
constructed, irrespective of the size of the circuit in our main protocol; see Section 6 for more details.

7.5 Security of Our Threshold BGV Instantiation

Recall from earlier we require four security properties:

– Key Generation Security.
– Semantic Security.
– Correct Share Decryption.
– Share Simulation Indistinguishability.

We now discuss each of these in turn.

Key Generation Security: The required properties of the keys produced by the key generation algorithm follow from
the security properties of the Shamir secret sharing scheme used to share sk. We note in our main protocol we assume
an ideal functionality to distribute such keys, and so there is no “Key Generation” protocol to analyse.

Semantic Security: The follows from the standard semantic security of the BGV scheme. However, we need to deal
with the fact that the adversary has access to shares of the underlying secret key and the keys to the PRSS. A standard
simulation shows that security in our setting reduces to that in the standard setting.

Correct Share Decryption: The infinity norm of the element µ̄ = µ+p·r produced by the algorithm SHE.ShareCombine
is bounded by Bdec + p · (2exp − 1) ·Bdec/p ≈ 2exp ·Bdec. If 2exp ·Bdec < q0/2 then correct decryption will result.

Share Simulation Indistinguishability: We need to present a PPT algorithm (simulator) SHE.ShareSim which when
given a ciphertext c ∈ R2

ql
with associated plaintext m ∈ Rp, a subset I ⊂ {1, . . . , n} such that |I| = t, and a set

413

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

of t decryption shares {µ̄i}i∈I , where µ̄i = SHE.ShareDecdki((c, l)), can simulate the remaining (n − t) decryption
shares {µ̄∗j} in such a way that the following two following distributions are statistically indistinguishable:(

{µ̄i}i∈I , {µ̄∗j}j∈Ī
) s
≈
(
{µ̄i}i∈I , {µ̄j}j∈Ī

)
,

where Ī = {1, . . . , n}\I . i.e. one cannot distinguish the real shares for the set Ī (as computed by SHE.ShareDec algo-
rithm) with ones produced by the simulator. Moreover, we require the statistical distance between the two distributions
to be bounded by 2−sec. The simulator is constructed as follows:

1. Let k(I)
A denote the set of keys for the PRSS that have been given to parties Pi where i ∈ I , and let k(Ī)

A denote
the set of keys for the PRSS held by Pj , for j ∈ Ī .

2. The simulator first computes
r′ =

∑
k∈k(I)

A

ψk(t) +
∑

k∈k(Ī)
A

rk,

where each rk ∈ Rql
is chosen such that

‖rk‖∞ <
(2exp − 1) ·Bdec

p ·
(
n
t

) .

In this way ‖r′‖∞ < (2exp−1)·Bdec

p .
3. Let µ̄∗ = m + p · r′. For each j ∈ Ī , the simulator outputs µ̄∗j such that

(
{µ̄∗j}j∈Ī , {µ̄i}i∈I

)
is a consistent vector

of shares of µ̄∗; i.e. the simulator deterministically computes consistent shares for the honest parties via Lagrange
interpolation of the t+ 1 values, µ̄∗ and {µ̄i}i∈I .

Before proving the properties of the simulation, we recall the following lemma from [2]:

Lemma 1 (Smudging Lemma [2]). Let B1 and B2 be positive integers and let e1 ∈ [−B1, B1] be a fixed integer and
let e2 ∈ [−B2, B2] be chosen uniformly and randomly. Then the statistical distance between the distribution of e2 and
e2 + e1 is B1/B2.

To prove the properties of the simulation, we first note that similar to the last stage of the simulation above, the
real shares for the honest parties can be constructed (deterministically) from µ̄ and the shares held by the t dishonest
parties. Thus, to prove indistinguishability of the real and simulated shares, it suffices to prove that µ̄∗ = m + p · r′
and µ̄ = µ + p · r are statistically close4. To see this is indeed the case, we first note that µ + p · r and µ + p · r′
are indistinguishable (by construction) and that r′ is uniform in an exponentially larger range than µ (recall that
‖µ‖∞ < Bdec and ‖r′‖∞ < (2exp−1)·Bdec

p). By application of the Smudging lemma, the statistical distance between the
distribution of µ+ p · r′ and the uniform distribution of polynomials with coefficients in [−(2exp − 1) · Bdec, (2exp −
1) ·Bdec] is exactly N/(2exp − 1).

To conclude the proof, we next claim that the distribution of m + p · r′ is statistically indistinguishable from the
uniform distribution of polynomials with coefficients [−(2exp − 1) · Bdec, (2exp − 1) · Bdec]. This follows from the
fact that the statistical distance between the two distributions is N ·p

Bdec·(2exp−1) (which itself follows from the Smudging
Lemma and the fact that m ∈ Rp). It follows from the triangle inequality that the overall statistical distance between
the distribution of µ̄∗ = m + p · r′ and µ̄ = µ+ p · r is upper bounded by N ·(p+Bdec)

Bdec·(2exp−1) . Choose

exp = sec + max
(

log2

(
N · (p+Bdec)

Bdec

)
, log2(N)

)
.

Since p < Bdec this simplifies to exp = sec + log2(N) + 1, and we can therefore ensure the statistical distance is
bounded by 2−sec which can be made arbitrarily small by our choice of exp.

4 For statistically close distributions X
s
≈ Y and any deterministic procedure A applied to those distributions it is the case that

A(X)
s
≈ A(Y).

414

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

7.6 Batch Distributed Decryption

Using a well known technique presented in [4, 24], we can perform a batch of t + 1 = Θ(n) distributed decryption,
and hence evaluate a batch of t+1 Refresh gates at the communication cost of performing two distributed decryptions.
The following technique applies to our main MPC protocol if the batch of refresh gates are independent, meaning the
output wire of one does not lead to the input of the other.

Given a value shared among the parties, its public reconstruction requires each party to send the share (of the value)
it holds to every other party. This requires n · (n− 1) pair-wise communication of shares. So for t+ 1 shared values,
the public reconstruction will require O(n3) pair-wise communication of shares. In what follows, it is shown how the
above can be achieved with the same cost of public reconstruction of a single value, namely with a communication of
2 · n · (n− 1) = O(n2) shares. The idea was used in the information theoretically secure MPC protocols of [4, 24].

Let u(1), . . . , u(t+1) be t + 1 shared values. First the t + 1 shared values are “expanded” to n shared values, say
v(1), . . . , v(n) by applying a linear function locally. Specifically, if the underlying LSS is Shamir, then we can interpret
u(1), . . . , u(t+1) as the coefficients of a polynomial of degree at most t, say u(·) and let v(1), . . . , v(n) be the n distinct
points on this polynomial. Now notice that obtaining v(1), . . . , v(n) from u(1), . . . , u(t+1) is a linear function and
by (locally) applying the same linear function on the sharings of u(1), . . . , u(t+1), the parties can obtain sharings of
v(1), . . . , v(n). Now each v(i) is reconstructed only to Pi and this costsO(n2) communication of shares. Finally every
Pi sends v(i) to every other party (which costs another O(n2) communication) and then every party can reconstruct
u(·) and hence u(1), . . . , u(t+1).

In our setting all of the above sharing is done using Shamir over the ring Rq0 . It is easy to see that the above can be
carried out with no change to the underlying SHE scheme. Thus assuming our initial circuit is large enough, i.e. there
are enough independent Refresh gates at each level, we can obtain a performance improvement of (t+ 1)/2.

8 Parameter Calculation

In [31] a concrete set of parameters for the BGV SHE scheme was given for the case of binary message spaces, and
arbitrary L. In [22] this was adapted to the case of message space Rp for 2-power cyclotomic rings, but only for the
schemes which could support one level of multiplication gates (i.e. for L = 1). In this section we combine these
analyses to produce parameter estimations for the case we require of arbitrary L and messages defined by a “large
prime”, e.g. p ≈ 232, 264 or 2128. We assume in this section that the reader is familiar with the analysis and algorithms
from [31]; we mainly point out the differences in estimates for our case.

Our analysis will make extensive use of the following fact: If a ∈ R be chosen from a distribution such that the
coefficients are distributed with mean zero and standard deviation σ, then if ζm is a primitive mth root of unity, we
can use 6 · σ to bound a(ζm) and hence the canonical embedding norm of a. If we have two elements with variances
σ2

1 and σ2
2 , then we can bound the canonical norm of their product with 16 · σ1 · σ2.

Recall from Section 7 that we require a chain of moduli q0 < q1 . . . < qL corresponding to each level of the
scheme, where qL = q0 ·

∏i=L
i=1 pi. Note that we evaluate a depth L circuit from a chain of L + 1 moduli. Also note,

that we apply a SHE.LowerLevel (a.k.a. modulus switch) algorithm before a multiplication operation, except when
multiplying at level one. This often leads to lower noise values in practice (which a practical instantiation can make
use of). In addition it eliminates the need to perform a modulus switch after encryption.

We utilize the following constants described in [22], which are worked out for the case of message space defined
modulo p (the constants in [22] make use of an additional parameter n, arising from the key generation procedure. In
our case we can take this constant equal to one).

BClean =N · p/2 + p · σ ·
(

16 ·N√
2

+ 6 ·
√
N + 16 ·

√
h ·N

)
BScale =p ·

√
3 ·N ·

(
1 +

8
3
·
√
h

)
BKs =p · σ ·N ·

(
1.49 ·

√
h ·N + 2.11 · h+ 5.54 ·

√
h+ 1.96

√
N + 4.62

)

415

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The constants are used in the following manner: A freshly encrypted ciphertext at level L has noise bounded byBClean.
In the worst case, when applying SHE.LowerLevel to a ciphertext at level l with noise bounded by B′ one obtains a
new ciphertext at level l− 1 with noise bounded by

B′

pl
+BScale.

When applying the tensor product multiplication operation to ciphertexts of a given level l of noise B1 and B2 one
obtains a new ciphertext with noise given by

B1 ·B2 +
BKs · ql
P

+BScale,

where P is a value to be determined later. As in [31] we define a small “wiggle room” ξ which we set to be equal to
eight; this is set to enable a number of additions to be performed without needing to individually account for them in
our analysis.

A general evaluation procedure begins with a freshly encrypted ciphertext at level L with noise BClean. When en-
tering the first multiplication operation we first apply a SHE.LowerLevel operation to reduce the noise to our universal
bound B. We therefore require

ξ ·BClean

pL
+BScale ≤ B,

i.e.

pL ≥
8 ·BClean

B −BScale
. (1)

We now turn to dealing with the SHE.LowerLevel operation which occurs before a multiplication gate at level
l ∈ [2, . . . , L − 1]. We perform a worst case analysis and assume that the input ciphertexts are at level l − 1. We
can then assume that the input to the tensoring operation in the previous multiplication gate (just after the previous
SHE.LowerLevel) was bounded by B, and so the output noise from the previous multiplication gate for each input
ciphertext is bounded by B2 + BKs · ql/P + BScale. This means the noise on entering the SHE.LowerLevel operation
is bounded by ξ times this value, and so to maintain our invariant we require

ξ ·B2 + ξ ·BScale

pl
+
ξ ·BKs · ql
P · pl

+BScale ≤ B.

Rearranging this into a quadratic equation in B we have

ξ

pl
·B2 −B +

(
ξ ·BScale

pl
+
ξ ·BKs · ql−1

P
+BScale

)
≤ 0.

We denote the constant term in this equation by Rl−1. We now assume that all primes pl are of roughly the same size,
and noting the we need to only satisfy the inequality for the largest modulus l = L− 1. We now fix RL−2 by trying to
ensure that RL−2 is close to BScale · (1 + ξ/pL−1) ≈ BScale, so we set RL−2 = (1− 2−3) ·BScale(1 + ξ/pL−1), and
obtain

P ≈ 8 · ξ ·BKs · qL−2

BScale
, (2)

since BScale · (1 + ξ/pL−1) ≈ BScale.
To ensure we have a solution we require 1 − 4 · ξ · RL−2/pL−1 ≥ 0, which implies we should take, for i =

2, . . . , L− 1,
pi ≈ 4 · ξ ·RL−2 ≈ 32 ·BScale. (3)

416

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Recall that the final multiplication is executed in a different manner. We do not modulus switch before the multi-
plication, but afterwards. We analyse the implication of this, for the size of p1, from the point of view of our concrete
application to our MPC protocol. The final multiplication will be of a ciphertext with noise

ξ · (B2 +BScale) +
ξ ·BKs · q1

P
,

and a ciphertext with noise B (namely c1). The input to the final key switch will have noise value approximately
ξ · B3; we make this simplifying assumption which makes little difference to the final values. The output noise from
the keyswitch is then equal to

ξ ·B3 +BScale +
BKs · q1

P
.

We then perform a modulus switch to obtain a ciphertext as output of the multiplication gate with noise bounded by

ξ ·B3 +BScale

p1
+
BKs · p0

P
+BScale.

We again require this to be less than B, so we have now the cubic equation

ξ

p1
·B3 −B +

(
BScale

p1
+
BKs · p0

P
+BScale

)
≤ 0.

Substituting in our existing estimate for P , namely 8 ·ξ ·BKs ·qL−2/BScale we find the inequality is roughly equivalent
to, assuming L > 2 and p1 � BScale (i.e. qL−2 � BScale · p0),

ξ

p1
·B3 −B +

BScale

p1
+BScale ≈

ξ

p1
·B3 −B +

(
BScale

p1
+
BScale · p0

8 · qL−2
+BScale

)
≤ 0.

If we set B ≈ 2 ·BScale, then this means we have (approximately)

ξ

p1
· 8 ·B3

Scale −BScale +
BScale

p1
≤ 0,

and so
p1 ≈ 8 · (ξ + 1) ·B2

Scale (4)

will therefore guarantee the result.

We now need to estimate the size of p0. Due to the above choice of p1 the ciphertext to which we apply the
distributed decryption has norm bound by B, to which we add on a random encryption of zero at level L. To do this
we need to apply LowerLevel to this encryption of zero, and hence the noise level of the ciphertext we finally pass into
SHE.ShareDec in our main MPC protocol has noise bounded by Bdec = 2 ·B This means that we require

q0 = p0 ≥ 2sec +2 ·B, (5)

to ensure a valid distributed decryption.

Finally, set the Hamming weight h of the secret key sk to be 64 as in [31, 22]. Plugging this into our equations (1),
(2), (3), (4), and (5), we obtain

p0 ≈ 309 · 2sec · p ·
√
N,

p1 ≈ 107736 · p2 ·N,

pi ≈ 1237 · p ·
√
N, for 2 ≤ i ≤ L− 1,

pL ≈ 2.34 · σ ·
√
N,

P ≈ 0.404 · 1237L · σ · 2exp · pL ·N (L+3)/2,

qL−1 ≈ 21.76 · 1237L · 2exp · pL+1 ·N (L+1)/2.

417

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The largest modulus used in our key switching matrices, i.e. the largest modulus used in an LWE instance, is given by
QL−1 = P · qL−1; where using the above estimates we have

QL−1 ≈ 8.79 · 12372·L · σ · 4exp · p2·L+1 ·NL+2.

Recall from Section 7.5 we have the following relationship between exp and our statistical security parameter sec;
exp = sec + log2(N). To ensure security we use the estimates of Lindner and Peikert [34], we require at the κ-bit
security level we require

N > (κ+ 110) · log(QL−1/σ)/7.2.

9 Estimating the Consumed Bandwidth

In Section 8 we determined the parameters for the instantiation of our SHE scheme using BGV by adapting the analysis
from [22, 31]. In this section we use this parameter estimation to show that our MPC protocol can in fact give improved
communication complexity compared to the standard MPC protocols, for relatively small values of the parameter L.
We are interested in the communication cost of our online stage computation. To ease our exposition we will focus on
the passively secure case from Section 4; the analysis for the active security case with t < n/3 is exactly the same (bar
the additional cost of the exchange of zero-knowledge proofs for the input stage and the output stage). For the case of
active security with t < n/2 we also need to add in the communication related to the dispute control strategy outlined
in Section 6 for attaining robust SHE.ShareCombine with t < n/2; but this is a cost which is proportional to O(n3).

To get a feel for the parameters from Section 8, we now specialise to the case of finite fields of size p ≈ 264,
statistical security parameter sec of 40, and for various values of the computational security level κ. Resolving the
various inequalities (from Section 8), we then estimate in Table 1 the value of N , assuming a small value for n (we
need to restrict to small n to ensure a large enough range in the PRF needed in the distributed decryption protocol; see
Section 7.4).

L κ = 80 κ = 128 κ = 256

2 16384 16384 32768
3 16384 16384 32768
4 16384 32768 32768
5 32768 32768 65536
6 32768 32768 65536
7 32768 32768 65536
8 32768 65536 65536
9 32768 65536 65536

10 65536 65536 65536

Table 1. The value of N for various values of κ and L

Since a Refresh gate requires the transmission of n − 1 elements (namely the decryption shares) in the ring Rq0
from party Pi to the other parties, the total communication in our protocol (in bits) is

|GR| · n · (n− 1) · |Rq0 |,

where |Rq0 | is the number of bits needed to transmit an element in Rq0 , i.e. N · log2 p0. Assuming the circuit meets
our requirement of being well formed, this implies that total communication cost for our protocol is

2 · |GM | · n · (n− 1) ·N · log2 p0

L ·N
=

2 · n · (n− 1) · |GM |
L

· log2(309 · 2sec · p ·
√
N).

Using the batch distributed decryption technique (of efficiently and parallely evaluating t+1 independent Refresh gates
simultaneously) from Section 7.6 this can be reduced to

Cost =
4 · n · (n− 1) · |GM |

L · (t+ 1)
· log2(309 · 2sec · p ·

√
N).

418

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

We are interested in the overhead per multiplication gate, in terms of equivalent numbers of finite field elements in
Fp, which is given by Cost/(|GM | · log2 p), and the cost per party is Cost/(|GM | · n · log2 p).

At the 128 bit security level, with p ≈ 264, and sec = 40 (along with the above estimated values of N), this means
for n = 3 parties, and at most t = 1 corruption, we obtain the following cost estimates:

L 2 3 4 5 6 7 8 9 10
Total Cost Cost/(|GM | · log2 p) 12.49 8.33 6.31 5.05 4.21 3.61 3.19 2.84 2.55

Per party Cost Cost/(|GM | · n · log2 p) 4.16 2.77 2.10 1.68 1.40 1.20 1.06 0.94 0.85

Note for L = 2 our protocol becomes the one which requires interaction after every multiplication, for L = 3
we require interaction only after every two multiplications and so on. Note that most practical MPC protocols in the
preprocessing model have a per gate per party communication cost of at least 2 finite field elements, e.g. [25]. Thus,
even when L = 5, we obtain better communication efficiency in the online phase than traditional practical protocols
in the preprocessing model with these parameters.

10 Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO, by EPSRC via grant
EP/I03126X, and by Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory
(AFRL) under agreement number FA8750-11-2-00795. The second author was supported by an Trend Micro Ltd, and
the fifth author was supported by in part by a Royal Society Wolfson Merit Award.

References

1. G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Multiparty computation with low communi-
cation, computation and interaction via threshold FHE. In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science,
pages 483–501, 2012.

2. G. Asharov, A. Jain, and D. Wichs. Multiparty computation with low communication, computation and interaction via threshold
FHE. IACR Cryptology ePrint Archive, 2011:613, 2011.

3. Z. BeerliováTrubı́niová and M. Hirt. Efficient multi-party computation with dispute control. In TCC, volume 3876 of Lecture
Notes in Computer Science, pages 305–328, 2006.

4. Z. BeerliováTrubı́niová and M. Hirt. Perfectly-secure MPC with linear communication complexity. In TCC, volume 4948 of
Lecture Notes in Computer Science, pages 213–230, 2008.

5. E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-linear unconditionally-secure multiparty computation with a dishonest minor-
ity. In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 663–680, 2012.

6. R. Bendlin and I. Damgård. Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems. In TCC, volume
5978 of Lecture Notes in Computer Science, pages 201–218, 2010.

7. R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multiparty computation. In EURO-
CRYPT, volume 6632 of Lecture Notes in Computer Science, pages 169–188, 2011.

8. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-preserving computations. In ESORICS,
volume 5283 of Lecture Notes in Computer Science, pages 192–206, 2008.

9. Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. In CRYPTO, volume 7417 of
Lecture Notes in Computer Science, pages 868–886, 2012.

10. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without bootstrapping. In ITCS,
pages 309–325. ACM, 2012.

11. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In FOCS, pages 97–106.
IEEE, 2011.

5 The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of Defense Advanced Research Projects Agency
(DARPA) or the U.S. Government.

419

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

12. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security for key dependent messages.
In CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 505–524, 2011.

13. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS, pages 136–145, 2001.
14. O. Catrina and A. Saxena. Secure computation with fixed-point numbers. In Financial Cryptography, volume 6052 of Lecture

Notes in Computer Science, pages 35–50, 2010.
15. R. Cleve. Limits on the security of coin flips when half the processors are faulty (Extended abstract). In STOC, pages 364–369.

ACM, 1986.
16. T. M. Cover and J. A. Thomas. Elements of Information theory. Wiley, 2006.
17. R. Cramer, I. Damgård, and Y. Ishai. Share conversion, pseudorandom secret-sharing and applications to secure computation.

In TCC, volume 3378 of Lecture Notes in Computer Science, pages 342–362, 2005.
18. I. Damgård, M. Fitzi, E. Kiltz, J.B. Nielsen, and T. Toft. Unconditionally secure constant-rounds multi-party computation for

equality, comparison, bits and exponentiation. In TCC, volume 3876 of Lecture Notes in Computer Science, pages 285–304,
2006.

19. I. Damgård, Y. Ishai, M. Krøigaard, J.B. Nielsen, and A. Smith. Scalable multiparty computation with nearly optimal work
and resilience. In CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages 241–261, 2008.

20. I. Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation and the computational overhead of
cryptography. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 445–465, 2010.

21. I. Damgård, M. Keller, E. Larraia, C. Miles, and N.P. Smart. Implementing AES via an actively/covertly secure dishonest-
majority mpc protocol. In SCN, volume 7485 of Lecture Notes in Computer Science, pages 241–263, 2012.

22. I. Damgard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical covertly secure mpc for dishonest majority –
or: Breaking the SPDZ limits, 2013.

23. I. Damgård and J. B. Nielsen. Universally composable efficient multiparty computation from threshold homomorphic encryp-
tion. In CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 247–264, 2003.

24. I. Damgård and J. B. Nielsen. Scalable and unconditionally secure multiparty computation. In CRYPTO, volume 4622 of
Lecture Notes in Computer Science, pages 572–590, 2007.

25. I. Damgård, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic encryption. In
CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 643–662, 2012.

26. I. Damgård and S. Zakarias. Constant-overhead secure computation for boolean circuits in the preprocessing model. In TCC,
volume 7785 of Lecture Notes in Computer Science, pages 621–641, 2013.

27. M. Fitzi and M. Hirt. Optimally efficient multi-valued Byzantine agreement. In PODC, pages 163–168. ACM, 2006.
28. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009. crypto.stanford.edu/

craig.
29. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178. ACM, 2009.
30. C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog overhead. In EUROCRYPT, volume 7237

of Lecture Notes in Computer Science, pages 465–482, 2012.
31. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In CRYPTO, volume 7417 of Lecture

Notes in Computer Science, pages 850–867, 2012.
32. O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, 2004.
33. M. Hirt and J.B. Nielsen. Robust multiparty computation with linear communication complexity. In CRYPTO, volume 4117

of Lecture Notes in Computer Science, pages 463–482, 2006.
34. R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In CT-RSA, volume 6558 of Lecture Notes

in Computer Science, pages 319–339, 2011.
35. A. López-Alt, E. Tromer, and V. Vaikuntanathan. Cloud-assisted multiparty computation from fully homomorphic encryption.

IACR Cryptology ePrint Archive, 2011:663, 2011.
36. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings. In EUROCRYPT, volume

6110 of Lecture Notes in Computer Science, pages 1–23, 2010.
37. J.B. Nielsen, P.S. Nordholt, C. Orlandi, and S.S. Burra. A new approach to practical active-secure two-party computation. In

CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 681–700, 2012.
38. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, pages 84–93, 2005.
39. N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and ciphertext sizes. In PKC, volume

6056 of Lecture Notes in Computer Science, pages 420–443, 2010.
40. N.P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. To Appear in Designs, Codes and Cryptography, 2012.

420

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Actively Secure Private Function Evaluation

Payman Mohassel1,2, Saeed Sadeghian1, and Nigel P. Smart3

1 Dept. Computer Science, University of Calgary,
pmohasse@ucalgary.ca, sadeghis@ucalgary.ca

2 Yahoo Labs,
pmohassel@yahoo-inc.com

3 Dept. Computer Science, University of Bristol,
nigel@cs.bris.ac.uk

Abstract. We propose the first general framework for designing actively secure private function eval-
uation (PFE), not based on universal circuits. Our framework is naturally divided into pre-processing
and online stages and can be instantiated using any generic actively secure multiparty computation
(MPC) protocol.

Our framework helps address the main open questions about efficiency of actively secure PFE. On
the theoretical side, our framework yields the first actively secure PFE with linear complexity in the
circuit size. On the practical side, we obtain the first actively secure PFE for arithmetic circuits with
O(g · log g) complexity where g is the circuit size. The best previous construction (of practical interest)
is based on an arithmetic universal circuit and has complexity O(g5).

We also introduce the first linear Zero-Knowledge proof of correctness of “extended permutation” of
ciphertexts (a generalization of ZK proof of correct shuffles) which maybe of independent interest.

Keywords. Secure Multi-Party Computation, Private Function Evaluation, Malicious Adversary, Zero-
Knowledge Proof of Shuffle

1 Introduction

Private Function Evaluation (PFE) is a special case of Multi-Party Computation (MPC), where the parties
compute a function which is a private input of one of the parties, say party P1. The key additional security
requirement is that all that should leak about the function to an adversary, who does not control P1, is
the size of the circuit (i.e. the number of gates and distinct wires within the circuit). Clearly, PFE follows
immediately from MPC by designing an MPC functionality which implements a universal machine/circuit;
thus the only open questions in PFE research are those of efficiency. Using universal circuits one can achieve
complexity of O(g5) in case of arithmetic circuits [23] and O(g · log g) for boolean circuits [26]. For ease of
exposition we ignore the factors depending on the number of parties and the security parameters as they
depend on the particular underlying MPC being used. We still provide some numbers for the specific SPDZ
instantiation in section 5.

A number of previous work [1,2,4,12,14,15,16,17,22,24] have considered the design and implementation
of more efficient general- and special-purpose private function evaluation. A major motivation behind these
solutions (and PFE in general) is to hide the function being computed since it is proprietary, private or con-
tains sensitive information. Some applications of interest considered in the literature are software diagnostic
[4], medical applications [2], and intrusion detection systems [20].

But all prior solutions are in the semi-honest model and fail in the presence of an active adversary
who does not follow the steps of the protocol (with the exception of the generic approach of applying an
actively secure MPC to universal circuits). For example, a malicious party who does not own the function can
cheat to learn the proprietary function or modify the outcome of computation without the function-holders’
knowledge. Or a malicious function-holder, can learn information about honest parties’ inputs.

This article the full version of an earlier article: Asiacrypt 2014, c© IACR 2014, http://dx.doi.org/10.1007/
978-3-662-45608-8_26.

421

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

One may question the need for actively secure PFE as the function-holder can cheat and use a malicious
function, which reveals information about the other party’s input. While we consider the general scenario
in our protocols, there are common practical scenarios where the function-holder has no output in the
computation, and therefore maliciously changing the function still does not let him learn anything even if
he is actively cheating.

1.1 Our Contribution

In this work, we present the first general framework for designing actively secure PFE, not based on universal
circuits. Our framework can be instantiated upon a generic actively secure MPC protocol satisfying quite
general properties; namely that they are secret sharing based, actively secure (either robust or with aborts),
can implement reactive functionalities, and have an ability to open various sharings securely, as well as
generate (efficiently) sharings of random values. Suitable actively secure MPC protocols include BDOZ [3]
and SPDZ [8] (for the case of arithmetic circuits and an arbitrary number of players with a dishonest
majority), Tiny-OT [19] (for binary circuits and two players), or protocols such as that implemented in
VIFF [7] utilizing Shamir secret sharing with a threshold of t < n/3.

Our framework helps address the main open questions about efficiency of actively secure PFE. On a
theoretical note, we use it to show that actively secure PFE with linear complexity (in circuit size) is indeed
feasible while avoiding strong primitives such as fully-homomorphic encryption (FHE).4 On a practical note,
we obtain a practical actively secure PFE for arithmetic circuit with O(g · log g) complexity (a significant
reduction from O(g5) [23]), and the first actively secure PFE in the information-theoretic setting.

Our Framework. Our framework can be seen as an extension of the new framework of [17] which is only
secure against passive adversaries. The key idea in [17] is to divide the problem into two sub-problems, the
problem of hiding the topology of the wiring between individual gates (topology hiding), and the problem of
hiding exactly what gate is evaluated (gate hiding), i.e. an addition or a multiplication (or AND/OR/XOR
in case of boolean circuits).

This framework yields better asymptotic and practical efficiency for passively secure PFE compared to
the universal circuit approach (see [17] for a detailed efficiency comparison). An important open question is
then how to extend their solution to the case of active adversaries efficiently. In this paper we do exactly that
by providing a recipe for turning any actively secure MPC protocol that satisfies our general requirements
into an actively secure PFE protocol.

Our framework operates in two phases, an offline phase and an online phase. As in the case of standard
MPC in the pre-processing model, our offline phase is input independent but it depends on the function.
The offline phase is use-once, in the sense that the data produced cannot be reused for multiple invoca-
tions of the online phase. We note that a similar function-dependent pre-processing model (referred to as
dedicated pre-processing) was recently considered in [9]. Dedicated pre-processing is particularly natural in
PFE applications where the sensitive/proprietary function stays fixed for a period of time and is used in
multiple executions (clearly in the latter case we need to execute the pre-processing multiple times, but this
can be done in advance). Of course, if one is not willing to count a function-dependent offline phase as valid,
then our complexities would be the combination of the two phases. It maybe the case that our underlying
MPC protocol is itself in the pre-processing model (e.g. [3,8,19]), in which case that pre-processing will be
essentially independent of the input and function being evaluated. Our framework shows the feasibility of
offline computation independent of inputs, which was not the case in [17]. We elaborate on the two phases
next:

Offline Phase. Roughly speaking, our offline phase generates two vectors of random values, maps the second
to a new vector using a mapping that captures the topology of the circuit (referred to as extended permutation
4 Note that with the use of the right circuit-private FHE scheme [21], and appropriate ZK proofs for correctness of

the computation on encrypted data, it is likely possible to achieve linear PFE based on FHE, but we are interested
in the use of much weaker primitives such as singly homomorphic encryption.

422

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

in [17]), and subtracts the result from the first. The result of the subtraction (difference vector) is opened
while the two original vectors are shared among the parties. The two random vectors are used as one-time
pads of all the intermediate values in the circuit, while the “difference vector” is used by the function-holder
to connect the output of one gate to the input of another without learning the values or revealing the circuit
topology. The offline phase also generates one-time MACs of all the components of the “difference vector”
computed above, using a fixed global MAC key. These MACs are used to check the function-holder’s work
in the online phase of the protocol. These steps commit P1 privately to the topology of the circuit. We also
privately commit P1 to gate types, hence fully committing him to the function being computed.

Online Phase. Our online, or circuit evaluation, phase is very distinct from that deployed in the underlying
MPC protocol we use. In existing instantiations of our underlying MPC protocol, parties evaluate gates
on values whose secrecy is maintained due to the fact that one is working on secret shared values only. In
our protocol the parties have public one-time pad encryptions of the values being computed on, but the
encryption keys, which are the random values generated in the offline phase, remain secret-shared. Party P1

(the function holder) then uses the random vectors computed in the offline phase to transform the encrypted
output of one gate to the encrypted input of the upcoming gate while maintaining one-time MACs of all
the values he computes. These MACs allow all other parties to check P1’s work without learning the circuit
topology. These operations are carried out securely using the underlying MPC protocol.

In both the online and the offline phase, all parties check P1’s work by checking the MACs of the values
he computes locally. If any of the MACs fail, in case of security with abort, parties can simply end the
protocol. But in case of robust MPC (e.g. t < n/3 for robust information theoretically secure protocols) the
protocol needs to continue without P1. To achieve this, honest parties jointly recover P1’s function and play
his role in the remainder of the protocol.

In our protocols, if any adversary deviates from the protocol then, except with negligible probability,
the honest parties will either abort, or be able to recover from the introduced error. The exact response
depends on the underlying MPC protocol on which our PFE protocol is built. In all cases the privacy of
the honest players inputs is preserved, bar what can be obtained from the output of the private function
chosen by player P1. Note that P1 may or may not be a recipient of output, but many application of PFE
are concerned with scenarios where the function-holder has no output.

Efficient Instantiations. One can efficiently instantiate our online phase with a linear complexity, using any
actively secure MPC satisfying our requirements. The main challenge, therefore, lies in efficient instantiation
of the offline phase. It is possible to implement our offline phase using any actively secure MPC sub-protocol as
well (by securely computing a circuit that performs the above mentioned task) but the resulting constructions
would neither be linear nor constant-round.

– We introduce a instantiation with O(g) complexity, proving the feasibility of linear actively secure PFE
for the first time. Our main new technical ingredient is a linear zero-knowledge (ZK) proof of “correct
extended permutation” of ElGamal ciphertexts. While linear ZK proofs of shuffles are well-studied, it
is not clear how to extend the techniques to extended permutation (see our incomplete attempt in
Appendix B) Instead, we propose a generic and linear solution that uses ZK proof of a correct shuffle
in a black-box manner, and may be of independent interest. Our solution is based on the switching
network construction of EP [17]. This construction consists of three components, two of which are
permutation networks. Instead of evaluating switches, we use singly homomorphic encryption to evaluate
each component, and then re-randomize. We use existing ZK proofs of shuffle to prove the correctness
of first and third components which perform permutation. The middle component requires a separate
compilation of ZK protocols. Note that generically applying ZK proofs to UC circuit evaluation does
not provide a linear solution, and applying ZK proofs for the EP component also does not work. Our
customized linear ZKEP gets around these problems.

– We introduce a constant-round instantiation with O(g · log g) complexity (contrast with O(g5) complexity
for universal arithmetic circuits) that is also of practical interest. Our technique is itself an extension of
ideas from [17]. In particular the basic algorithm is that of [17] for oblivious evaluation of a switching

423

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

network, but some care needs to be taken to make sure the protocol is actively secure. This is done by
applying MACs to the data being computed on. However, instead of having the MAC values being secret
shared (as in SPDZ) or kept secret (as in BDOZ and Tiny-OT), the MAC values are public with the
keys remaining secret shared. Nevertheless, the MACs used are very similar to those used in the BDOZ
and Tiny-OT protocols [3,19], since they are two-key MACs in which one key is a per message key and
one is a global key. While using MAC’s is quite standard for ensuring consistency of data, our efficient
deployment in the framework is non-trivial and novel. For example, while addition of MACs in the offline
phase is done using a generic MPC, the circuit evaluation (online phase) does not use an MPC. This is
different from [17]’s approach and previous MPC work. General active security techniques can not be
directly employed in this context. It is not clear how to use cut-and-choose in case of PFE, e.g. it is not
clear how not to reveal the function in the opening, and there are additional components (i.e. EP) in a
PFE protocol which cut-and-choose does not seem to resolve.

Efficiency Discussion. We emphasize that our linear complexity solution is a feasibility result at it was
an open question whether active PFE with linear complexity in circuit size is possible given simple crypto
primitive such as singly homomorphic encryption (as opposed FHE). Our “efficient” arithmetic PFE only
requires O(g log g) multiplication gates and it is a significant improvement in comparison with applying
of arithmetic MPC to universal arithmetic circuit of size O(g5) [23]. If we apply active secure MPC for
arithmetic circuits to this universal circuit the complexity cannot get better than O(g5). One can turn an
arithmetic circuit into a boolean circuit and use Valiant’s boolean UC [26] to obtain a PFE. But this is
highly inefficient, and therefore we do not discuss this in detail.

2 Notation and the Underlying MPC Protocol

We assume our function f to be evaluated will eventually be given by player P1 as an arithmetic circuit over
a finite field Fp; note p may not necessarily be prime. We let g(f) denote the number of gates in the circuit
representing f . For gates with fan-out greater than one, we count each seperate output wire as a different
wire. We also select a value k such that pk > 2sec, where sec is the security parameter; this is to ensure
security of our MAC checking procedure in the online phase.

We assume n parties P1, . . . , Pn, of which an adversary may corrupt (statically) up to t of them; the
value of t being dependent on the specific underlying MPC protocol. The corrupted adversaries could include
party P1. The MPC protocol should implement the functionality described in Figure 1. This functionality is
slightly different from standard MPC functionalities in that we try to capture both the honest majority and
the dishonest majority setting; and in the latter setting the adversary can force the functionality to abort at
any stage of the computation and not just the output. We also introduce another operation called Cheat
which will be useful in what follows.

It is clear that modern actively secure MPC protocols such as [7,8,19], implement this functionality in
different settings. Thus various different settings (i.e. different values of n, p and t) will be able to be dealt
with in our resulting PFE protocol by simply plugging in a different underlying MPC protocol. To ease
exposition later we express our MPC protocol as evaluating functions in the finite field Fpk . Clearly such an
MPC protocol can be built out of one which evaluates functions over the base finite field Fp.

To ease notation in what follows we shall let [varid] denote the value stored by the functionality under
(varid , a); and will write [z] = [x] + [y] as a shorthand for calling Add and [z] = [x] · [y] as a shorthand for
calling Multiply. And by abuse of notation we will let varid denote the value, x, of the data item held in
location (varid , x).

3 Our Active PFE Framework

In this section we describe our active PFE framework in detail. We start by describing the offline functionality
which pre-processes the function/circuit the parties want to compute (Section 3.1). Then, in Section 3.2,

424

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Functionality FMPC

The functionality consists of seven externally exposed commands Initialize, Cheat, Input Data, Random,
Add, Multiply, and Output and one internal subroutine Wait.

Initialize: On input (init , p, k,flag) from all parties, the functionality activates and stores p and k; and a repre-
sentation of Fpk . The value of flag is assigned to the variable dhm, to signal whether the MPC functionality
should operate in the dishonest majority setting. The set of “valid” players is initially set to all players. In
what follows we denote the set of adversarial players by A.

Cheat: This is a command which takes as input a player index i, it models the case of (most) robust MPC
protocols in the honest majority case. On execution the functionality aborts if dhm is set to true. Otherwise
the functionality waits for input from all players. If a majority of the players return OK then the functionality
reveals all inputs made by player i, and player i is removed from the list of “valid” players (the functionality
continues as if player i does not exist).

Wait: This does two things depending on the value of dhm.
– If dhm is set to true then it waits on the environment to return a GO/NO-GO decision. If the environment

returns NO-GO then the functionality aborts.
– If dhm is set to false then it waits on the environment. The environment will either return GO , in which

case it does nothing, or the environment returns a value i ∈ A, in which case Cheat(i) is called.
Input Data: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?) from all other parties, with varid a

fresh identifier, the functionality stores (varid , x). The functionality then calls Wait.
Random: On command (random, varid) from all parties, with varid a fresh identifier, the functionality selects

a random value r in Fpk and stores (varid , r). The functionality then calls Wait.
Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory and

varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x+ y). The functionality
then calls Wait.

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory
and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y). The function-
ality then calls Wait.

Output: On input (output , varid) from all honest parties (if varid is present in memory), the functionality
retrieves (varid , x) and outputs it to the environment. The functionality then calls Wait, and only if Wait
does not abort then it outputs x to all players.

Fig. 1: The required ideal functionality for MPC

425

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

we show that given a secure implementation of FOffline, one can efficiently (linear complexity) construct an
actively secure PFE based on any actively secure MPC. We postpone efficient instantiations of FOffline to
later sections.

3.1 The Function Pre-Processing (Offline) Phase

In this section we detail the requirements of our pre-processing step once player P1 has decided on the
function f to be evaluated. P1 is only required to enter a valid circuit, equivalent to his function f into the
protocol. Each non-output wire w in the circuit is connected at one end (which we shall call the outgoing
wire or left point) to a source, this is either the output of a (non-output) gate or an input wire. Conversely
each non-output wire is connected at the other end (which we shall call the incoming wire or right point) to
a destination point which is always an input to a gate. We denote the number of distinct Incoming Wires on
the right by iw(f). We let ow(f) denote the number of Outgoing Wires on the left. Note that iw(f) = 2g and
ow(f) = n+ g − o where o is the number of output gates in the circuit. Since we are dealing with arbitrary
fan out we have that ow(f) ≤ iw(f).

Functionality FOffline

Initialize: As for FMPC.
Wait: As for FMPC.
Input Data: As for FMPC.
Cheat: As for FMPC.
Random: As for FMPC.
Add: As for FMPC.
Multiply: As for FMPC.
Output: As for FMPC.
Input Function: On input (inputfunction, π, f) from player P1 the functionality performs the following oper-

ations
– The functionality calls (random,K).
– If f is not a valid arithmetic circuit then the functionality aborts.
– For i ∈ {1, . . . , iw(f)} the functionality calls (random, ri) and (random, si).
– For j ∈ {1, . . . , ow(f)} the functionality calls (random, lj) and (random, tj).
– The functionality then computes, for all i ∈ {1, . . . , iw(f)}

[pi] = [ri]− [`π(i)], [qi] = ([si]− [tπ(i)]) + ([ri]− [`π(i)]) · [K]

– The functionality then outputs (pi, qi) to all players, for i ∈ {1, . . . , iw(f)}, by calling (output , pi) and
(output , qi).

– For i ∈ {1, . . . , g} the functionality calls (input , P1, Gi, 0) if gate i in the description of f is an addition
gate, and (input , P1, Gi, 1) if gate i is a multiplication gate.

Fig. 2: The required ideal functionality for the Offline Phase

To fully capture the topology of the circuit we give each outgoing wire and incoming wire in the circuit
a unique label. The labels for the outgoing wires will be {1, . . . , ow(f)} starting from the input wires and
then moving to the output wires of each gate in a topological order decided by P1, whilst the labels for the
incoming wires will be {1, . . . , iw(f)} labelling the input wires to each gate in the same topological order.
The topology is then defined by a mapping from outgoing wires to incoming wires and is called an “extended
permutation” in [17]as demonstrated in Figure 3. We denote the inverse of this mapping by a function π
from {1, . . . , iw(f)} onto {1, . . . , ow(f)}. If w is a wire in the circuit with incoming wire label i, then it’s
outgoing wire label is given by j = π(i).

To execute the function pre-processing, player P1 on input of f determines a mapping π corresponding
to f . The offline phase functionality FOffline which is described in Figure 2, extends the FMPC functionality

426

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Circuit C

G2

G1

ow1 = x1 ow6

ow7

y1

ow1
ow2
ow3
ow4

ow6

ow7

iw1

iw2

iw3

iw4

iw5

iw6

n = 5

g − o = 2

CTH

2g = 8

y2

ow5

iw7

iw8

G3

G4

ow2 = x2

ow3 = x3

ow4 = x4

ow5 = x5

iw5

iw6

iw3

iw4

iw1

iw2

iw7

iw8

Fig. 3: An example circuit and the corresponding mapping [17]

of Figure 1 by adding an additional operation Input Function. The Input Function generates a vector
of random (but correlated) values and their one-time MACs using a fixed global MAC key K. In particular,
the functionality first stores a vector of random values (ri) for each incoming wire and another vector of
random values (`i) for the outgoing wires in the circuit. These random values will play the role of “pads” for
one-time encryption of the computed wire values in the online phase. The functionality then computes pi,
the difference between each outgoing wire’s value ri and the corresponding incoming wires’ value `π(i), and
reveals pi to all parties. This difference vector will allow P1 to maintain one-time encryption of each wire
value in the online phase without revealing the circuit topology. Additional random values (si, ti) and the
global MAC key K are used to compute one-time MACs of each pi, namely qi. These MACs will be used to
check P1’s actions in the online phase. The Input Function also commits P1 to the function of each gate
in his circuit by storing a bit (0 for addition and 1 for multiplication) for each gate.

3.2 The Function Evaluation (Online) Phase

We can now present our framework for actively secure PFE. We wish to implement the functionality in
Figure 4. We express the functionality as evaluating a function f provided by P1 which takes as input n
inputs in Fpk , one from each player. Again we present the functionality in both the honest majority and the
dishonest majority settings.

Realizing FOnline Given FOffline and FMPC A generic instantiation of FOffline based on any MPC
is give in Figure 6. The idea is to work with one-time pad encryptions of the values for all intermediate
wires and the corresponding one-time MACs. Here, the pads (r, `, s, t values), as well as the MAC Key K
are generated by the offline functionality, and shared among the parties so no party can learn intermediate
values or forge MACs on his own.

In more detail, the protocol proceeds as follows. Initially, parties compute one-time encryption of the
input values to the circuit (pads are the corresponding ` values). Then, the following process is repeated for
every gate in the circuit until every gate is processed. Parties then open the outcome of the output gates as
their final result.

For each gate, party P1 uses the “difference vectors” (pi values) from the offline phase to transform the
one-time encryption of output of the previous gate to the one-time encryption of input of the current gate
(the result is denoted by di0 , di1 for the i-th gate.), without revealing the topology or learning the actual
wire values. This is diagrammatically presented in Figure 5 to aid the reader. A similar transformation is
done on MACs of the wire values (using qi values) in order to keep P1 honest in his computation (denoted
by mi0 ,mi1).

Then, the protocol proceeds by jointly removing the one-time pads for the two inputs of the current gate
and evaluating it together in order to compute a shared output zi. Note that in this gate evaluation the gate

427

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Functionality FOnline

Initialize: On input (init , p, k,flag) from all players, the functionality activates and stores p and k; and a
representation of Fpk . The value of flag is assigned to the variable dhm, to signal whether the underlying
MPC functionality should operate in the dishonest majority setting.

Wait: If dhm is set to false then this does nothing. Otherwise it waits on the environment to return a
GO/NO-GO decision. If the environment returns NO-GO then the functionality aborts.

Input Function: On input (inputfunction, f) from player P1 the functionality stores (function, f). The func-
tionality now calls Wait.

Input Data: On input (input , Pi, xi) from player Pi the functionality stores (input , i, xi). The functionality
now calls Wait.

Output: On input (output) from all honest players the functionality retrieves the data xi stored in (input , i, xi)
for i ∈ {1, . . . , n} (if all do not exist then the functionality aborts). The functionality then retrieves f from
(function, f) and computes y = f(x1, . . . , xn) and outputs it to the environment (or aborts if (function, f)
has not been stored). The functionality now calls Wait. Only on a successful return from Wait will the
functionality output y to all players.

Fig. 4: The required ideal functionality for PFE

`π(i)

ri

pi = ri − `π(i)POffline

uπ(i) = xπ(i) + `π(i)

POnline

di = uπ(i) + pi

1. Prepare outgoing wire

2. P1 computes the incomming wires’

di = xπ(i) + `π(i) + ri − `π(i)

di = xπ(i) + ri
π

Fig. 5: Transformation of one-time encryption of an outgoing wire to the one-time encryption of an incoming
wire using the values computes in POffline protocol.

type Gi is secret and shared among the players. This step can be performed using the FMPC operations.
Then, parties compute a one-time encryption of zi using the corresponding ` value as the pad, and denote
the result by uj , just a relabeling where j is the outgoing wire’s label of the output wire of the gate (note
that j = n+ i since the outgoing wires are labeled starting with the n input wires and then the output wire
of each gate).

Note, that if P1 tries to deviate from the protocol in his local computation (i.e. when he connects outgoing
wires to incoming wires) the generated MACs will not pass the jointly performed verifications and he will
be caught. In that case, either the protocol aborts (in the case of dishonest majority) or his input (i.e. the
function) is revealed (in the case of honest majority).

This leads to the following theorem, whose proof is given in Appendix F.

Theorem 1. In the FOffline-hybrid model the protocol in Figure 6 securely implements the PFE functionality
in Figure 4, with complexity O(g).

4 Implementing FOffline with Linear Complexity

In this section we give a linear instantiation of the offline phase of the framework. Since our online phase
has linear complexity, a linear offline phase implementation leads to a linear actively secure PFE. The main
challenge in obtaining a linear solution is to design a linear method for applying the extended permutation

428

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Protocol POnline

The protocol is described in the FOffline-hybrid model.
Input Function: Player P1 given f selects the switching network mapping π and then calls (inputfunction, π, f)

on the functionality FOffline.
Input Data: On input (input , Pi, xi) from player Pi the protocol executes the (input , i, xi) operation of the

functionality FOffline.
Output: The evaluation of the function proceeds as follows; where for ease of exposition we set xπ(h) = yh for

all h, i.e. if a wire has input xi on the left (as outgoing wire) then it has the same value yh on the right (as
incoming wire) where i = π(h)
– Preparing Inputs to the Circuit:
• For each input wire i (1 ≤ i ≤ n) the players execute [ui] = [xi] + [`i], where i is the outgoing wire’s

label corresponding to that input wire, and [vi] = [ti]+([xi]+ [`i]) · [K] using the FMPC functionality
available via FOffline.

• Parties then call (output , ui) and (output , vi) to open [ui] and [vi].
– Evaluating the Circuit: For every gate 1 ≤ i ≤ g in the circuit players execute the following (here we

assume that the gates are indexed in the same topological order P1 chose to determine π):
• P1 Prepares the Two Inputs for Gate i.
∗ Note that the two input wires for gate i have incoming wire labels i0 = 2i− 1 and i1 = 2i, and

the (u, v) value for their corresponding outgoing wire labels are already determined, i.e. uπ(ij)

and vπ(ij) are already opened for j ∈ {0, 1}.
∗ Player P1 computes, for j = 0, 1,

dij = uπ(ij) + pij
.
= (yij + `π(ij)) + (rij − `π(ij))
.
= yij + rij ,

mij = vπ(ij) + qij
.
= (tπ(ij) + (yij + `π(ij)) ·K)

+
`
(sij − tπ(ij)) + (rij − `π(ij))) ·K

´
.
= sij + (yij + rij) ·K.

∗ Player P1 then broadcasts the values dij and mij to all players.
• Players Check P1’s Input Preparation.
∗ All players then use the FMPC operations available (via the interface to the FOffline functionality)

so as to store in the FMPC functionality the values [nij] = [sij] + (yij + rij) · [K]. The value is
then opened to all players by calling (Output , nij).

∗ If nij 6= mij then the players call Cheat(1) on the FMPC functionality. This will either abort, or
return the input of P1 (and hence the function), in the latter case the players can now proceed
with evaluating the function using standard MPC and without the need for P1 to be involved.

• Players Jointly Evaluate Gate i.
∗ The players store the value [yij] = dij − [rij] in the FMPC functionality.
∗ The FMPC functionality is then executed so as to compute the output of the gate as

[zi] = (1− [Gi]) · ([yi0] + [yi1]) + [Gi] · [yi0] · [yi1].

∗ Note that the outgoing wire label corresponding to the output wire of the ith gate is j = n+ i
so we just relabel [zi] to [zj].

∗ If Gi is an output gate, players call (Output , zi) to obtain zi, disregard next steps and continue
to evaluate next gate.

∗ The players compute via the MPC functionality [uj] = [zj] + [`j].
∗ The players call (Output , uj) so as to obtain uj .
∗ The players then compute via the MPC functionality

[vj] = [tj] + uj · [K]
.
= [tj + (zj + `j) ·K].

∗ The players call (Output , vj) so as to obtain vj .

Fig. 6: The Protocol for implementing PFE

429

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

π to values {[`i]} and {[ti]} to produce shared values {[`π(i)]} and {[tπ(i)]}. In the semi-honest case [17],
linear complexity solution for this problem is achieved by employing a singly homomorphic encryption. The
shared values are jointly encrypted; P1 applies the extended permutation to the resulting ciphertexts and
re-randomizes them in order to hide π; parties jointly decrypt in order to obtain the shares of the resulting
plaintexts. To obtain active security, we need to make each step of the following computation actively secure:

1. Players encrypt the shared input (all of which lie in Fpk) using an encryption scheme, with respect to a
public key for which the players can execute a distributed decryption protocol. The resulting ciphertexts
are sent to P1.

2. Player P1 applies the EP and re-randomizes the ciphertexts and sends them back. He then uses the
ZKEP protocol to prove his operation has been done correctly.

3. The players then decrypt the permuted ciphertexts and recover shares of the plaintexts.

To implement the first and last steps we use an an instantiation based on ElGamal encryption, see Ap-
pendix A. The middle step is more tricky, and we devote the rest of this section to describing this. For the
middle step we need a linear zero-knowledge protocol to prove that P1 applied a valid EP to the ciphertexts.
Proof of a correct shuffle is a well studied problem in the context of Mix-Nets, and linear solutions for it
exist [11]. As discussed in Appendix B , however, extending these linear proofs to the case of extended
permutations faces some subtle difficulties which we leave as an open question. Instead we aim for a more
general construction that uses the currently available proofs of shuffling, in a black-box way.

4.1 Linear ZKEP Protocol

After players compute the encryption of the shared inputs, P1 knowing the circuit topology, applies the
corresponding extended permutation to the ciphertexts. He then re-randomizes the ciphertexts and then
“opens” the ciphertexts. Next, we give a linear zero-knowledge protocol ZKEP, which enables P1 to prove
the correctness of his operation (i.e final ciphertexts are the result of P1 applying a valid EP to the input
ciphertexts). As our first attempt we considered the possibility of extending existing linear proofs of shuffle
to get linear proofs of extended permutation. While plausible there are subtle difficulties that need to be
addressed. For more details regarding our attempt on extending the method of Furukawa [11,10], refer to
Appendix B . We leave this approach as an open problem. Instead we give a more general construction which
makes black-box calls to proof of shuffle. This construction is inspired by the switching network construction
of EP given in [17]. We first revisit the extended permutation construction of [17].

Assume the EP mapping represented by the function: π : {1...n} → {1...m} (Which maps m input wires
to n output wires (n ≥ m)). Note that in this section we use n and m to denote the size of EP. In a
switching network, the number of inputs and outputs are the same, therefore, the construction takes m real
inputs of the EP and n −m additional dummy inputs. The construction is divided into three components.
Each component takes the output of the previous one as input. Instead of applying the EP in one step,
P1 applies each component separately and uses a zero-knowledge protocol to prove its correctness. Figure 7
demonstrates the components. Next, we describe each component and identify the required ZK proof.

Table 1 lists the zero-knowledge protocols that we make a black-box use in our ZKEP protocol. Note that
we use P and Q for our EC instantiation instead of g and h.

– Dummy-value placement component: This takes the real and dummy ciphertexts as input and for
each ciphertexts of a real value that is mapped to k different outputs according to π, outputs the real
ciphertexts followed by k−1 dummy ciphertexts. This is repeated for each real ciphertext. The resulting
output ciphertexts are all re-randomized. The dummy replacement step can be seen as a shuffling of the
input ciphertexts. We use a proof of correct shuffle, ZKShuffle, for correctness of this component.

– Replication component: This takes the output of the previous component as input. It directly outputs
each real ciphertext but replaces each dummy ciphertext with an encryption of the real input that
precedes it. At the end of this step, we have the necessary copies for each real input and the dummy
inputs are eliminated. Naturally, all the ciphertexts are re-randomized. To prove correctness of this step,

430

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Dummy Placement

ct
(1)
2

PermutationReplication
Phase Phase Phase

ZKShuffleZKShuffle

ct
(1)
1

ct
(1)
3

ct
(1)
4

ct
(2)
2

ct
(2)
1

ct
(2)
3

ct
(2)
4

ct2

ct1

ct3

ct4

ct′2

ct′1

ct′3

ct′4

ZKRep

Fig. 7: EP construction. Components’ names are written underneath. The zero-knowledge protocol for each
component is written inside it’s component box.

ZK Protocol Relation/Language Ref.

ZKShuffle({cti}, {ct′i}) RShuffle = {(G, g, h, {cti}, {ct′i})|∃π, st. [11]

C′1
(i)

= griC1
(π(i)) ∧ C′2

(i)
= hriC2

(π(i)) ∧ π is perm.}
ZKEq(ct1, ct2) REq = {(G, g, h, cti = 〈αi, βi〉i∈{1,2})|∃(m1,m2), st. [5]

αi = gri ∧ βi = mih
ri ∧m1 = m2}

ZKno(ct) Lno = {(G, g, h, ct = 〈α, β〉)|∃(m1 6= 1), st. [13]
α = gr ∧ β = m1h

r}
Table 1: List of zero-knowledge protocols used in our ZKEP protocol. Generator g and public key h = gsk.

we need ZK proofs that the i-th output ciphertext has a plaintext equal to that of either the i-th input
ciphertext or (i−1)-th output ciphertext (these can be achieved using protocol ZKEq defined in Table 1
as a building block). But this is not sufficient to guarantee a correct EP, as we also have to make sure that
after the replication component there are no dummy ciphertexts left. For this, we assume that all dummy
ciphertexts are encryptions of one. Then for each output ciphertext in the replication component we use
a protocol ZKno, i.e. a ZK proof that the underlying plaintext is not one. The ZKRep zero-knowledge
protocol, is a compilation of three ZK protocols, two checking for equality of ciphertexts and one checking
the inequality of plaintext to one.

– Permutation component: This takes the output of the replication component as input and permutes
each element to its final location as prescribed by π. We again use the proof of correct shuffle, ZKShuffle.
for this component.

ZKEP Protocol description We assumed the inputs to the ZKEP, to be the outputs of our encryption func-
tionality. Prover applies the extended permutation to the ciphertexts (ct1, . . . , ctn), where cti = (C(i)

1 , C
(i)
2).

The prover obtains a re-randomized (ct′1, . . . , ct
′
n), where ct′i = (C ′(i)1 , C

′(i)
2). We employ the techniques of

Cramer et al. [6], to combine HVZK proof systems corresponding to each component, at no extra cost,
into HVZK proof systems of the same class for any (monotonic) disjunctive and/or conjunctive formula
over statements proved in the component proof systems. Figure 8 shows the complete description of our
ZKEP protocol. Note that we can choose dummy values from any set of random values Sd and substitute
the ZKno(x) with ∨∀y∈Sd

(ZKEq(x, y)).

Theorem 2. The protocol described in Figure 8 is HVZK proof of an extended permutation π, (ct1, . . . , ctn)
and (ct′1, . . . , ct

′
n) in the ZKShuffle, ZKEq, ZKno hybrid model, for the following relation:

REP = {(G, g, h, {cti}, {ct′i})|∃π, st. C ′1
(i) = griC1

(π(i)) ∧ C ′2
(i) = hriC2

(π(i)) ∧ π is EP.}

Proof. Following is a proof sketch. We show if the construction of EP from [17] is correct, then the ZKEP

protocol is a HVZK proof for EP. The goal of first two components is to prepare enough copies of each
element. This implies that after the second component no dummy elements should be remained and no new
elements are introduced. ZKShuffle and ZKRep guarantee these two. ZKShuffle makes sure no additional

431

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Protocol ZKEP({cti}, {ct′i})

Shared Input: Ciphertexts (ct1, . . . , ctn)
P1’s Input: Extended permutation π
P1 Evaluates the components.

– Player P1 finds the corresponding permutation π1, and π2 for Dummy-placement component and per-
mutation components.

– P1 applies the Dummy-placement component to (ct1, . . . , ctn), and re-randomizes to find (ct
(1)
1 , . . . , ct

(1)
n).

– P1 applies the Replication component to (ct
(1)
1 , . . . , ct

(1)
n), and re-randomizes them to find (ct

(2)
1 , . . . , ct

(2)
n).

– P1 applies the permutation component to (ct
(2)
1 , . . . , ct

(2)
n), and re-randomizes them to find (ct′1, . . . , ct

′
n).

P1 Computes the ZK proofs and sends everything
– Player P1 uses the ZKShuffle({cti}, {ct(1)i }) and ZKShuffle({ct(2)i }, {ct

′
i}) protocols to produce proof of

correctness for his evaluation of Dummy-placement component and permutation component.
– Player P1 used the ZKRep({ct(1)i }, {ct

(2)
i }) to produce proof of correctness for his evaluation of Replication

component as follows(using [6] for combination) (and ZK1
Rep = ZKno

“
ct

(2)
1

”
∧ ZKEq(ct

(1)
1 , ct

(2)
1)):

• For 2 ≤ i ≤ n:

ZKiRep =
“
ZKEq(ct

(1)
i , ct

(2)
i) ∨ ZKEq(ct

(2)
i−1, ct

(2)
i)
”
∧ ZKno

“
ct

(2)
i

”
.

• ZKRep = ∧i=1,...,n(ZKiRep)

– Player P1 sends (ct
(1)
1 , . . . , ct

(1)
n), (ct

(2)
1 , . . . , ct

(2)
n), (ct′1, . . . , ct

′
n) and all proofs to other players.

Players verify P1 operations
– Players verify P1’s operations by verifying the the proofs sent by P1.

Fig. 8: The protocol for zero-knowledge proof of extended permutation.

elements are introduced in the first component. ZKRep ensures each element is one of the input pairs to the
second component. This makes sure no new elements are introduced in this step. Furthermore, it checks using
ZKno for remaining dummy elements. Note that the EP construction does not require dummy-placement
phase to necessarily arrange the elements in any order, and as long as we have satisfied the two mentioned
properties, application of any permutation component, results in a valid EP, and also a valid circuit topology.
ZKShuffle is used to check the final component. This sums up the proof. Finally we employ the techniques of
Cramer et al. [6], to combine HVZK proof systems corresponding to each component, at no extra cost, into
HVZK proof systems of the same class. Note that we make a black-box call to underlying ZK proof systems.

Offline Protocol Having all the parts of the puzzle, we can give the complete O(g) protocol for the offline
phase. Figure 9 shows the description, with the proof of security given in Appendix C.

5 A practical Implementation of FOffline with O(g · log g) Complexity

A O(g · log g) protocol to implement FOffline is given in Figure 13 and Figure 14 (see Appendix D), and is
in the FMPC-hybrid model. Following the ideas in [17], we implement the functionality via secure evaluation
of a switching network corresponding to the mapping πf .

Switching Networks. A switching network SN is a set of interconnected switches that takes N inputs and a
set of selection bits, and outputs N values. Each switch in the network accepts two `-bit strings as input and
outputs two `-bit strings. In this paper we need to use a switching network that contains two switch types.
In the first type (type 1), if the selection bit is 0 the two inputs remain intact and are directly fed to the two
outputs, but if the selection bit is 1, the two input values swap places. In the second type (type 2), if the
selection bit is 0, as before, the inputs are directly fed to outputs but if it is 1, the value of the first input is
used for both outputs. For ease of exposition, in our protocol description we assume that all switches are of
type 1, but the protocol can be easily extended to work with both switch types.

432

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Linear Implementation of Protocol POffline-Linear

The protocol is described in the FMPC-hybrid model, thus the only operation we need to specify is the Input
Function one.
Input Function:
P1 Shares his Circuit/Function.

– Player P1 calls (input , Gj) for all j ∈ {1, . . . , g}.
– Players evaluate and open [Gj] · (1− [Gj]) for j ∈ {1, . . . , g}. If any of them is not 0, players abort (since

in this case P1 has not entered a valid function).
Players Generate Randomness for inputs and outputs of EP.

– Players call (random, ·) of FMPC to generate shared random values for inputs ` = ([`1], . . . , [`ow(f)]) and
outputs ([r1], . . . , [riw(f)]) of EP.

– Players call (random, ·) of FMPC to generate shared random values for the MAC value corresponding to
inputs t = ([t1], . . . , [tow(f)]) and outputs ([s1], . . . , [siw(f)]) of EP.

P1 applies the EP to ` and t.
– The players call KeyGen on the EncElg functionality.
– The playes call Encrypt on the EncElg functionality with the plaintexts ([`1], . . . , [`ow(f)]) and the plain-

texts ([t1], . . . , [tow(f)]), to obtain ciphertexts ct1, . . . , ctow(f) and ct†1, . . . , ct
†
ow(f).

– Player P1 applies the extended permutation to (ct1, . . . , ctow(f)) and re-randomize to get (ct′1, . . . , ct
′
ow(f)),

the same is done with (ct†1, . . . , ct
†
ow(f)) to obtain (ct′†1 , . . . , ct

′†
ow(f)).

– Player P1 uses the ZKEP to prove that he has used a valid extended permutation.
– Players call the Decrypt on the EncElg functionality (Figure 11) with ciphertexts (ct′1, . . . , ct

′
ow(f)) and

(ct′†1 , . . . , ct
′†
ow(f)) so as to obtain ([`π(1)], . . . , [`π(ow(f))]) and ([tπ(1)], . . . , [tπ(ow(f))]).

Players Compute pi, qi.
– For i ∈ {1, . . . , iw(f)} players call FMPC to compute:

[pi] = [ri]− [`π(i)]
.
= [ri − `π(i)] , [qi] = [si]− [tπ(i)] + pi · [K]

.
= [si − tπ(i) + pi ·K]

Fig. 9: The protocol for linear implementation of the Offline Phase

433

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The mapping π : {1 . . . N} → {1 . . . N} corresponding to a switching network SN is defined such that
π(j) = i if and only if after evaluation of SN on the N inputs, the value of the input wire i is assigned to
the output wire j (assuming a standard numbering of the input/output wires). In [17] it is shown how to
represent any mapping with a maximum of N inputs and outputs via a network with O(N · logN) type 1
and 2 switches (We refer the reader to [17] for the details). This yields a switching network with O(g · log g)
switches to represent the mapping for a circuit with g gates.

High Level Description. It is possible to implement the FOffline by securely computing a circuit for the above
switching network using the FMPC. But for all existing MPC that meet our requirements, this would require
O(log g) rounds of interaction which is the depth of the circuit corresponding to the switching network.
We show an alternative constant-round approach with similar computation and communication efficiency.
It follows the same idea as the OT-based protocol of [17] where the OT is replaced with an equivalent
functionality implemented using FMPC. The main challenge in our case is to achieve active security and in
particular to ensure that P1 cannot cheat in his local computation. We do so by checking P1’s actions using
one-time MACs of the values he computes on, and allow the other parties to learn his input and proceed
without him, if he is caught cheating (or aborting).

Next we give an overview of the protocol. The protocol has four main components (as described in
Figure 13 and Figure 14). In the first step, P1 converts his mapping π to selection bits for the switching
network (i.e. bis) and shares them with all players. He also shares a bit Gi indicating the function of gate
i, with other players. In the second step, players generate random values for every wire in the network. P1,
based on his selection bit for the switch, learns two of the four possible “subtractions” of the random values
for two output wires from those of the input wires i.e. u`,i0 and u`,i1 . A similar process is performed for the t
values to obtain ut,i0 and ut,i1 (Figure 10 shows this process in a diagram). These subtractions enable P1 to
transform a pair of values blinded with the random values of input wires, to the same pair of values permuted
(based on the selection bit) and blinded with the random values of the output wires. All of the above can
be implemented using the operations provided by the FMPC.

bi

in`,id,0

in`,id,1

out`,id,0

out`,id,1

u`,i0 = out`,id,0 − in`,id,0

bi = 0

u`,i1 = out`,id,1 − in`,id,1

u`,i0 = out`,id,1 − in`,id,0

bi = 1

u`,i1 = out`,id,0 − in`,id,1

Fig. 10: The i-th switch. (superscripts: label of value subject to permute (` or t), and switch index i) (sub-
scripts: d refers to data, m refers to MAC, wire index 0 denotes the top wire in switch and 1 the bottom
wire in switch)

In the third step, P1 obtains the blinded ` and t values where the blinding for each is the random value
for the corresponding input wire to the network (these are h`,id , h

t,i
d , etc). Party P1 can now process each

switch as discussed above using the subtraction values in order to evaluate the entire network. At the end
of this process, P1 holds blinded values of the outputs of the switching network (blinded with randomness
of the output wires).

In the final step, parties check that P1 has not cheated during his evaluation, since he performed this
step locally and not through the FMPC operations. We use one-time MACs to achieve this goal. In particu-
lar, besides mapping blinded values through the network, P1 also maps the corresponding one-time MACs
(generated using the fixed-key K). This is done using a similar process described above and via the v`,ij , v

t,i
j

values. At the end of this process, P1 holds one-time MACs for the blinded outputs of the switching network,
in addition to the values themselves. Players then use the MPC functionality to jointly verify that the MACs
indeed verify the values P1 shared with them (i.e. n`,i and m`,i are the same, etc). As a result, P1 can only

434

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

cheat by forging the MACs which only happens with a negligible probability. If the MACs pass, parties
compute and open the “difference vectors” by subtracting the mapped ` and t-value vectors from the r and
s-value vectors. Refer to Figure 13 and Figure 14 for more details. If one instantiates the FMPC by SPDZ [8],
which has the m. log(pk) complexity, then our complexity would be m (10(2g log 2g − 2g + 1) + 4g) . log(pk).
Refer to Appendix Efor the proof of the following theorem.

Theorem 3. In the FMPC-hybrid model the protocol POffline in Figure 13 and Figure 14 securely implements
the functionality in Figure 2, with complexity O(g · log g).

6 Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO, by EPSRC
via grant EP/I03126X, and by Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL) under agreement number FA8750-11-2-0079.

The US Government is authorized to reproduce and distribute reprints for Government purposes notwith-
standing any copyright notation thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of Defense Advanced Research Projects Agency (DARPA) or the U.S. Government.

References

1. M. Abadi and J. Feigenbaum. Secure circuit evaluation. J. Cryptology, 2(1):1–12, 1990.
2. M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, and T. Schneider. Secure evaluation of private

linear branching programs with medical applications. In M. Backes and P. Ning, editors, ESORICS, volume 5789
of Lecture Notes in Computer Science, pages 424–439. Springer, 2009.

3. R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multiparty computation.
In K. G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 169–188.
Springer, 2011.

4. J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel. Privacy-preserving remote diagnostics. In P. Ning,
S. D. C. di Vimercati, and P. F. Syverson, editors, ACM Conference on Computer and Communications Security,
pages 498–507. ACM, 2007.

5. D. Chaum and T. P. Pedersen. Wallet databases with observers. In CRYPTO, pages 89–105, 1992.
6. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and simplified design of witness

hiding protocols. In Y. Desmedt, editor, Advances in Cryptology - CRYPTO ’94, volume 839 of Lecture Notes in
Computer Science, pages 174–187. Springer Berlin Heidelberg, 1994.

7. I. Damg̊ard, M. Geisler, M. Krøigaard, and J. B. Nielsen. Asynchronous multiparty computation: Theory and
implementation. In Proceedings of the 12th International Conference on Practice and Theory in Public Key
Cryptography: PKC ’09, Irvine, pages 160–179, Berlin, Heidelberg, 2009. Springer-Verlag.

8. I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic
encryption. In Safavi-Naini and Canetti [25], pages 643–662.

9. I. Damg̊ard and S. Zakarias. Constant-overhead secure computation of boolean circuits using preprocessing. In
Theory of Cryptography, pages 621–641. Springer, 2013.

10. J. Furukawa. Efficient and verifiable shuffling and shuffle-decryption. IEICE Transactions, 88-A(1):172–188,
2005.

11. J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In J. Kilian, editor, Advances in Cryptology -
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 368–387. Springer Berlin Heidelberg,
2001.

12. R. Gennaro, C. Hazay, and J. S. Sorensen. Text search protocols with simulation based security. In P. Q. Nguyen
and D. Pointcheval, editors, Public Key Cryptography, volume 6056 of Lecture Notes in Computer Science, pages
332–350. Springer, 2010.

13. C. Hazay and K. Nissim. Efficient set operations in the presence of malicious adversaries. In Public Key
Cryptography, pages 312–331, 2010.

14. Y. Ishai and A. Paskin. Evaluating branching programs on encrypted data. In S. P. Vadhan, editor, TCC, volume
4392 of Lecture Notes in Computer Science, pages 575–594. Springer, 2007.

435

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

15. J. Katz and L. Malka. Constant-round private function evaluation with linear complexity. In D. H. Lee and
X. Wang, editors, ASIACRYPT, volume 7073 of Lecture Notes in Computer Science, pages 556–571. Springer,
2011.

16. V. Kolesnikov and T. Schneider. A practical universal circuit construction and secure evaluation of private
functions. In G. Tsudik, editor, Financial Cryptography, volume 5143 of Lecture Notes in Computer Science,
pages 83–97. Springer, 2008.

17. P. Mohassel and S. Sadeghian. How to hide circuits in MPC an efficient framework for private function evaluation.
In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT, volume 7881 of Lecture Notes in Computer Science,
pages 557–574. Springer, 2013.

18. C. A. Neff. A verifiable secret shuffle and its application to e-voting. In M. K. Reiter and P. Samarati, editors,
ACM Conference on Computer and Communications Security, pages 116–125. ACM, 2001.

19. J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to practical active-secure two-party
computation. In Safavi-Naini and Canetti [25], pages 681–700.

20. S. Niksefat, B. Sadeghiyan, P. Mohassel, and S. Sadeghian. Zids: A privacy-preserving intrusion detection system
using secure two-party computation protocols. The Computer Journal, 2013.

21. R. Ostrovsky, A. Paskin-Cherniavsky, and B. Paskin-Cherniavsky. Maliciously circuit-private fhe. Cryptology
ePrint Archive, Report 2013/307, 2013. http://eprint.iacr.org/.

22. A. Paus, A.-R. Sadeghi, and T. Schneider. Practical secure evaluation of semi-private functions. In M. Abdalla,
D. Pointcheval, P.-A. Fouque, and D. Vergnaud, editors, ACNS, volume 5536 of Lecture Notes in Computer
Science, pages 89–106, 2009.

23. R. Raz. Elusive functions and lower bounds for arithmetic circuits. In Proceedings of the Fortieth Annual ACM
Symposium on Theory of Computing, STOC ’08, pages 711–720, New York, NY, USA, 2008. ACM.

24. A.-R. Sadeghi and T. Schneider. Generalized universal circuits for secure evaluation of private functions with
application to data classification. In P. J. Lee and J. H. Cheon, editors, ICISC, volume 5461 of Lecture Notes in
Computer Science, pages 336–353. Springer, 2008.

25. R. Safavi-Naini and R. Canetti, editors. Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer
Science. Springer, 2012.

26. L. Valiant. Universal circuits (preliminary report). In Proceedings of the eighth annual ACM symposium on
Theory of computing, pages 196–203. ACM, 1976.

A Instantiating Shared Encryption/Decryption

Recall our messages are elements in Fpk and we aim to work in an elliptic curve group of prime order (to ensure
DDH holds in the whole group). We therefore consider the finite field Fp2k = Fpk [θ], and consider an elliptic
curve E(Fp2k) of prime order q with generator P . Let the curve be given by the equation Y 2 = X3+A·X+B
where A,B ∈ Fp2k . To encrypt an element m ∈ Fpk we map elements of Fpk to elliptic curve points as follows:
We pick a random r ∈ Fpk and set x = m + r · θ. If t = x3 + A · x + B is a square (which can be tested
by checking if t(p

2k−1)/2 = 1), we extract the square root y (by the Tonelli-Shanks algorithm) and return
M = (x, y), otherwise we pick another r and repeat the operation. We expect this process to terminate after
two steps on average.

Given M we can encrypt it by selecting k ∈ Zq and computing (C1, C2) = (k·P,M+k·Q) where Q = sk·P
is the public key corresponding to the secret key sk. The decryption can be obtained via C2 − sk · C1, and
then simply taking the x-coordinate as x0 + x1 · θ and returning x0.

We need to perform the encryption however on values which are shared via the FMPC functionality, and
decrypt to obtain values which are shared via the FMPC functionality. We first note that since the FMPC

functionality can evaluate arithmetic circuits over Fpk it can also evaluate circuits over Fp2k ; so for ease of
exposition we will assume that FMPC is defined over Fp2k . We can therefore define the functionality EncElg
given in Figure 11 in the FMPC-hybrid model. To ease notation we let [P] denote a sharing of an elliptic
curve point P in the FMPC functionality in what follows. To save space we have included the protocol to
implement FMPC within the description of the functionality itself.

436

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Functionality EncElg

KeyGen: This generates the public key for the ElGamal encryption, given a shared secret key. The secret key
is stored as shared bits for convenience, i.e. [sk] =

P
[ski] · 2i.

1. Player i calls (input , Pi, ski,j , xi,j) for j = 0, . . . , log2 q and randomly selected xi,j ∈ {0, 1} chosen by
player i.

2. Define [Q] as the sharing of the point at infinity.
3. This step forms [ski] =

L
[skj,i] and [Q] =

P
[ski] · 2i · P , and ensures that the players input values in

the first step are in {0, 1}. We perform this step by executing, for i = 0, . . . , log2 q,
– [ski] = [sk0,i]
– For j = 2, . . . , n do [ski] = −2 · [ski] · [skj,i] + [ski] + [skj,i], using the MPC functionality.
– Compute [ti] = [ski] · ([ski]− 1), again using the MPC functionality.
– Call (output , ti) to open [ti], if the value is not zero then restart.
– Execute [Q] = [Q] + [ski] · 2i · P . Here we use the FMPC functionality to evaluate the conditional

elliptic curve addition.
4. The players call (output , Q) to open [Q].

Encrypt: This takes an input message [m] where m ∈ Fpk and outputs an ElGamal ciphertext (C1, C2).
1. Using a method similar to that for KeyGen above the players generate sharings of bits [ki] for i =

0, . . . , log2 q and then evaluate [kP] and [kQ] for k the integer with bit representation given by the
shared bits [ki].

2. The players call (random, r).
3. The players execute [x] = [m] + θ · [r].
4. The players execute [t] = [x3] +A · [x] +B.

5. The players compute [s] = [t(p
2k−1)/2] and call (output , s) to open [s].

6. If s 6= 1 then goto step 2.
7. The players execute the Tonelli-Shanks algorithm to extract the square root [y] of [t] using the FMPC

functionality.
8. The players execute [G] = ([x], [y]) + [kQ].
9. The players call (output , ·) on the x and y coordinates of [kP] and [G] so as to obtain C1 and C2.

Decrypt: Obtain the sharing of the message [m] corresponding to ciphertext (C1, C2).

1. The players execute using FMPC the operations corresponding to [G] = C2 −
Plog2 q
i=0 [ski] · 2i · C1.

2. Consider [G] as having x-coordinate [m] + θ · [m′] and output [m].

Fig. 11: Elgamal Functionality

437

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

B An Incomplete Attempt to Extend Existing Proofs of Shuffle

In this section we explain our attempt at extending the existing proofs of shuffle to extended permutation.
Current available solutions are following two main ideas: The first group started by Furukawa and Sako [11]
represents the permutation by a permutation matrix and then proves using ZK that it is a valid permutation
and is used in computation. The second group started by Neff [18] uses the property of polynomials of being
identical under permutation of their roots.

In the second group, it is not obvious how it is possible to handle variant number of repetitions for each
root. On the other hand it is possible to represent an EP using a matrix.

We turn to modifying the method of Furukawa and Sako [11] (and the later work by Furukawa [10]), to
check an extended permutation. We only describe the general idea, for more details concerning our modifi-
cations we refer the reader to the original paper [11]. In their protocol they use the matrix representation of
permutation and prove that the matrix used for computation of outputs is a valid permutation (i.e. there is
exactly one non-zero element one in each row and each column). For our purpose of extended permutation, it
is only enough to show that there is exactly one non-zero element, one in each column of matrix. Theorem 4
shows the conditions for a matrix to be an extended permutation.

Theorem 4. A matrix (Aij)i,j=1,...,n) is an extended permutation if and only if, for all i, j and k, the
following conditions hold:

n∑
h=1

Ahi = 1 (mod q) (1)

For all i, j : (i 6= j)
n∑
h=1

Aih ·Ajh = 0 (mod q) (2)

For all i, j, k : ¬(i = j = k)
n∑
h=1

Aih ·Ajh ·Akh = 0 (mod q) (3)

Proof (sketch). The first condition implies that there is at least one non-zero element in each column. Using
the similar argument to [11], for i 6= j, the second and third conditions imply that the number of non-zero
elements in each column is at most one. From first condition, this non-zero element should be one.

This theorem allows us to adapt the zero-knowledge protocol given in [11]. The main challenge in their
protocol is to give proof for the conditions of equations 2,3. We assume that the prover has applied the
extended permutation to the ciphertexts (ct1, . . . , ctn), where cti = (C(i)

1 , C
(i)
2). The prover obtains a re-

randomized (ct′1, . . . , ct
′
n), where ct′i = (C ′(i)1 , C

′(i)
2) and C

′(i)
1 = k′i · P + C

(π(i))
1 , C ′(i)2 = k′i ·Q+ C

(π(i))
2 .

To prove the condition in equation 2, we have to show that given {C(i)
1 } and {C ′(i)1 }, the prover knows

k′i and Aij such that:

C
′(i)
1 = k′i · P +

n∑
j=0

Aij · C(j)
1 and

n∑
h=1

Aih ·Ajh = 0.

In [11] they suggest to issue values s and si as a respond to challenge cj and let the verifier check two
conditions. We adjust si for our modified scenario such that s2i generates the condition of equation 2:

si =
n∑
j=1

Ajicj (mod q),

At this point it is not obvious how to issue s, and define the second verification equation considering the
modified si.

438

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

C Proof of Protocol POffline-Linear

We construct a simulator SOffline such that a poly-time environment Z cannot distinguish between the
real protocol system and the ideal. We assume here static, active corruption. The simulator runs a copy of
the protocol given in Figure 9, which simulates the ideal functionality given in Figure 2. It relays messages
between parties/FMPC and Z, such that Z will see the same interface as when interacting with a real protocol.
The specification of the simulator SOffline is presented in Figure 12.

Simulator SOffline

The protocol is described in the FMPC-hybrid model, thus we only need to specify the simulator for the Input
Function one. Let’s denote the set of corrupted parties by C ⊂ {P1, . . . , PN}.

Input Function:
P1 Shares his Circuit/Function.

– P1 ∈ C:
• Simulator SOffline evaluates [Gj] · (1 − [Gj]) for j ∈ {1, . . . , g}. If any of them is not 0, simulator

abort (since in this case P1 has not entered a valid function).
– P1 6∈ C:
• Simulator SOffline generates a random circuit with g gates G′j for all j ∈ {1, . . . , g} and finds its

corresponding mapping π′.
• SOffline calls (input , G′j) for all j ∈ {1, . . . , g}.
• Simulator SOffline evaluates [G′j] · (1− [G′j]) for j ∈ {1, . . . , g}.

Players Generate Randomness for inputs and outputs of EP.
– Simulator SOffline follows the protocol honestly.

P1 Applies the EP to s` and st.
– P1 ∈ C:
• Simulator SOffline randomly generates an extended permutation π′ and sends it to ZKEP ideal

functionality. Simulator aborts if any of players aborts.
– P1 6∈ C:
• Simulator follows the protocol honestly and sends s` and st to EncElg ideal functionality.
• Simulator SOffline waits for P1 to broadcast π to ZKEP ideal functionality, he then sends π to ideal

functionality FOffline. Simulator aborts if any of players aborts.
• Simulator follows the protocol honestly.

Players Check P1’s Work and Compute pi, qi.
– Simulator SOffline follows the protocol honestly.

Fig. 12: Simulator SOffline

To see that the simulated and real processes cannot be distinguished, we will show that the view of the
environment in the ideal process is statistically indistinguishable from the view in the real process. This view
consists of the corrupt players’ view of the protocol execution as well as the inputs and outputs of honest
players.

The view of adversaries C−{P1}, includes the share of Gi, the share of random values for inputs and out-
puts of EP, ([s`1], . . . , [s`ow(f)]), ([sr1], . . . , [sriw(f)]), ([st1], . . . , [stow(f)]), ([ss1], . . . , [ssiw(f)]), ([s`π(1)], . . . , [s`π(ow(f))]),
([stπ(1)], . . . , [stπ(ow(f))]), (sct1, . . . , sctow(f)), (sct′1, . . . , sct

′
ow(f)), (sct†1, . . . , sct

†
ow(f)), (sct′†1 , . . . , sct

′†
ow(f)), and

finally, pi, qi. The shared values all look random and therefore are indistinguishable between ideal and real
execution. (sct1, . . . , sctow(f)) and (sct†1, . . . , sct

†
ow(f)) are ElGamal encryptions under shared secret key, and

therefore are indistinguishable from real execution. (sct′1, . . . , sct
′
ow(f)) and (sct′†1 , . . . , sct

′†
ow(f)) are valid re-

randomization of ElGamal ciphertexts if protocol does not abort due to ZKEP verification. ([s`π(1)], . . . , [s`π(ow(f))]),
([stπ(1)], . . . , [stπ(ow(f))]) are freshly new shares generated by EncElg protocol. The final result pi, qi is com-
puted as a result of two shared random values, and therefore has a uniform distribution in both ideal and

439

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

real executions. The view of malicious P1, is the same view as other malicious players. The shared values
all have uniform distribution. In the ideal functionality we also have a uniform distribution, and as a result
ideal and real executions are indistinguishable to the environment Z.

D Complete Description of Protocol POffline

See Figure 13 and Figure 14 for the description of protocol POffline.

E Proof of Theorem 3

We construct a simulator SOffline such that a poly-time environment Z cannot distinguish between the real
protocol system and the ideal. We assume here static, active corruption. The simulator runs a copy of the
protocol given in Figure 13 and Figure 14, which simulates the ideal functionality given in Figure 2. It relays
messages between parties/FMPC and Z, such that Z will see the same interface as when interacting with a
real protocol. The specification of the simulator SOffline is presented in Figure 15.

To see that the simulated and real processes cannot be distinguished, we will show that the view of the
environment in the ideal process is statistically indistinguishable from the view in the real process. This view
consists of the corrupt players’ view of the protocol execution as well as the inputs and outputs of honest
players.

The view of adversaries C−{P1}, includes the share of bi, Gi, the share of wires’ random values, h`,id , h
t,i
d ,

[d`,i], [dt,i] and finally, n`,i and pi, qi. The shared values all look random and therefore are indistinguishable
between ideal and real execution. The final result pi, qi is computed as a result of two shared random values,
and therefore has a uniform distribution in both ideal and real execution. The values h`,id , h

t,i
d are blinded by

shared values ` and t respectively and have uniform distribution.
The view of malicious P1, includes the share of bi, Gi, share of wires’ random values, h`,id , h

t,i
d , d`,i, dt,i

and finally, n`,i and pi, qi. P1 has the same view as other malicious players except for the d`,i, dt,i values
that he has computed . It only remains to show that d`,i, dt,i have uniform distribution for a malicious P1

and checks are guaranteeing the correctness of his computation. Observe that h`,id is blinded using random
value of input wires which is shared and therefore acts as a one-time pad, and as P1 does the evaluation the
distribution remains uniform as he continues. Using the similar argument, dt,i has a uniform distribution
due to ht,id . In the ideal functionality we also have a uniform distribution, and as a result ideal and real are
indistinguishable to the environment Z. In the final phase players check the P1’s computation. Player P1

cheating means he has not calculated d`,i, dt,i correctly. For him to be successful, he has to somehow adjust
n`,i and m`,i to be equal. Any modification is prevented by the fact that since he does not know the key K,
it acts as a one-time MAC and therefore he can not adjust his share [out

`,di/2e
m,j] to make the equality hold.

The probability of him getting away with it is equal to him guessing K and hence exponentially small in the
length of K. It follows that with overwhelming probability after the check P1’s computation has been done
correctly. If any check fails the simulator aborts and stop.

F Proof of Protocol POnline

We construct a simulator SOnline such that a poly-time environment Z cannot distinguish between the real
protocol system and the ideal. We assume here static, active corruption. The simulator runs a copy of the
protocol POnline given in Figure 6, which simulates the ideal functionalities given in Figure 4. It relays
messages between parties/FOffline and Z, such that Z will see the same interface as when interacting with
a real protocol. The specification of the simulator SOnline is presented in Figure 16.

440

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Protocol POffline Part I

The protocol is described in the FMPC-hybrid model, thus the only operation we need to specify is the Input
Function one.

Input Function:
P1 Shares his Circuit/Function.

– P1 determines a vector of selection bits (b1, . . . , bN) corresponding to the switching network representing
the mapping π. Note that the switching network has ow(f) input wires and iw(f) output wires.

– Player P1 calls (input , bi) for all i ∈ {1, . . . , N}.
– Player P1 calls (input , Gj) for all j ∈ {1, . . . , g}.
– Players evaluate and open [bi] · (1 − [bi]) for all i ∈ {1, . . . , N} and similarly for [Gj] · (1 − [Gj]) for
j ∈ {1, . . . , g}. If any of them is not 0, players abort (since in this case P1 has not entered a valid
function).

Players Generate Randomness for the Switching Network.
– The players call (random,K) of FMPC.
– Players call (random, ·) of FMPC to generate two pairs of shared random values for each wire in the

switching network; one pair is used to map the ` values and another to map the t values (recall each
value j ∈ {1, . . . , ow(f)} has a value `j and tj).
Let us denote the two shared random pairs for the jth input wire (j ∈ {0, 1}) of the ith switch by
([in`,id,j], [in

`,i
m,j]) and ([int,id,j], [in

t,i
m,j]), and the pairs for its two output wires by ([out`,id,j], [out`,im,j]) and

([outt,im,j], [outt,im,j]). (The d subscript means the random value is used to process data (actual wire values)
while the m subscripts means the random value is used for the corresponding macs. The subscript
j ∈ {0, 1} determines which wire of the switch the value corresponds to. 0 means the the top wire while
1 denotes the bottom wire.)

– Then, for each switch i in the network players perform the following (in parallel):
• The players call FMPC to evaluate and open the following for j ∈ {0, 1} (the following corresponds

to switch type 1 but a similar approach works for type 2 switches)

[u`,ij] = (1− [bi]) · ([out`,id,j]− [in`,id,j]) + [bi] · ([out`,id,1−j]− [in`,id,j]),

[ut,ij] = (1− [bi]) · ([outt,id,j]− [int,id,j]) + [bi] · ([outt,id,1−j]− [int,id,j]),

[v`,ij] = (1− [bi]) · ([out`,im,j]− [in`,im,j]) + [bi] · ([out`,im,1−j]− [in`,im,j])

+ u`,ij · [K],

[vt,ij] = (1− [bi]) · ([outt,im,j]− [int,im,j]) + [bi] · ([outt,im,1−j]− [int,im,j])

+ ut,ij · [K].

Note, the final two equations can be evaluated using the open values of u`,ij and ut,ij .
– For i ∈ {1, . . . , ow(f)} players call FMPC to evaluate and open (let j = i mod 2)

[h`,id] = [`i] + [in
`,di/2e
d,j] , [h`,im] = [in

`,di/2e
m,j] + h`,id · [K],

[ht,id] = [ti] + [in
t,di/2e
d,j] , [ht,im] = [in

t,di/2e
m,j] + ht,id · [K],

Fig. 13: The protocol to implement the Offline Phase: Part I

441

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Protocol POffline Part II

P1 Maps the ` and t Values Using the Above Randomness.
– For i ∈ {1, . . . , iw(f)}, P1 determines the sequence of switches involved in mapping the input label
π(i) ∈ ow(f) to the output label i ∈ iw(f). Denote the sequence of switches by (i1, . . . , ik), and the
index of the input wire the values goes through by j1, . . . , jk. Note that k = O(logN), ik = di/2e, and
jk = i mod 2.

– P1 then computes the following d,m values and calls (input, ·) of the FMPC on each to store the value
in the functionality (i.e. share among the parties)

d`,i = h
`,π(i)
d +

kX
j=1

u
`,ij
jk

.
= `π(i) + out`,ikd,jk

,

m`,i = h`,π(i)
m +

kX
j=1

v
`,ij
jk

.
= out`,ikm,jk

+ d`,i ·K,

dt,i = h
t,π(i)
d +

kX
j=1

u
t,ij
jk

.
= tπ(i) + outt,ikd,jk

,

mt,i = ht,π(i)
m +

kX
j=1

v
t,ij
jk

.
= outt,ikm,jk

+ dt,i ·K,

Players Check P1’s Work and Compute pi, qi.
– For i ∈ {1, . . . , iw(f)} players call FMPC to compute (let j = i mod 2)

[n`,i] = [out
`,di/2e
m,j] + [d`,i] · [K], [nt,i] = [out

t,di/2e
m,j] + [dt,i] · [K].

– Parties then compute and open [n`,i−m`,i] and [nt,i−mt,i]. If either is not 0, players call Cheat(1) on
the FMPC functionality. This will either abort, or return the input of P1 (and hence the function), in the
latter case the players can now proceed with evaluating the function using standard MPC and without
the need for P1 to be involved. If the opened value is zero the players compute and open

[pi] = [ri]− [d`,i] + [out
`,di/2e
d,j]

.
= [ri − `π(i)],

[qi] = [si]− [dt,i] + [out
t,di/2e
d,j] + pi · [K]

.
= [si − tπ(i) + pi ·K],

Fig. 14: The protocol to implement the Offline Phase: Part II

442

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Simulator SOffline

The protocol is described in the FMPC-hybrid model, thus we only need to specify the simulator for the Input
Function one. Let’s denote the set of corrupted parties by C ⊂ {P1, . . . , PN}.

Input Function:
P1 Shares his Circuit/Function.

– P1 ∈ C:
• Simulator SOffline runs the protocol honestly and then waits for P1 to broadcast bi for all i ∈
{1, . . . , N} and Gj for all j ∈ {1, . . . , g}, he then sends them to ideal functionality FOffline.

• Simulator SOffline evaluates bi · (1 − bi) for all i ∈ {1, . . . , N} and similarly for [Gj] · (1 − [Gj]) for
j ∈ {1, . . . , g}. If any of them is not 0, simulator abort (since in this case P1 has not entered a valid
function).

– P1 6∈ C:
• Simulator SOffline generates a random circuit with g gates G′j for all j ∈ {1, . . . , g} and finds its

corresponding mapping π′. Then it determines a vector of selection bits (b′1, . . . , b
′
N) corresponding

to the switching network representing the mapping π′.
• SOffline calls (input , b′i) for all i ∈ {1, . . . , N}.
• SOffline calls (input , G′j) for all j ∈ {1, . . . , g}.
• Simulator SOffline evaluates [b′i] · (1− [b′i]) for all i ∈ {1, . . . , N} and similarly for [G′j] · (1− [G′j]) for
j ∈ {1, . . . , g}.

Players Generate Randomness for the Switching Network.
– Simulator SOffline follows the protocol honestly.

P1 Maps the ` and t Values Using the Randomness.
– Simulator SOffline follows the protocol honestly.

Players Check P1’s Work and Compute pi, qi.
– Players follow the steps of protocol and simulator aborts if the checks were failed by any of players.

Fig. 15: Simulator SOffline

443

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Simulator SOnline

The protocol is described in the FOffline-hybrid model.

Input Function: If P1 6∈ C, simulator generates a random circuit with g gates and corresponding mapping π′,
and follows the protocol honestly. If P1 ∈ C, simulator SOnline runs the protocol honestly and then waits for
P1 to broadcast π and f , he then sends them to ideal functionality FOnline.

Input Data: If Pi 6∈ C, simulator generates a dummy input x′i and follows the steps of protocol honestly. If
Pi ∈ C, simulator runs the protocol honestly and waits for them to send their input to FOffline, he then
sends them to FOnline ideal functionality.

Output: Simulator follows the protocol steps honestly. For Pi 6∈ C
– Preparing Inputs to the Circuit:
• Simulator follows the steps of protocol honestly.

– Evaluating the Circuit: For every gate 1 ≤ i ≤ g in the circuit players execute the following (here we
assume that the gates are indexed in the same topological order P1 chose to determine π):
• P1 Prepares the Two Inputs for Gate i.
∗ Simulator follows the steps of protocol honestly.

• Players Check P1’s Input Preparation.
∗ Simulator follows the steps of protocol honestly and aborts if the checks are failed.

• Players Jointly Evaluate Gate i.
∗ The players store the value [yij] = dij − [rij] in the FMPC functionality.
∗ The FMPC functionality is then executed so as to compute the output of the gate as

[zi] = (1− [Gi]) · ([yi0] + [yi1]) + [Gi] · [yi0] · [yi1].

∗ Note that the outgoing wire label corresponding to the output wire of the ith gate is j = n+ i
(the first n outgoing wires are input wires, hence output wire of the ith gate is indexed n + i)
so we just relabel [zi] to [zj].

∗ The players compute via the MPC functionality [uj] = [zj] + [`j].
∗ The players call (Output , uj) so as to obtain uj .
∗ The players then compute via the MPC functionality

[vj] = [tj] + uj · [K] = [tj + (zj + `j) ·K].

∗ The players call (Output , vj) so as to obtain vj . If j is the output wire, simulator adjusts his
share of output in the ideal execution to make the output consistent with the shares of honest
parties as follows: suppose the output of that wire using the dummy values is zi and the output
returned by the FOnline ideal functionality is z′i, he then adds zi − z′i to the share of adversary
[z′i] in the ideal execution.

Fig. 16: The Protocol for implementing PFE

444

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

To see that the simulated and real processes cannot be distinguished, we will show that the view of the
environment in the ideal process is statistically indistinguishable from the view in the real process. This view
consists of the corrupt players’ view of the protocol execution as well as the inputs and outputs of honest
players. The view of adversary includes [ui], [vi], dij ,mij , nij , [zi] and if i is the index of output wire, zi.
The shared values all look random and therefore are indistinguishable between ideal and real execution.

We next show that dij ,mij have uniform distribution. Observe that ui is blinded using the random value
of input wires which is shared and therefore acts as a one-time pad, and as P1 prepares the two inputs,
it maintains the uniform distribution. Furthermore, pij also has uniform distribution from the security of
offline protocol. The value sij acts as a one-time pad which is shared between the players and therefore, mij

has a uniform distribution. In the ideal functionality we also have a uniform distribution, and as a result
ideal and real are indistinguishable to the environment Z.

For a malicious P1, the distributions are the same, but we have to make sure that he has performed the
input preparation correctly. In the next phase players check the P1’s computation. Player P1 cheating means
he has not calculated dij ,mij correctly. For him to be successful, he has to somehow adjust nij and mij to
be equal. He only has a option to adjust dij and his share of [Sij] to make the equality hold. Since he does
not know K, the value dij · K has a uniform distribution, and therefore the probability of him modifying
[Sij] to make the equality hold is equivalent to guessing K and hence exponentially small in length of K. It
follows that with overwhelming probability after the check the P1’s computation has been done correctly. If
any check fails the simulator aborts and stop.

The final result zi is a secret shared value and as result has a uniform distribution. For the output
wires, players open their share, and zi is learnt by all parties. In order to make the distribution of outputs
indistinguishable, the simulator has to modify his share of zi in the ideal execution. He is able to do so and
produce the exact same output for the ideal execution as described in Figure 16. This completes the proof.

445

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

“Ooh Aah... Just a Little Bit” : A small amount of side channel can go a long
way

Naomi Benger1, Joop van de Pol2, Nigel P. Smart2, and Yuval Yarom1

1 School of Computer Science, The University of Adelaide, Australia.
mail.for.minnie@gmail.com,yval@cs.adelaide.edu.au

2 Dept. Computer Science, University of Bristol, United Kingdom.
joop.vandepol@bristol.ac.uk,nigel@cs.bris.ac.uk

Abstract. We apply the FLUSH+RELOAD side-channel attack based on cache hits/misses to extract a small amount
of data from OpenSSL ECDSA signature requests. We then apply a “standard” lattice technique to extract the
private key, but unlike previous attacks we are able to make use of the side-channel information from almost all
of the observed executions. This means we obtain private key recovery by observing a relatively small number of
executions, and by expending a relatively small amount of post-processing via lattice reduction. We demonstrate
our analysis via experiments using the curve secp256k1 used in the Bitcoin protocol. In particular we show that
with as little as 200 signatures we are able to achieve a reasonable level of success in recovering the secret key for a
256-bit curve. This is significantly better than prior methods of applying lattice reduction techniques to similar side
channel information.

1 Introduction

One important task of cryptographic research is to analyze cryptographic implementations for potential security flaws.
This aspect has a long tradition, and the most well known of this line of research has been the understanding of
side-channels obtained by power analysis, which followed from the initial work of Kocher and others [24]. More
recently work in this area has shifted to looking at side-channels in software implementations, the most successful of
which has been the exploitation of cache-timing attacks, introduced in 2002 [34]. In this work we examine the use of
spy-processes on the OpenSSL implementation of the ECDSA algorithm.

OpenSSL [33] is an open source tool kit for the implementation of cryptographic protocols. The library of func-
tions, implemented using C, is often used for the implementation of Secure Sockets Layer and Transport Layer Secu-
rity protocols and has also been used to implement OpenPGP and other cryptographic standards. The library includes
cryptographic functions for use in Elliptic Curve Cryptography (ECC), and in particular ECDSA. In particular we will
examine the application of the FLUSH+RELOAD attack, first proposed by Yarom and Falkner [43], then adapted to the
case of OpenSSL’s implementation of ECDSA over binary fields by Yarom and Benger [42], running on X86 processor
architecture. We exploit a property of the Intel implementation of the X86 and X86 64 processor architectures using
the FLUSH+RELOAD cache side-channel attack [42, 43] to partially recover the ephemeral key used in ECDSA.

In Yarom and Benger [42] the case of characteristic two fields was considered, but the algorithms used by OpenSSL
in the characteristic two and prime characteristic cases are very different. In particular for the case of prime fields one
needs to perform a post-processing of the side-channel information using cryptanalysis of lattices. We adopt a standard
technique [23, 32] to perform this last step, but in a manner which enables us to recover the underlying secret with
few protocol execution runs. This is achieved by using as much information obtained in the FLUSH+RELOAD step as
possible in the subsequent lattice step.

We illustrate the effectiveness of the attack by recovering the secret key with a very high probability using only a
small number of signatures. After this, we are able to forge unlimited signatures under the hidden secret key. The results
of this attack are not limited to ECDSA but have implications for many other cryptographic protocols implemented
using OpenSSL for which the scalar multiplication is performed using a sliding window and the scalar is intended to
remain secret.

c©IACR 2014, CHES 2014. This article is a minor revision of the version to be published by Springer-Verlag.

446

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Related Work: Microarchitectural side-channel attacks have been used against a number of implementations of cryp-
tosystems. These attacks often target the L1 cache level [1,2,5,10,13,14,39,44] or the branch prediction buffer [3,4].
The use of these components is limited to a single execution core. Consequently, the spy program and the victim must
execute on the same execution core of the processor. Unlike these attacks, the FLUSH+RELOAD attack we use targets
the last level cache (LLC). As the LLC is shared between cores, the attack can be mounted between different cores.

The attack used by Gullasch et al. [22] against AES, is very similar to FLUSH+RELOAD. The attack, however,
requires the interleaving of spy and victim execution on the same processor core, which is achieved by relying on a
scheduler bug to interrupt the victim and gain control of the core on which it executes. Furthermore, the Gullasch et
al. attack results in a large number of false positives, requiring the use of a neural network to filter the results.

In [43], Yarom and Falkner first describe the FLUSH+RELOAD attack and use it to snoop on the square-and-
multiply exponentiation in the GnuPG implementation of RSA and thus retrieve the RSA secret key from the GnuPG
decryption step. The OpenSSL (characteristic two) implementation of ECDSA was also shown to be vulnerable to the
FLUSH+RELOAD attack [42]; around 95% of the ephemeral private key was recovered when the Montgomery ladder
was used for the scalar multiplication step. The full ephemeral private key was then recovered at very small cost using
a Baby-Step-Giant-Step (BSGS) algorithm. Knowledge of the ephemeral private key leads to recovery of the signer’s
private key, thus fully breaking the ECDSA implementation using only one signature.

One issue hindering the extension of the attack to implementations using the sliding window method for scalar
multiplications instead of the Montgomery ladder is that only a lower proportion of the bits of the ephemeral private
key can be recovered so the BSGS reconstruction becomes infeasible. It is to extend the FLUSH+RELOAD attack to
implementations which use sliding window exponentiation methods that this paper is addressed.

Suppose we take a single ECDLP instance, and we have obtained partial information about the discrete logarithm.
In [21, 28, 38] techniques are presented which reduce the search space for the underlying discrete logarithm when
various types of partial information is revealed. These methods work quite well when the information leaked is con-
siderable for the single discrete logarithm instance; as for example evidenced by the side-channel attack of [42] on the
Montgomery ladder. However, in our situation a different approach needs to be taken.

Similar to several past works, e.g. [10, 11, 29], we will exploit a well known property of ECDSA, that if a small
amount of information about each ephemeral key in each signature leaks, for a number of signatures, then one can
recover the underlying secret using a lattice based attack [23, 32]. The key question arises as to how many signatures
are needed so as to be able to extract the necessary side channel information to enable the lattice based attack to
work. The lattice attack works by constructing a lattice problem from the obtained digital signatures and side channel
information, and then applying lattice reduction techniques such as LLL [25] or BKZ [37] to solve the lattice problem.
Using this methodology Nguyen and Shparlinski [32], suggest that for an elliptic curve group of order around 160 bits,
their probabilistic algorithm would obtain the secret key using an expected 23×27 signatures (assuming independent
and uniformly at random selected messages) in polynomial time, using only seven consecutive least significant leaked
bits of each ephemeral private key. A major issue of their attack in practice is that it seems hard to apply when only a
few bits of the underlying ephemeral private key are determined.

Our Contribution: Through the FLUSH+RELOAD attack we are able to obtain a significant proportion of the ephemeral
private key bit values, but they are not clustered but in positions spread through the length of the ephemeral private
key. As a result, we only obtain for each signature a few (maybe only one) consecutive bits of the ECDSA ephemeral
private key, and so the technique described in [32] does not appear at first sight to be instantly applicable. The main
contribution of this work is to combine and adapt the FLUSH+RELOAD attack and the lattice techniques. The FLUSH+
RELOAD attack is refined to optimise the proportion of information which can be obtained, then the lattice techniques
are adapted to utilize the information in the acquired data in an optimal manner. The result is that we are able to
reconstruct secret keys for 256 bit elliptic curves with high probability, and low work effort, after obtaining less than
256 signatures.

We illustrate the effectiveness of the attack by applying it to the OpenSSL implementation of ECDSA using a
sliding window to compute scalar multiplication, recovering the victims’s secret key for the elliptic curve secp256k1
used in Bitcoin [30]. The implementation of the secp256k1 curve in OpenSSL is interesting as it uses the wNAF
method for exponentiation, as opposed to the GLV method [19], for which the curve was created. It would be an

447

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

interesting research topic to see how to apply the FLUSH+RELOAD technique to an implementation which uses the
GLV point multiplication method.

In terms of the application to Bitcoin an obvious mitigation against the attack is to limit the number of times a
private key is used within the Bitcoin protocol. Each wallet corresponds to a public/private key pair, so this essentially
limits the number of times one can spend from a given wallet. Thus, by creating a chain of wallets and transferring
Bitcoins from one wallet to the next it is easy to limit the number of signing operations carried out by a single private
key. See [9] for a discussion on the distribution of public keys currently used in the Bitcoin network.

The remainder of the paper is organised as follows: In 2 we present the background on ECDSA and the signed
sliding window method (or wNAF representation) needed to understand our attack. Then in 3 we present our method-
ology for applying the FLUSH+RELOAD attack on the OpenSSL implementation of the signed sliding window method
of exponentiation. Then in 4 we use the information so obtained to create a lattice problem, and we demonstrate the
success probability of our attack.

2 Mathematical Background

In this section we present the mathematical background to our work, by presenting the ECDSA algorithm, and the
wNAF/signed window method of point multiplication which is used by OpenSSL to implement ECDSA in the case of
curves defined over prime finite fields.

ECDSA: The ElGamal Signature Scheme [20] is the basis of the US 1994 NIST standard, Digital Signature Algorithm
(DSA). The ECDSA is the adaptation of one step of this algorithm from the multiplicative group of a finite field to the
group of points on an elliptic curve, and is the signature algorithm using elliptic curve cryptography with widescale
deployment. In this section we outline the algorithm, so as to fix notation for what follows:

Parameters: The scheme uses as ‘domain parameters’, which are parameters which can be shared by a large number
of users, an elliptic curve E defined over a finite field Fq and a point G ∈ E of a large prime order n. The point G is
considered as a generator of the group of points of order n. The parameters are chosen as such are generally believed
to offer a (symmetric) security level of

√
n given current knowledge and technologies. The field size q is usually taken

to be a large odd prime or a power of 2. The implementation of OpenSSL uses both cases, but in this paper we will
focus on the case of q being a large prime.

Public-Private Key pairs: The private key is an integer α , 1 < α < n− 1 and the public key is the point Q = [α]G.
Calculating the private key from the public key requires solving the ECDLP, which is believed to be hard in practice
for correctly chosen parameters. The most efficient currently known algorithms for solving the ECDLP have a square
root run time in the size of the group [18, 41], hence the aforementioned security level.

Signing: Suppose Bob, with private-public key pair {α,Q}, wishes to send a signed message m to Alice. For ECDSA
he follows the following steps:

1. Using an approved hash algorithm, compute e = Hash(m), take h to be the integer (modulo n) given by the leftmost
` bits of e (where ` = min(log2(n), the bitlength of the hash)).

2. Randomly select k ∈ Zn.
3. Compute the point (x,y) = [k]G ∈ E.
4. Take r = x mod n; if r = 0 then return to step 2.
5. Compute s = k−1(h+ r ·α) mod n; if s = 0 then return to step 2.
6. Bob sends (m,r,s) to Alice.

Verification: To verify the signature on the message sent by Bob, Alice performs the following steps.

1. Check that all received parameters are correct, that r,s ∈ Zn and that Bob’s public key is valid, that is Q 6= O and
Q ∈ E is of order n.

448

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

2. Using the same hash function and method as above, compute h = Hash(m) (mod n).
3. Compute s̄ = s−1 mod n.
4. Compute the point (x,y) = [h · s̄]G+[r · s̄]Q.
5. Verify that r = x mod n otherwise reject the signature.

ECDSA is a very brittle algorithm, in the sense that an incorrectly implemented version of Step 2 of the signing
algorithm can lead to catastrophic security weaknesses. For example, an inappropriate reuse of the random integer
led to the highly publicised breaking of the Sony PS3 implementation of ECDSA. Knowledge of the random value k,
often referred to as the ephemeral key, leads to knowledge of the secret key, since given a message/signature pair and
the corresponding ephemeral key one can recover the secret key via the equation

α = (s · k−h) · r−1.

It is this equation which we shall exploit in our attack, but we shall do this via obtaining side channel information via
a spy process. The spy process targets the computationally expensive part of the signing algorithm, namely Step 3.

Scalar multiplication using wNAF: In OpenSSL Step 3 in the signing algorithm is implemented using the wNAF
algorithm. Suppose we wish to compute [d]P for some integer value d ∈ [0, . . . ,2`], the wNAF method utilizes a small
amount of pre-processing on P and the fact that addition and subtraction in the elliptic curve group have the same cost,
so as to obtain a large performance improvement on the basic binary method of point multiplication. To define wNAF
a window size w is first chosen, which for OpenSSL, and the curve secp256k1, we have w = 3. Then 2w− 2 extra
points are stored, with a precomputation cost of 2w−1− 1 point additions, and one point doubling. The values stored
are the points {±G,±[3]G, . . . ,±[2w−1]G}.

The next task is to convert the integer d into so called Non-Adjacent From (NAF). This is done by the method in
Algorithm 1 which rewrites the integer d as a sum d = ∑

`−1
i=0 di · 2i, where di ∈ {±1,±3, . . . ,±(2w− 1)}. The Non-

Adjacent From is so named as for any d written in NAF, the output values d0, . . . ,d`−1, are such that for every non-zero
element di there are at least w+1 following zero values.

Input: scalar d and window width w
Output: d in wNAF: d0, . . . ,d`−1
`← 0
while d > 0 do

if d mod 2 = 1 then
d`← d mod 2w+1

if d` ≥ 2w then
d`← d`−2w+1

end
d = d−d`

else
d` = 0

end
d = d/2
`+ = 1

end
Algorithm 1: Conversion to Non-Adjacent Form

Once the integer d has been re-coded into wNAF form, the point multiplication can be carried out by Algorithm 2.
The occurrence of a non-zero di controls when an addition is performed, with the precise value of di determining
which point from the list is added.

Before ending this section we note some aspects of the algorithm, and how these are exploited in our attack. A spy
process, by monitoring the cache hits/misses, can determine when the code inside the if–then block in Algorithm 2
is performed. This happens when the element di is non-zero, which reveals the fact that the following w + 1 values

449

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Input: scalar d in wNAF d0, . . . ,d`−1 and precomputed points {G,±[3]G,±[5]G, . . . ,±[2w−1]G}
Output: [d]G
Q← ′
for j from `−1 downto 0 do

Q← [2]Q
if d j 6= 0 then

Q← Q+[d j]G
end

end
Algorithm 2: Computation of kG using OpenSSL wNAF

di+1, . . . ,di+w+1 are all zero. This reveals some information about the value d, but not enough to recover the value of
d itself.

Instead we focus on the last values of di processed by Algorithm 2. We can determine precisely how many least
significant bits of d are zero, which means we can determine at least one bit of d, and with probability 1/2 we determine
two bits, with probability 1/4 we determine three bits and so on. Thus we not only extract information about whether
the least significant bits are zero, but we also use the information obtained from the first non-zero bit.

In practice in the OpenSSL code the execution of line 3 is slightly modified. Instead of computing [k]G, the code
computes [k + λ · n]G where λ ∈ {1,2} is chosen such that blog2(k + λ · n)c = blog2(n)c+ 1. The fixed size scalar
provides protection against the Brumley and Tuveri remote timing attack [11]. For the secp256k1 curve, n is 2256− ε

where ε < 2129. The case λ = 2, therefore, only occurs for k < ε . As the probability of this case is less than 2−125, we
can assume the wNAF algorithm is applied with d = k +n.

3 Attacking OpenSSL

In prior work the Montgomery ladder method of point multiplication was shown to be vulnerable to a FLUSH+RE-
LOAD attack [42]. This section discusses the wNAF implementation of OpenSSL and demonstrates that it is also
vulnerable. Unlike the side-channel in the Montgomery ladder implementation, which recovers enough bits to allow a
direct recovery of the ephemeral private key [42], the side-channel in the wNAF implementation only leaks an average
of two bits in each window. Consequently, a further algebraic attack is required to recover the private key. This section
describes the FLUSH+RELOAD attack, and its application to the OpenSSL wNAF implementation. The next section
completes the recovery of the secret key.

FLUSH+RELOAD is a cache side-channel attack that exploits a property of the Intel implementation of the X86
and X86 64 processor architectures, which allows processes to manipulate the cache of other processes [42, 43].

Using the attack, a spy program can trace or monitor memory read and execute access of a victim program to shared
memory pages. The spy program only requires read access to the shared memory pages, hence pages containing binary
code in executable files and in shared libraries are susceptible to the attack. Furthermore, pages shared through the use
of memory de-duplication in virtualized environments [6, 40] are also susceptible and using them the attack can be
applied between co-located virtual machines.

The spy program needs to execute on the same physical processor as the victim, however, unlike most cache-based
side channel attacks, our spy monitors access to the last-level cache (LLC). As the LLC is shared between the process-
ing cores of the processor, the spy does not need to execute on the same processing core as the victim. Consequently,
the attack is applicable to multi-core processors and is not dependent on hyperthreading or on exploitable scheduler
limitations like other published microarchitectural side-channel attacks.

To monitor access to memory, the spy repeatedly evicts the contents of the monitored memory from the LLC,
waits for some time and then measures the time to read the contents of the monitored memory. See Algorithm 3 for a
pseudo-code of the attack. As reading from the LLC is much faster than reading from memory, the spy can differentiate
between these two cases. If, following the wait, the contents of the memory is retrieved from the cache, it indicates
that another process has accessed the memory. Thus, by measuring the time to read the contents of the memory, the
spy can decide whether the victim has accessed the monitored memory since the last time it was evicted.

450

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Input: adrs—the probed address
Output: true if the address was accessed by the victim
begin

evict(adrs)
wait a bit()
time← current time()
tmp← read(adrs)
readTime← current time()-time
return readTime < threshold

end
Algorithm 3: FLUSH+RELOAD Algorithm

Monitoring access to specific memory lines is one of the strengths of the FLUSH+RELOAD technique. Other cache-
based tracing techniques monitor access to sets of memory lines that map to the same cache set. The use of specific
memory lines reduces the chance of false positives. Capturing the access to the memory line, therefore, indicates
that the victim executes and has accessed the line. Consequently, FLUSH+RELOAD does not require any external
mechanism to synchronize with the victim.

We tested the attack on an HP Elite 8300 running Fedora 18. The machine features an Intel Core i5-3470 processor,
with four execution cores and a 6MB LLC. As the OpenSSL package shipped with Fedora does not support ECC, we
used our own build of OpenSSL 1.0.1e. For the experiment we used the curve secp256k1 which is used by Bitcoin.

For the attack, we used the implementation of FLUSH+RELOAD from [43]. The spy program divides time into
time slots of approximately 3,000 cycles (almost 1µs). In each time slot the spy probes memory lines in the group add
and double functions. (ec GFp simple add and ec GFp simple dbl, respectively.) The time slot length is chosen
to ensure that there is an empty slot during the execution of each group operation. This allows the spy to correctly
distinguish consecutive doubles.

The probes are placed on memory lines which contain calls to the field multiplication function. Memory lines
containing call sites are accessed both when the function is called and when it returns. Hence, by probing these
memory lines, we reduce the chance of missing accesses due to overlaps with the probes. See [43] for a discussion of
overlaps.

To find the memory lines containing the call sites we built OpenSSL with debugging symbols. These symbols
are not loaded at run time and do not affect the performance of the code. The debugging symbols are, typically, not
available for attackers, however their absence would not present a major obstacle to a determined attacker who could
use reverse engineering [16].

4 Lattice Attack Details

We applied the above process on the OpenSSL implementation of ECDSA for the curve secp256k1. We fixed a public
key Q = [α]G, and then monitored via the FLUSH+RELOAD spy process the generation of a set of d signature pairs
(ri,si) for i = 1, . . . ,d. For each signature pair there is a known hashed message value hi and an unknown ephemeral
private key value ki.

Using the FLUSH+RELOAD side-channel we also obtained, with very high probability, the sequence of point
additions and doubling used when OpenSSL executes the operation [ki +n]G. In particular, this means we learn values
ci and li such that

ki +n≡ ci (mod 2li),

or equivalently
ki ≡ ci−n (mod 2li).

Where li denotes the number of known bits. We can also determine the length of the known run of zeroes in the least
significant bits of ki +n, which we will call zi. In presenting the analysis we assume the d signatures have been selected
such that we already know that the value of ki + n is divisible by 2Z , for some value of Z, i.e. we pick signatures for

451

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

which zi ≥ Z. In practice this means that to obtain d such signatures we need to collect (on average) d ·2Z signatures
in total.

We write ai = ci− n (mod 2li). For example, writing A for an add, D for a double and X for a don’t know, we
can read off ci, li and zi from the least execution sequence obtained in the FLUSH+RELOAD analysis. In practice the
FLUSH+RELOAD attack is so efficient that we are able to identify A’s and D’s with almost 100% certainty, with only
ε = 0.55%− 0.65% of the symbols turning out to be don’t knows. To read off the values we use the following table
(and its obvious extension), where we present the approximate probability of our attack revealing this sequence.

Sequence ci li zi Pr≈
. . .X 0 0.0 0 ε

. . .A 1 1.0 0 (1− ε)/2
. . .XD 0 1.0 1 ε · (1− ε)/2
. . .AD 2 2.0 1 ((1− ε)/2)2

. . .XDD 0 2.0 2 ε · ((1− ε)/2)2

. . .ADD 4 3.0 2 ((1− ε)/2)3

For a given execution of the FLUSH+RELOAD attack, from the table we can determine ci and li, and hence ai. Then,
using the standard analysis from [31, 32], we determine the following values

ti = bri/(2li · si)cn,
ui = b(ai−hi/si)/2licn +n/2li+1,

where b·cn denotes reduction modulo n into the range [0, . . . ,n). We then have that

vi = |α · ti−ui|n < n/2li+1, (1)

where | · |n denotes reduction by n, but into the range (−n/2, . . . ,n/2). It is this latter equation which we exploit, via
lattice basis reduction, so as to recover d. The key observation found in [31, 32] is that the value vi is smaller (by a
factor of 2li+1) than a random integer. Unlike prior work in this area we do not (necessarily) need to just select those
executions which give us a “large” value of zi, say zi ≥ 3. Prior work fixes a minimum value of zi (or essentially
equivalently li) and utilizes this single value in all equations such as (1). If we do this we would need to throw away
all bar 1/2zi+1 of the executions obtained. By maintaining full generality, i.e. a variable value of zi (subject to the
constraint zi ≥ Z) in each instance of (1), we are able to utilize all information at our disposal and recover the secret
key α with very little effort indeed.

The next task is to turn the equations from (1) into a lattice problem. Following [31, 32] we do this in one of two
possible ways, which we now recap on.

Attack via CVP: We first consider the lattice L(B) in d + 1-dimensional real space, generated by the rows of the
following matrix

B =

2l1+1 ·n

. . .
2ld+1 ·n

2l1+1 · t1 . . . 2ld+1 · td 1

 .

From (1) we find that there are integers (λ1, . . . ,λd) such that if we set x = (λ1, . . . ,λd ,α) and y = (2l1+1 ·v1, . . . ,2ld+1 ·
vd ,α) and u = (2l1+1 ·u1, . . . ,2ld+1 ·ud ,0), then we have

x ·B−u = y.

We note that the 2-norm of the vector y is about
√

d +1 ·n, whereas the lattice determinant of L(B) is 2d+∑ li ·nd . Thus
the vector u is a close vector to the lattice. Solving the Closest Vector Problem (CVP) with input B and u therefore
reveals x and hence the secret key α .

452

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Attack via SVP: It is often more effective in practice to solve the above CVP problem via the means of embedding
the CVP into a Shortest Vector Problem (SVP) in a slightly bigger lattice. In particular we take the lattice L(B′) in
d +2-dimensional real space generated by the rows of the matrix

B′ =
(

B 0
u n

)
.

This lattice has determinant 2d+∑ li ·n(d+1), by taking the lattice vector generated by x′= (x,α,−1) we obtain the lattice
vector y′ = x′ ·B′ = (y,−n). The 2-norm of this lattice vector is roughly

√
d +2 ·n. We expect the second vector in a

reduced basis to be of size c ·n, and so there is a “good” chance for a suitably strong lattice reduction to obtain a lattice
basis whose second vector is equal to y′. Note, the first basis vector is likely to be given by (−t1, . . . ,−td ,n,0) ·B′ =
(0, . . . ,0,n,0).

4.1 Experimental Results

To solve the SVP problem we used the BKZ algorithm [37] as implemented in fplll [12]. However, this implementation
is only efficient for small block size (say less than 35), due to the fact that BKZ is an exponential algorithm in the
block size. Thus for larger block size we implemented a variant of the BKZ-2.0 algorithm [15], however this algorithm
is only effective for block sizes β greater than 50. In tuning BKZ-2.0 we used the following strategy, at the end of
every round we determined whether we had already solved for the private key, if not we continued, and then gave up
after ten rounds. As stated above we applied our attack to the curve secp256k1.

We wished to determine what the optimal strategy was in terms of the minimum value of Z we should take, the
optimal lattice dimension, and the optimal lattice algorithm. Thus we performed a number of experiments which are
reported on in Tables 2, 3 and 4 in Appendix A; where we present our best results obtained for each (d,Z) pair.
We also present graphs to show how the different values of β affected the success rate. For each lattice dimension,
we measured the optimal parameters as the ones which minimized the value of lattice execution time divided by
probability of success. The probability of success was measured by running the attack a number of times, and seeing
in how many executions we managed to recover the underlying secret key. We used Time divided by Probability is a
crude measure of success, but we note this hides other issues such as expected number of executions of the signature
algorithm needed.

All executions were performed on an Intel Xeon CPU running at 2.40 GHz, on a machine with 4GB of RAM. The
programs were run in a single thread, and so no advantages where made of the multiple cores on the processor. We ran
experiments for the SVP attack using BKZ with block size ranging from 5 to 40 and with BKZ-2.0 with blocksize 50.
With our crude measure of Time divided by Probability we find that BKZ with block size 15 or 20 is almost always
the method of choice for the SVP method.

We see that the number of signatures needed is consistent with what theory would predict in the case of Z = 1 and
Z = 2, i.e. the lattice reduction algorithm can extract from the side-channel the underlying secret key as soon as the
expected number of leaked bits slightly exceeds the number of bits in the secret key. For Z = 0 this no longer holds,
we conjecture that this is because the lattice algorithms are unable to reduce the basis well enough, in a short enough
amount of time, to extract the small amount of information which is revealed by each signature. In other words the
input basis for Z = 0 is too close to looking like a random basis, unless a large amount of signatures is used.

To solve the CVP problem variant we applied a pre-processing of either fplll or BKZ-2.0. When applying pre-
processing of BKZ-2.0 we limited to only one round of execution. We then applied an enumeration technique, akin to
the enumeration used in the enumeration sub-routine of BKZ, but centered around the target close vector as opposed
to the origin. When a close vector was found this was checked to see whether it revealed the secret key, and if not
the enumeration was continued. We restricted the number of nodes in the enumeration tree to 229, so as to ensure the
enumeration did not go on for an excessive amount of time in the cases where the solution vector is hard to find (this
mainly affected the experiments in dimension greater than 150). See Tables 5, 6 and 7, in Appendix A, for details of
these experiments; again we present the best results for each (d,Z) pair. The enumeration time is highly dependent on
whether the close lattice vector is really close to the lattice, thus we see that when the expected number of bits revealed
per signature times the number of signatures utilized in the lattice, gets close to the bit size of elliptic curve (256) the

453

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

enumeration time drops. Again we see that extensive pre-processing of the basis with more complex lattice reduction
techniques provides no real benefit.

The results of the SVP and CVP experiments (Appendix A) show that for fixed Z, increasing the dimension
generally decreases the overall expected running time. In some sense, as the dimension increases more information is
being added to the lattice and this makes the desired solution vector stand out more. The higher block sizes perform
better in the lower dimensions, as the stronger reduction allows them to isolate the solution vector better. The lower
block sizes perform better in the higher dimensions, as the high-dimensional lattices already contain much information
and strong reduction is not required.

The one exception to this rule is the case of Z = 2 in the CVP experiments. In dimensions below 80 the CVP can
be solved relatively quickly here, whereas in dimensions 80 up to 100 it takes more time. This can be explained as
follows: in the low dimension the CVP-tree is not very big, but contains many solutions. This means that enumeration
of the CVP-tree is very quick, but the solution vector is not unique. Thus, the probability of success is equal to the
probability of finding the right vector. From dimension 80 upwards, we expect the solution vector to be unique, but the
CVP-trees become much bigger on average. If we do not stop the enumeration after a fixed number of nodes, it will
find the solution with high probability, but the enumeration takes much longer. Here, the probability of success is the
probability of finding a solution at all.

We first note, for both our lattice variants, that there is a wide variation in the probability of success, if we ran a
larger batch of tests we would presume this would stabilize. However, even with this caveat we notice a number of
remarkable facts. Firstly, recall we are trying to break a 256 bit elliptic curve private key. The conventional wisdom has
been that using a window style exponentiation method and a side-channel which only records a distinction between
addition and doubling (i.e. does not identify which additions), one would need much more than 256 executions to
recover the secret key. However, we see that we have a good chance of recovering the key with less than this. For
example, Nguyen and Shparlinksi [32] estimated needing 23× 27 = 2944 signatures to recover a 160 bit key, when
seven consecutive zero bits of the ephemeral private key were detected. Namely they would use a lattice of dimension
23, but require 2944 signatures to enable to obtain 23 signatures for which they could determine the ones with seven
consecutive digits of the ephemeral private key. Note that 23 ·7 = 161 > 160. Liu and Nguyen [26] extended this attack
by using improved lattice algorithms, decreasing the number of signatures required. We are able to have a reasonable
chance of success with as little as 200 signatures obtained against a 256 bit key.

In our modification of the lattice attack we not only utilize zero least significant bits, but also notice that the end of
a run of zeros tells us that the next bit is one. In addition we utilize all of the run of zeros (say for example eight) and
not just some fixed pre-determined number (such as four). This explains our improved lattice analysis, and shows that
one can recover the secret with relatively high probability with just a small number of measurements.

As a second note we see that strong lattice reduction, i.e. high block sizes in the BKZ algorithm, or even applying
BKZ-2.0, does not seem to gain us very much. Indeed acquiring a few extra samples allows us to drop down to using
BKZ with blocksize twenty in almost all cases. Note that in many of our experiments a smaller value of β resulted in
a much lower probability of success (often zero), whilst a higher value of β resulted in a significantly increased run
time.

Thirdly, we note that if one is unsuccessful on one run, one does not need to derive a whole new set of traces,
simply by increasing the number of traces a little bit one can either take a new random sample of the traces one has,
or increase the lattice dimension used.

We end by presenting in Table 1 the best variant of the lattice attack, measured in terms of the minimal value of
Time divided by Probability of success, for the number of signatures obtained. We see that in a very short amount of
time we can recover the secret key from 260 signatures, and with more effort we can even recover it from the FLUSH+
RELOAD attack applied to as little at 200 signatures. We see that it is not clear whether the SVP or the CVP approach
is the best strategy.

5 Mitigation

As our attack requires capturing multiple signatures, one way of mitigating it is limiting the number of times a private
key is used for signing. Bitcoin, which uses the secp256k1 curve on which this work focuses, recommends using a

454

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Expected SVP/ Z = Pre-Processing Prob 100×
Sigs SVP d min{zi} and/or SVP Algorithm Time (s) Success Time/Prob

200 SVP 100 1 BKZ (β = 30) 611.13 3.5 17460
220 SVP 110 1 BKZ (β = 25) 78.67 2.0 3933
240 CVP 60 2 BKZ (β = 25) 2.68 0.5 536
260 CVP 65 2 BKZ (β = 10) 2.26 5.5 41
280 CVP 70 2 BKZ (β = 15) 4.46 29.5 15
300 CVP 75 2 BKZ (β = 20) 13.54 53.0 26
320 SVP 80 2 BKZ (β = 20) 6.67 22.5 29
340 SVP 85 2 BKZ (β = 20) 9.15 37.0 24
360 SVP 90 2 BKZ (β = 15) 6.24 23.5 26
380 SVP 95 2 BKZ (β = 15) 6.82 36.0 19
400 SVP 100 2 BKZ (β = 15) 7.22 33.5 21
420 SVP 105 2 BKZ (β = 15) 7.74 43.0 18
440 SVP 110 2 BKZ (β = 15) 8.16 49.0 16
460 SVP 115 2 BKZ (β = 15) 8.32 52.0 16
480 CVP 120 2 BKZ (β = 10) 11.55 87.0 13
500 CVP 125 2 BKZ (β = 10) 10.74 93.5 12
520 CVP 130 2 BKZ (β = 10) 10.50 96.0 11
540 SVP 135 2 BKZ (β = 10) 7.44 55.0 13

Table 1. Combined Results. The best lattice parameter choice for each number of signatures obtained (in steps of 20)

new key for each transaction [30]. This recommendation, however, is not always followed [36], exposing users to the
attack.

Another option to reduce the effectiveness of the FLUSH+RELOAD part of the attack would be to exploit the in-
herent properties of this “Koblitz” curve within the OpenSSL implementation; which would also have the positive
side result of speeding up the scalar multiplication operation. The use of the GLV method [19] for point multiplica-
tion would not completely thwart the above attack, but, in theory, reduces its effectiveness. The GLV method is used
to speed up the computation of point scalar multiplication when the elliptic curve has an efficiently computable en-
domorphism. This partial solution is only applicable to elliptic curves with easily computable automorphisms with
sufficiently large automorphism group; such as the curve secp256k1 which we used in our example.

The curve secp256k1 is defined over a prime field of characteristic p with p ≡ 1 mod 6. This means that Fp
contains a primitive 6th root of unity ζ and if (x,y) is in the group of points on E, then (−ζ x,y) is also. In fact,
(−ζ x,y) = [λ](x,y) for some λ 6 = 1 mod n. Since the computation of (−ζ x,y) from (x,y) costs only one finite
field multiplication (far less than computing [λ](x,y)) this can be used to speed up scalar multiplication: instead of
computing [k]G, one computes [k0]G+[k1]([λ]G) where k0,k1 are around the size of k1/2. This is known to be one of
the fastest methods of performing scalar multiplication [19]. The computation of [k0]G+[k1]([λ]G) is not done using
two scalar multiplications then a point addition, but uses the so called Straus-Shamir trick which used joint double and
add operations [19, Alg 1] performing the two scalar multiplications and the addition simultaneously.

The GLV method alone would be vulnerable to simple side-channel analysis. It is necessary to re-code the scalars
k0 and k1 and comb method as developed and assembled in [17] so that the execution is regular to thwart simple power
analysis and timing attacks. Using the attack presented above we are able to recover around 2 bits of the secret key for
each signature monitored. If the GLV method were used in conjunction with wNAF, the number of bits (on average)
leaked per signature would be reduced to 4/3. It is also possible to extend the GLV method to representations of k in
terms of higher degrees of λ , for example writing k = k0 + k1λ + · · ·+ ktλ

t mod n. For t = 2 the estimated rate of bit
leakage would be 6/7 bits per signature (though this extension is not possible for the example curve due to the order
of the automorphism).

We see that using the GLV method can reduce the number of leaked bits but it is not sufficient to prevent the attack.
A positive flip side of this and the attack of [42] is that implementing algorithms which will improve the efficiency of
the scalar multiplication seem, at present, to reduce the effectiveness of the attacks.

455

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Scalar blinding techniques [10, 27] use arithmetic operations on the scalar to hide the value of the scalar from
potential attackers. The method suggested by these works is to compute [(k+m · · ·n+ m̄)]G− [m̄]G where m and m̄ are
small (e.g. 32 bits) numbers. The random values used mask the bits of the scalar and prevent the spy from recovering
the scalar from the leaked data.

The information leak in our attack originates from using the sliding window in the wNAF algorithm for scalar
multiplication. Hence, an immediate fix for the problem is to use a fixed window algorithm for scalar multiplication.
A naı̈ve implementation of a fixed window algorithm may still be vulnerable to the PRIME+PROBE attack, e.g. by
adapting the technique of [35]. To provide protection against the attack, the implementation must prevent any data flow
from sensitive key data to memory access patterns. Methods for achieving this are used in NaCL [8], which ensures
that the sequence of memory accesses it performs is not dependent on the private key. A similar solution is available
in the implementation of modular exponentiation in OpenSSL, where the implementation attempts to access the same
sequence of memory lines irrespective of the private key. However, this approach may leak information [7, 39].

Acknowledgements

The first and fourth authors wish to thank Dr Katrina Falkner for her advice and support and the Defence Science
and Technology Organisation (DSTO) Maritime Division, Australia, who partially funded their work. The second and
third authors work has been supported in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO, by EPSRC
via grant EP/I03126X, and by Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL) under agreement number FA8750-11-2-00793.

References

1. Onur Acıiçmez. Yet another microarchitectural attack: exploiting I-Cache. In Peng Ning and Vijay Atluri, editors, Proceedings
of the ACM Workshop on Computer Security Architecture, pages 11–18, Fairfax, Virginia, United States, November 2007.

2. Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. New results on instruction cache attacks. In Stefan Mangard and
François-Xavier Standaert, editors, Proceedings of the Workshop on Cryptographic Hardware and Embedded Systems, pages
110–124, Santa Barbara, California, United States, August 2010.

3. Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. New branch prediction vulnerabilities in OpenSSL and necessary soft-
ware countermeasures. In Steven D. Galbraith, editor, Proceedings of the 11th IMA International Conference on Cryptography
and Coding, volume 4887 of Lecture Notes in Computer Science, pages 185–203, Cirencester, United Kingdom, December
2007.

4. Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power of simple branch prediction analysis. In Proceedings
of the Second ACM Symposium on Information, Computer and Communication Security, pages 312–320, Singapore, March
2007.

5. Onur Acıiçmez and Werner Schindler. A vulnerability in RSA implementations due to instruction cache analysis and its
demonstration on OpenSSL. In Tal Malkin, editor, Proceedings of the Cryptographers’ Track at the RSA Conference, pages
256–273, San Francisco, California, United States, April 2008.

6. Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing memory density by using KSM. In Proceedings of the Linux
Symposium, pages 19–28, Montreal, Quebec, Canada, July 2009.

7. Daniel J. Bernstein. Cache-timing attacks on AES. http://cr.yp.to/antiforgery/cachetiming-20050414.pdf, April
2005.

8. Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact of a new cryptographic library. In Proceedings of the
2nd international conference on Cryptology and Information Security in Latin America, LATINCRYPT’12, pages 159–176,
Berlin, Heidelberg, 2012. Springer-Verlag.

9. Joppe W. Bos, J. Alex Halderman, Nadia Heninger, Jonathan Moore, Michael Naehrig, and Eric Wustrow. Elliptic curve
cryptography in practice. Cryptology ePrint Archive, Report 2013/734, 2013. http://eprint.iacr.org/.

10. Billy Bob Brumley and Risto M. Hakala. Cache-timing template attacks. In Mitsuru Matsui, editor, Advances in Cryptology -
ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages 667–684. Springer-Verlag, 2009.

3 The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of Defense Advanced Research Projects Agency
(DARPA) or the U.S. Government.

456

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

11. Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still practical. In Vijay Atluri and Claudia Diaz, editors,
Computer Security - ESORICS 2011, volume 6879 of Lecture Notes in Computer Science, pages 355–371. Springer-Verlag,
2011.

12. David Cadé, Xavier Pujol, and Damien Stehlé. Fplll-4.0.4. http://perso.ens-lyon.fr/damien.stehle/fplll/, 2013.
13. Anne Canteaut, Cédric Lauradoux, and André Seznec. Understanding cache attacks. Technical Report 5881, INRIA, April

2006.
14. CaiSen Chen, Tao Wang, YingZhan Kou, XiaoCen Chen, and Xiong Li. Improvement of trace-driven I-Cache timing attack on

the RSA algorithm. The Journal of Systems and Software, 86(1):100–107, 2013.
15. Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Advances in Cryptology - ASIACRYPT

2011, volume 7073 of Lecture Notes in Computer Science, pages 1–20. Springer, 2011.
16. Teodoro Cipresso and Mark Stamp. Software reverse engineering. In Peter Stavroulakis and Mark Stamp, editors, Handbook

of Information and Communication Security, chapter 31, pages 659–696. Springer, 2010.
17. Armando Faz-Hernandez, Patrick Longa, and Ana H. Sanchez. Efficient and secure algorithms for GLV-based scalar mul-

tiplication and their implementation on GLV-GLS curves. Cryptology ePrint Archive, Report 2013/158, 2013. http:

//eprint.iacr.org/.
18. Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Improving the parallelized pollard lambda search on anomalous

binary curves. Mathematics of Computation, 69(232):1699–1705, 2000.
19. Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster point multiplication on elliptic curves with efficient

endomorphisms. In Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages
190–200. Springer, 2001.

20. Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on
Information Theory, 31(4):469–472, 1985.

21. K. Gopalakrishnan, Nicolas Thériault, and Chui Zhi Yao. Solving discrete logarithms from partial knowledge of the key. In
K. Srinathan, C. Pandu Rangan, and Moti Yung, editors, Progress in Cryptology – INDOCRYPT 2007, volume 4859 of Lecture
Notes in Computer Science, pages 224–237. Springer, 2007.

22. David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games — bringing access-based cache attacks on AES to practice.
In Proceedings of the IEEE Symposium on Security and Privacy, pages 490–595, Oakland, California, United States, May 2011.

23. Nick Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital signature schemes. Designs, Codes and Cryptography,
23(3):283–290, 2001.

24. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Advances in Cryptology – CRYPTO 1999,
volume 1666 of Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

25. A.K. Lenstra, H.W.jun. Lenstra, and Lászlo Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen,
261(4):515 –534, 1982.

26. Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration: An update. In Ed Dawson, editor, CT-RSA, volume 7779
of Lecture Notes in Computer Science, pages 293–309. Springer, 2013.

27. Bodo Möller. Parallelizable elliptic curve point multiplication method with resistance against side-channel attacks. In
Agnes Hui Chan and Virgil D. Gligor, editors, Proceedings of the fifth International Conference on Information Security,
number 2433 in Lecture Notes in Computer Science, pages 402–413, São Paulo, Brazil, September 2002.

28. James A. Muir and Douglas R. Stinson. On the low Hamming weight discrete logarithm problem for nonadjacent representa-
tions. Appl. Algebra Eng. Commun. Comput., 16(6):461–472, 2006.

29. David Naccache, Phong Q. Nguên, Michael Tunstall, and Claire Whealan. Experimenting with faults, lattices and the DSA.
In Serge Vaudenay, editor, Public Key Cryptography, volume 3386 of Lecture Notes in Computer Science, pages 16–28, Les
Diablerets, Switzerland, January 2005. Springer.

30. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf.
31. Phong Q. Nguyen and Igor Shparlinski. The insecurity of the digital signature algorithm with partially known nonces. J.

Cryptology, 15(3):151–176, 2002.
32. Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the elliptic curve digital signature algorithm with partially known

nonces. Designs, Codes and Cryptography, 30(2):201–217, September 2003.
33. OpenSSL. http://www.openssl.org.
34. Dan Page. Theoretical use of cache memory as a cryptanalytic side-channel. IACR Cryptology ePrint Archive, 2002:169, 2002.
35. Colin Percival. Cache missing for fun and profit. http://www.daemonology.net/papers/htt.pdf, 2005.
36. Dorit Ron and Adi Shamir. Quantitative analysis of the full Bitcoin transaction graph. Cryptology ePrint Archive, Report

2012/584, 2012. http://eprint.iacr.org/.
37. Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems.

In Fundamentals of Computation Theory – FCT 1991, volume 529 of Lecture Notes in Computer Science, pages 68–85.
Springer, 1991.

457

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

38. Douglas R. Stinson. Some baby-step giant-step algorithms for the low Hamming weight discrete logarithm problem. Math.
Comput., 71(237):379–391, 2002.

39. Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient cache attacks in AES, and countermeasures. Journal of Cryptology,
23(2):37–71, January 2010.

40. Carl A. Waldspurger. Memory resource management in VMware ESX Server. In David E. Culler and Peter Druschel, editors,
Proceedings of the Fifth Symposium on Operating Systems Design and Implementation, pages 181–194, Boston, Massachusetts,
United States, December 2002.

41. Michael J. Wiener and Robert J. Zuccherato. Faster attacks on elliptic curve cryptosystems. In Stafford E. Tavares and Henk
Meijer, editors, Selected Areas in Cryptography, volume 1556 of Lecture Notes in Computer Science, pages 190–200. Springer,
1998.

42. Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA nonces using the FLUSH+RELOAD cache side-channel attack.
Cryptology ePrint Archive, Report 2014/140, 2014. http://eprint.iacr.org/.

43. Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a high resolution, low noise, L3 cache side-channel attack. In Proceedings
of the 23rd USENIX Security Symposium, 2014. To appear.

44. Yinqian Zhang, Ari Jules, Michael K. Reiter, and Thomas Ristenpart. Cross-VM side channels and their use to extract private
keys. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, Proceedings of the 19th ACM Conference on Computer and
Communication Security, pages 305–316, Raleigh, North Carolina, United States, October 2012.

A Experimental Results

Expected Lattice Prob.0 100×
d Algorithm # Sigs Time (s) Success Time/Prob

240 BKZ (β = 25) 240 212.01 8.0 2125
245 BKZ (β = 20) 245 50.78 2.5 2031
250 BKZ (β = 20) 250 52.08 2.5 2083
255 BKZ (β = 20) 255 53.60 3.0 1786
260 BKZ (β = 20) 260 52.93 6.0 882
265 BKZ (β = 20) 265 54.97 8.5 646
270 BKZ (β = 15) 270 35.48 3.5 1013
275 BKZ (β = 20) 275 55.30 12.5 442
280 BKZ (β = 20) 280 58.55 11.5 508
285 BKZ (β = 20) 285 61.56 16.0 384
290 BKZ (β = 20) 290 67.47 18.5 364
295 BKZ (β = 15) 295 43.92 9.5 462
300 BKZ (β = 20) 300 73.30 20.0 366
305 BKZ (β = 20) 305 78.09 27.0 289
310 BKZ (β = 20) 310 83.01 29.0 286
315 BKZ (β = 20) 315 87.70 29.0 302
320 BKZ (β = 20) 320 93.28 30.0 310
325 BKZ (β = 20) 325 91.54 22.0 416
330 BKZ (β = 15) 330 63.34 21.0 301
335 BKZ (β = 15) 335 64.28 23.0 279

Table 2. SVP Analysis Experimental Results : Z = minzi = 0

458

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 260 270 280 290 300 310 320 330

beta=10
beta=15
beta=20
beta=25
beta=30
beta=35
beta=50

Fig. 1. SVP Experiments: d vs Time/Prob for various β and Z = minzi = 0

Expected Lattice Prob.0 100×
d Algorithm # Sigs Time (s) Success Time/Prob

100 BKZ (β = 30) 200 611.13 3.5 17460
105 BKZ (β = 30) 210 702.67 7.5 9368
110 BKZ (β = 25) 220 78.67 2.0 3933
115 BKZ (β = 25) 230 71.18 3.5 2033
120 BKZ (β = 20) 240 14.78 1.0 1478
125 BKZ (β = 10) 250 6.81 1.0 681
130 BKZ (β = 20) 260 15.12 4.0 378
135 BKZ (β = 25) 270 57.83 20.0 289
140 BKZ (β = 20) 280 16.47 9.0 182
145 BKZ (β = 25) 290 57.63 29.5 195
150 BKZ (β = 20) 300 19.05 17.0 112
155 BKZ (β = 15) 310 13.14 13.5 97
160 BKZ (β = 15) 320 14.00 16.0 87
165 BKZ (β = 15) 330 15.75 17.5 90
170 BKZ (β = 15) 340 17.09 23.0 74
175 BKZ (β = 15) 350 18.14 23.0 78

Table 3. SVP Analysis Experimental Results : Z = minzi = 1

459

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 0

 500

 1000

 1500

 2000

 120 130 140 150 160 170

beta=10
beta=15
beta=20
beta=25
beta=30
beta=35
beta=50

Fig. 2. SVP Experiments: d vs Time/Prob for various β and Z = minzi = 1

Expected Lattice Prob.0 100×
d Algorithm # Sigs Time (s) Success Time/Prob
65 BKZ (β = 25) 260 5.17 2.5 206
70 BKZ (β = 25) 280 7.93 13.5 58
75 BKZ (β = 25) 300 13.58 23.5 57
80 BKZ (β = 20) 320 6.67 22.5 29
85 BKZ (β = 20) 340 9.15 37.0 24
90 BKZ (β = 15) 360 6.24 23.5 26
95 BKZ (β = 15) 380 6.82 36.0 19

100 BKZ (β = 15) 400 7.22 33.5 21
105 BKZ (β = 15) 420 7.74 43.0 18
110 BKZ (β = 15) 440 8.16 49.0 16
115 BKZ (β = 15) 460 8.32 52.0 16
120 BKZ (β = 10) 480 6.49 44.0 14
125 BKZ (β = 10) 500 6.83 45.0 14
130 BKZ (β = 10) 520 7.06 48.0 14
135 BKZ (β = 10) 540 7.44 55.0 13

Table 4. SVP Analysis Experimental Results : Z = minzi = 2

460

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 0

 50

 100

 150

 200

 250

 300

 350

 400

 70 80 90 100 110 120 130

beta=10
beta=15
beta=20
beta=25
beta=30
beta=35
beta=50

Fig. 3. SVP Experiments: d vs Time/Prob for various β and Z = minzi = 2

Pre-Processing Expected Prob.0 100×
d Algorithm # Sigs Time (s) Success Time/Prob

300 BKZ (β = 10) 300 100.09 5.0 2002
305 BKZ (β = 20) 305 186.61 13.5 1382
310 BKZ (β = 10) 310 110.12 7.0 1573
315 BKZ (β = 10) 315 114.22 10.0 1142
320 BKZ (β = 10) 320 125.69 10.5 1197
325 BKZ (β = 20) 325 246.89 22.5 1097
330 BKZ (β = 15) 330 153.59 16.0 960
335 BKZ (β = 15) 335 162.22 24.5 662
340 BKZ (β = 15) 340 167.08 19.0 879
345 BKZ (β = 15) 345 178.54 30.0 595
350 BKZ (β = 15) 350 191.91 30.5 629
355 BKZ (β = 15) 355 194.37 32.0 607
360 BKZ (β = 15) 360 198.39 34.0 583
365 BKZ (β = 15) 365 216.43 44.5 486
370 BKZ (β = 15) 370 218.68 44.5 491
375 BKZ (β = 15) 375 228.25 45.5 502
380 BKZ (β = 10) 380 187.14 40.0 468
385 BKZ (β = 15) 385 243.71 58.0 420
390 BKZ (β = 15) 390 249.26 61.0 409
395 BKZ (β = 10) 395 213.76 43.5 491

Table 5. CVP Analysis Experimental Results : Z = minzi = 0

461

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 300 310 320 330 340 350 360 370 380 390

beta=10
beta=15
beta=20

Fig. 4. CVP Experiments: d vs Time/Prob for various β and Z = minzi = 0

Pre-Processing Expected Prob.0 100×
d Algorithm # Sigs Time (s) Success Time/Prob

150 BKZ (β = 15) 300 32.43 3.0 1081
155 BKZ (β = 15) 310 33.90 8.0 424
160 BKZ (β = 20) 320 48.26 13.5 357
165 BKZ (β = 20) 330 50.97 20.0 255
170 BKZ (β = 15) 340 39.58 22.0 180
175 BKZ (β = 15) 350 41.20 26.0 158
180 BKZ (β = 15) 360 43.50 31.5 138
185 BKZ (β = 15) 370 44.30 39.5 112
190 BKZ (β = 15) 380 45.98 42.0 109
195 BKZ (β = 15) 390 46.15 46.0 100
200 BKZ (β = 15) 400 45.41 60.5 75
205 BKZ (β = 15) 410 48.45 65.5 74
210 BKZ (β = 10) 420 41.89 59.5 70
215 BKZ (β = 15) 430 49.56 76.0 65
220 BKZ (β = 15) 440 49.88 86.0 58
225 BKZ (β = 10) 450 44.58 77.0 58
230 BKZ (β = 15) 460 53.23 92.0 58
235 BKZ (β = 10) 470 52.86 88.0 60
240 BKZ (β = 10) 480 48.37 90.5 53
245 BKZ (β = 10) 490 49.74 89.5 56

Table 6. CVP Analysis Experimental Results : Z = minzi = 1

462

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 0

 200

 400

 600

 800

 1000

 150 160 170 180 190 200 210 220 230 240

beta=10
beta=15
beta=20
beta=25

Fig. 5. CVP Experiments: d vs Time/Prob for various β and Z = minzi = 1

Pre-Processing Expected Prob.0 100×
d Algorithm # Sigs Time (s) Success Time/Prob
60 BKZ (β = 25) 240 2.68 0.5 536
65 BKZ (β = 10) 260 2.26 5.5 41
70 BKZ (β = 15) 280 4.46 29.5 15
75 BKZ (β = 20) 300 13.54 53.0 26
80 BKZ (β = 20) 320 21.83 17.0 128
85 BKZ (β = 15) 340 20.08 25.5 130
90 BKZ (β = 20) 360 23.36 35.0 67
95 BKZ (β = 20) 380 22.40 52.5 43

100 BKZ (β = 20) 400 22.95 67.0 34
105 BKZ (β = 20) 420 21.76 77.0 28
110 BKZ (β = 15) 440 14.74 81.0 18
115 BKZ (β = 15) 460 14.82 86.5 17
120 BKZ (β = 10) 480 11.55 87.0 13
125 BKZ (β = 10) 500 10.74 93.5 12
130 BKZ (β = 10) 520 10.50 96.0 11

Table 7. CVP Analysis Experimental Results : Z = minzi = 2

463

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 0

 100

 200

 300

 400

 500

 70 80 90 100 110 120 130

beta=10
beta=15
beta=20
beta=25

Fig. 6. CVP Experiments: d vs Time/Prob for various β and Z = minzi = 2

464

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Just A Little Bit More

Joop van de Pol1, Nigel P. Smart1, and Yuval Yarom2

1 Dept. Computer Science, University of Bristol, United Kingdom.
joop.vandepol@bristol.ac.uk,nigel@cs.bris.ac.uk

2 School of Computer Science, The University of Adelaide, Australia.
yval@cs.adelaide.edu.au

Abstract. We extend the FLUSH+RELOAD side-channel attack of Benger et al. to extract a significantly larger
number of bits of information per observed signature when using OpenSSL. This means that by observing only
25 signatures, we can recover secret keys of the secp256k1 curve, used in the Bitcoin protocol, with a probability
greater than 50 percent. This is an order of magnitude improvement over the previously best known result.
The new method of attack exploits two points: Unlike previous partial disclosure attacks we utilize all information
obtained and not just that in the least significant or most significant bits, this is enabled by a property of the “stan-
dard” curves choice of group order which enables extra bits of information to be extracted. Furthermore, whereas
previous works require direct information on ephemeral key bits, our attack utilizes the indirect information from
the wNAF double and add chain.

1 Introduction

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of the Digital Signature Algo-
rithm (DSA). It has been well known for over a decade that the randomization used within the DSA/ECDSA algorithm
makes it susceptible to side-channel attacks. In particular a small leakage of information on the ephemeral secret key
utilized in each signature can be combined over a number of signatures to obtain the entire key.

Howgrave-Graham and Smart [14] showed that DSA is vulnerable to such partial ephemeral key exposure and
their work was made rigorous by Nguyen and Shparlinski [21], who also extended these results to ECDSA [22].
More specifically, if, for a polynomially bounded number of random messages and ephemeral keys about log1/2 q least
significant bits (LSBs) are known, the secret key α can be recovered in polynomial time. A similar result holds for
a consecutive sequence of the most significant bits (MSBs), with a potential need for an additional leaked bit due to
the paucity of information encoded in the most significant bit of the ephemeral key. When an arbitrary sequence of
consecutive bits in the ephemeral key is known, about twice as many bits are required. The attack works by constructing
a lattice problem from the obtained digital signatures and side-channel information, and then applying lattice reduction
techniques such as LLL [16] or BKZ [23] to solve said lattice problem.

Brumley and co-workers employ this lattice attack to recover ECDSA keys using leaked LSBs (in [4]) and leaked
MSBs (in [5]). The former uses a cache side-channel to extract the leaked information and the latter exploits a timing
side-channel. In both attacks, a fixed number of bits from each signature is used and signatures are used only if the
values of these bits are all zero. Signatures in which the value of any of these bits are one are ignored. Consequently,
both attacks require more than 2,500 signatures to break a 160-bit private key.

More recently, again using a cache based side-channel, Benger et al. [2] use the LSBs of the ephemeral key for a
wNAF (a.k.a. sliding window algorithm) multiplication technique. By combining a new side-channel called the FLU-
SH+RELOAD side-channel [26, 27], and a more precise lattice attack strategy, which utilizes all of the leaked LSBs
from every signature, Benger et al. are able to significantly reduces the number of signatures required. In particular
they report that the full secret key of a 256-bit system can be recovered with about 200 signatures in a reasonable
length of time, and with a reasonable probability of success.

In this work we extend the FLUSH+RELOAD technique of Benger et al. to reduce the number of required signatures
by an order of magnitude. Our methodology abandons the concentration on extraction of bits in just the MSB and LSB
positions, and instead focuses on all the information leaked by all the bits of the ephemeral key. In particular we
exploit a property of many of the standardized elliptic curves as used in OpenSSL. Our method, just as in [2], applies
the FLUSH+RELOAD side-channel technique to the wNAF elliptic curve point multiplication algorithm in OpenSSL.

465

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ECDSA Using Standard Elliptic Curves: The domain parameters for ECDSA are an elliptic curve E over a field F,
and a point G on E, of order q. Given a hash function h, the ECDSA signature of a message m, with a private key
0 < α < q and public key Q = αG, is computed by:

– Selecting a random ephemeral key 0 < k < q
– Computing r = x(kG) (mod q), the X coordinate of kG.
– Computing s = k−1(h(m)+α · r) (mod q).

The process is repeated if either r = 0 or s = 0. The pair (r,s) is the signature.
To increase interoperability, standard bodies have published several sets of domain parameters for ECDSA [1, 7,

20]. The choice of moduli for the fields used in these standard curves is partly motivated by efficiency arguments. For
example, all of the moduli in the curves recommended by FIPS [20] are generalised Mersenne primes [24] and many
of them are pseudo-Mersenne primes [10]. This choice of moduli facilitates efficient modular arithmetic by avoiding
a division operation which may otherwise be required.

A consequence of using pseudo-Mersenne primes as moduli is that, due to Hasse’s Theorem, not only is the finite-
field order close to a power of two, but so is the elliptic-curve group order.

That is, q can be expressed as 2n−ε , where |ε|< 2p for some p≈ n/2. We demonstrate that such curves are more
susceptible to partial disclosure of ephemeral keys than was hitherto known. This property increases the amount of
information that can be used from partial disclosure and allows for a more effective attack on ECDSA.

Our Contribution: We demonstrate that the above property of the standardized curves allows the utilization of far
more leaked information, in particular some arbitrary sequences of consecutive leaked bits. In a nutshell, adding or
subtracting q to or from an unknown number is unlikely to change any bits in positions between p + 1 and n. Based
on this observation we are able to use (for wNAF multiplication algorithms) all the information in consecutive bit
sequences in positions above p + 1. Since in many of the standard curves p ≈ n/2, a large amount of information is
leaked per signature. (Assuming one can extract the sequence of additions and doubles in an algorithm.) As identified
by Ciet and Joye [8] and exploited by Feix et al. [11], the same property also implies that techniques for mitigating
side-channel attack, such as the scalar blinding suggested in [4, 18], do not protect bits in positions above p+1.

Prior works deal with the case of partial disclosure of consecutive sequences of bits of the ephemeral key. Our
work offers two improvements: It demonstrates how to use partial information leaked from the double and add chains
of the wNAF scalar multiplication algorithm [13, 19]. In most cases, the double and add chain does not provide direct
information on the value of bits. It only identifies sequences of repeating bits without identifying the value of these
bits. We show how to use this information to construct a lattice attack on the private key. Secondly, our attack does
not depend on the leaked bits being consecutive. We use information leaked through the double and add chain even
though it is spread out along the ephemeral key.

By using more leaked information and exploiting the above property of the elliptic curves, our attack only requires
a handful of leaked signatures to fully break the private key. Our experiments show that the perfect information leaked
on double and add chains of only 13 signatures is sufficient for recovering the 256 bit private key of the secp256k1
curve with probability greater than 50 percent. For the 521 bit curve secp521r1, 40 signatures are required. We further
demonstrate that for the secp256k1 case observing 25 signatures is highly likely to recover 13 perfect double and add
chains. Hence, by observing 25 Bitcoin transactions using the same key, an attacker can expect to recover the private
key. For most of the paper we discuss the case of perfect side channels which result in perfect double and add chains,
then in Section 6 we show how this assumption can be removed in the context of a real FLUSH+RELOAD attack.

2 Background

In this section we discuss three basic procedures we will be referring to throughout. Namely the FLUSH+RELOAD
side-channel attack technique, wNAF scalar multiplication method and the use of lattices to extract secret keys from
triples. The side-channel information we obtain from executing the wNAF algorithm produces instances of the Hidden
Number Problem (HNP) [3]. Since the HNP is traditionally studied via lattice reduction it is therefore not surprising
that we are led to lattice reduction in our analysis.

466

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

2.1 The FLUSH+RELOAD Side-Channel Attack Technique

FLUSH+RELOAD is a recently discovered cache side-channel attack [26, 27]. The attack exploits a weakness in the
Intel implementation of the popular X86 architecture, which allows a spy program to monitor other programs’ read or
execute access to shared regions of memory. The spy program only requires read access to the monitored memory.

Unlike most cache side-channel attacks, FLUSH+RELOAD uses the Last-Level Cache (LLC), which is the cache
level closest to the memory. The LLC is shared by the execution cores in the processor, allowing the attack to oper-
ate when the spy and victim processes execute on different cores. Furthermore, as most virtual machine hypervisors
(VMMs) actively share memory between co-resident virtual machines, the attack is applicable to virtualized environ-
ment and works cross-VM.

Input: adrs—the probed address
Output: true if the address was accessed by the victim
begin

evict(adrs)
wait a bit()
time← current time()
tmp← read(adrs)
readTime← current time()-time
return readTime < threshold

end

Algorithm 1: FLUSH+RELOAD Algorithm

To monitor access to memory, the spy repeatedly evicts the contents of the monitored memory from the LLC,
waits for some time and then measures the time to read the contents of the monitored memory. See Algorithm 1 for a
pseudo-code of the attack. FLUSH+RELOAD uses the X86 clflush instruction to evict contents from the cache. To
measure time the spy uses the rdtsc instruction which returns the time since processor reset measured in processor
cycles.

As reading from the LLC is much faster than reading from memory, the spy can differentiate between these two
cases. If, following the wait, the contents of memory is retrieved from the cache, it indicates that another process has
accessed the memory. Thus, by measuring the time to read the contents of memory, the spy can decide whether the
victim has accessed the monitored memory since the last time it was evicted.

To implement the attack, the spy needs to share the monitored memory with the victim. For attacks occurring
within the same machine, the spy can map files used by the victim into its own address space. Examples of these files
include the victim program file, shared libraries or data files that the victim accesses. As all mapped copies of files are
shared, this gives the spy access to memory pages accessed by the victim. In virtualized environments, the spy does
not have access to the victim’s files. The spy can, however, map copies of the victim files to its own address space, and
rely on the VMM to merge the two copies using page de-duplication [15, 25]. It should be pointed that, as the LLC
is physically tagged, the virtual address in which the spy maps the files is irrelevant for the attack. Hence, FLUSH+
RELOAD is oblivious to address space layout randomization [17].

This sharing only works when the victim does not make private modifications to the contents of the shared pages.
Consequently, many FLUSH+RELOAD attacks target executable code pages, monitoring the times the victim executes
specific code. The spy typically divides time into fixed width time slots. In each time slot the spy monitors a few
memory locations and records the times that these locations were accessed by the victim. By reconstructing a trace
of victim access, the spy is able to infer the data the victim is operating on. Prior works used this attack to recover
the private key of GnuPG RSA [27] as well as for recovering the ephemeral key used in OpenSSL ECDSA signatures
either completely, for curves over binary fields [26], or partially, for curves over prime fields [2].

2.2 The wNAF Scalar Multiplication Method

Several algorithms for computing the scalar multiplication kG have been proposed. One of the suggested methods is to
use the windowed nonadjacent form (wNAF) representation of the scalar k, see [13]. In wNAF a number is represented
by a sequence of digits ki. The value of a digit ki is either zero or an odd number −2w < ki < 2w, with each pair of

467

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

non-zero digits separated by at least w zero digits. The value of k can be calculated from its wNAF representation
using k = ∑2i · ki. See Algorithm 2 for a method to convert a scalar k into its wNAF representation. We use | · |x to
denote the reduction modulo x into the range [−x/2, . . . ,x/2).

Input: Scalar k and window width w
Output: k in wNAF: k0,k1,k2 . . .
begin

e← k
i← 0
while e > 0 do

if e mod 2 = 1 then
ki← |e|2w+1
e← e− ki

else
ki← 0

end
e← e/2
i← i+1

end
end

Algorithm 2: Conversion to Non-Adjacent Form

Let ki be the value of the variable e at the start of the ith iteration in Algorithm 2. From the algorithm, it is clear
that

ki =
{

0 ki is even
|ki|2w+1 ki is odd

(1)

Furthermore:
k = 2i · ki + ∑

j<i
2 j · k j (2)

Let m and m + l be the position of two consecutive non-zero wNAF digits, i.e. km,km+l 6= 0 and km+i = 0 for all
0 < i < l. We now have

−2m+w < ∑
i≤m

ki ·2i < 2m+w, (3)

and because l > w, we get −2m+l−1 < ∑i≤m+l−1 ki ·2i < 2m+l−1. Substituting m for m+ l gives

−2m−1 < ∑
i≤m−1

ki ·2i < 2m−1 (4)

We note that for the minimal m such that km 6= 0 we have ∑i≤m−1 ki · 2i = 0. Hence (4) holds for every m such that
km 6= 0.

Because km is odd, we have−(2w−1)≤ km ≤ 2w−1. Adding km ·2m to (4) gives a slightly stronger version of (3):

− (2m+w−2m−1) < ∑
i≤m

ki ·2i < 2m+w−2m−1 (5)

One consequence of subtracting negative wNAF components is that the wNAF representation may be one digit longer
than the binary representation of the number. For n-digits binary numbers Möller [19] suggests using ki←bkc2w when
i = n−w−1 and e is odd, where b·cx denotes the reduction modulo x into the interval [0, . . . ,x). This avoids extending
the wNAF representation in half the cases at the cost of weakening the non-adjacency property of the representation.

2.3 Lattice background

Before we describe how to get the necessary information from the side-channel attack, we recall from previous works
what kind of information we are looking for. As in previous works [2, 4, 5, 14, 21, 22], the side-channel information
is used to construct a lattice basis and the secret key is then retrieved by solving a lattice problem on this lattice.

468

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Generally, for a private key α and a group order q, in previous works the authors somehow derive triples (ti,ui,zi)
from the side-channel information such that

−q/2zi+1 < vi = |α · ti−ui|q < q/2zi+1. (6)

Note that for arbitrary α and ti, the values of vi are uniformly distributed over the interval [−q/2,q/2). Hence, each
such triple provides about zi bits of information about α . The use of a different zi per equation was introduced in [2].
If we take d such triples we can construct the following lattice basis

B =

2z1+1 ·q

. . .
2zd+1 ·q

2z1+1 · t1 . . . 2zd+1 · td 1

 ,

whose rows generate the lattice that we use to retrieve the secret key. Now consider the vector u = (2z1+1 ·u1, . . . ,2zd+1 ·
ud ,0), which consists of known quantities. Equation (6) implies the existence of integers (λ1, . . . ,λd) such that for the
vectors x = (λ1, . . . ,λd ,α) and y = (2z1+1 · v1, . . . ,2zd+1 · vd ,α) we have

x ·B−u = y.

Again using Equation (6), we see that the 2-norm of the vector y is at most
√

d ·q2 +α2 ≈
√

d +1 · q. Because the
lattice determinant of L(B) is 2d+∑zi ·qd , the lattice vector x ·B is heuristically the closest lattice vector to u. By solving
the Closest Vector Problem (CVP) on input of the basis B and the target vector u, we obtain x and hence the secret key
α .

There are two important methods of solving the closest vector problem: using an exact CVP-solver or using the
heuristic embedding technique to convert it to a Shortest Vector Problem (SVP). Exact CVP-solvers require exponen-
tial time in the lattice rank (d + 1 in our case), whereas the SVP instance that follows from the embedding technique
can sometimes be solved using approximation methods that run in polynomial time. Because the ranks of the lattices
in this work become quite high when attacking a 521 bit key, we mostly focus on using the embedding technique and
solving the associated SVP instance in this case.

The embedding technique transforms the previously described basis B and target vector u to a new basis B′,
resulting in a new lattice of dimension one higher than that generated by B:

B′ =
(

B 0
u q

)
,

Following the same reasoning as above, we can set x′ = (x,−1) and obtain the lattice vector y′ = x′ ·B′ = (y,−q). The
2-norm of y′ is upper bounded by approximately

√
d +2 ·q, whereas this lattice has determinant 2d+∑zi ·q(d+1). Note,

however, that this lattice also contains the vector

(−t1, . . . ,−td ,q,0) ·B′ = (0, . . . ,0,q,0)

which will most likely be the shortest vector of the lattice. Still, our approximation algorithms for SVP work on bases
and it is obvious to see that any basis of the same lattice must contain a vector ending in ±q. Thus, it is heuristically
likely that the resulting basis contains the short vector y′, which reveals α .

To summarize, we turn the side-channel information into a lattice and claim that, heuristically, finding the secret
key is equivalent to solving a CVP instance. Then, we claim that, again heuristically, solving this CVP instance
is equivalent to solving an SVP instance using the embedding technique. In Section 5 we will apply the attack to
simulated data to see whether these heuristics hold up.

3 Using the wNAF Information

Assuming we have a side channel that leaks the double and add chain of the scalar multiplication. We know how to
use the leaked LSBs [2]. These leaked LSBs carry, on average, two bits of information.

469

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Given a double and add chain, the positions of the add operations in the chain correspond to the non-zero digits in
the wNAF representation of the ephemeral key k. Roughly speaking, in half the cases the distance between consecutive
non-zero digits is w+1. In a quarter of the cases it is w+2 and so on. Hence, the average distance between consecutive
non-zero digits is w + ∑i i/2i = w + 2. Since there are 2w non-zero digits, we expect that the double and add chain
carries two bits of information per each non-zero digit position.

Reducing this information to an instance of the HNP presents three challenges:

– The information is not consecutive, but is spread along the scalar.
– Due to the use of negative digits in the wNAF representation, the double and add chain does not provide direct

information on the bits of the scalar
– Current techniques lose half the information when the information is not at the beginning or end of the scalar.

As described in [2], the OpenSSL implementation departs slightly from the descriptions of ECDSA in Section 1.
As a countermeasure to the Brumley and Tuveri remote timing attack [5], OpenSSL adds q or 2 · q to the randomly
chosen ephemeral key, ensuring that k is n + 1 bits long. While the attack is only applicable to curves defined over
binary fields, the countermeasure is applied to all curves. Consequently, our analysis assumes that 2n ≤ k < 2n+1.

To handle non-consecutive information, we extract a separate HNP instance for each consecutive set of bits, and
use these in the lattice. The effect this has on the lattice attack is discussed in Section 4.

To handle the indirect information caused by the negative digits in the wNAF representation we find a linear
combination of k in which we know the values of some consecutive bits, we can use that to build an HNP instance.

Let m and m + l be the positions of two consecutive non-zero wNAF digits where m + l < n. From the definition
of the wNAF representation we know that k = km+l2m+l +∑i≤m ki2i. We can now define the following values:

a =
km+l−1

2
c = ∑

i≤m
ki ·2i +2m+w

By (5) we have
2m−1 < c < 2m+w+1−2m−1 (7)

From (2) we have
k−2m+l +2m+w = a ·2m+l+1 + c

where 0≤ a < 2n−m−l and because l ≥ w+1 there are l−w consecutive zero bits in k−2m+l +2m+w.
In order to extract this information, we rely on a property of the curve where the group order q is close to a power

of two. More precisely, q = 2n− ε where |ε| < 2p for p ≈ n/2. We note that many of the standard curves have this
property.

Let K = A · 2n +C, with 0 ≤ A < 2L1 and 2p+L1 ≤ C < 2L1+L2 − 2p+L1 , note that this implies L2 > p. Because
q = 2n− ε we get K−A ·q = K−A ·2n +A · ε = C +A · ε . Now, |ε|< 2p. Consequently, 0≤ K−A ·q < 2L1+L2 and
we get

∣∣K−2L1+L2−1
∣∣
q < 2L1+L2−1. For p+1 < m < n− l we can set

L1 = n−m− l

L2 = m+w

C = c ·2n−m−l−1 = c ·2L1−1

K = (k−2m+l +2m+w) ·2n−m−l−1 = (k−2m+l +2m+w) ·2L1−1 = a ·2n +C

From (7) we obtain 2L1+m−2 <C < 2L1+L2−2L1+m−2 which, because m≥ p−2, becomes 2p+L1 <C < 2L1+L2−2p+L1 .
Thus, we have ∣∣∣(k−2m+l +2m+w) ·2n−m−l−1−2n−l+w−1

∣∣∣
q
< 2n−l+w−1

470

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Noting that k = α · r · s−1 +h · s−1 (mod q), we can define the values

t = br · s−1 ·2n−m−l−1cq,
u = b2n+w−l−1− (h · s−1 +2m+w−2m+l) ·2n−m−l−1cq,
v = |α · t−u|q.

|v| ≤ 2n−l+w−1 ≈ q/2l−w+1, which gives us an instance of the HNP which carries l−w bits of information.

4 Heuristic Analysis

Now we know how to derive our triples ti, ui and zi that are used to construct the lattice. The next obvious question is:
How many do we need before we can retrieve the private key α? Because the lattice attack relies on several heuristics,
it is hard to give a definitive analysis. However, we will give heuristic reasons here, similar to those for past results.

Each triple (ti,ui,zi) gives us zi bits of information. If this triple comes from a pair (m, l) such that p+1 < m < n− l,
then zi = l −w. In Section 3 we know that on average l = w + 2. Since the positions of the non-zero digits are
independent of p, on average we lose half the distance between non-zero digits, or (w + 2)/2 bits, before the first
usable triple and after the last usable triple, which leaves us with n−1− (p + 2)− (w + 2) bits where our triples can
be. The average number of triples is now given by (n− p− 3− (w + 2))/(w + 2) and each of these triples gives us
l−w = 2 bits on average. Combining this yields 2 · (n− p− 3− (w + 2))/(w + 2) = 2 · (n− p− 3)/(w + 2)− 2 bits
per signature. For the secp256k1 curve we have that n = 256, p = 129 and w = 3, leading to 47.6 bits per signature
on average. Our data obtained from perfect side-channels associated to 1001 signatures gives us an average of 47.6
with a 95% confidence interval of ±0.2664. For the secp521r1 curve, we have that n = 521, p = 259 and w = 4,
which suggests 84.33 bits per signature on average. The data average here is 84.1658 with a 95% confidence interval
of ±0.3825. See also the Z = 1 cases of Figures 1 and 2, which show the distribution of the bits leaked per signature
in the 256-bit and 521-bit cases, respectively.

This formula suggests that on average, six signatures would be enough to break a 256-bit key (assuming a perfect
side channel), since 47.6 ·6 = 285.6 > 256. However, in our preliminary experiments the attack did not succeed once
when using six or even seven signatures. Even eight or nine signatures gave a minimal success probability. This
indicates that something is wrong with the heuristic. In general there are two possible reasons for failure. Either the
lattice problem has the correct solution but it was too hard to solve, or the solution to the lattice problem does not
correspond to the private key α . We will now examine these two possibilities and how to deal with them.

4.1 Hardness of the lattice problem

Generally, the lattice problem becomes easier when adding more information to the lattice, but it also becomes harder
as the rank increases. Since each triple adds information but also increases the rank of the lattice, it is not always clear
whether adding more triples will solve the problem or make it worse. Each triple contributes zi bits of information,
so we would always prefer triples with a higher zi value. Therefore, we set a bound Z ≥ 1 and only keep those triples
that have zi ≥ Z. However, this decreases the total number of bits of information we obtain per signature. If Z is small
enough, then roughly speaking we only keep a fraction 21−Z of the triples, but now each triple contributes Z + 1 bits
on average. Hence, the new formula of bits per signature becomes

21−Z · (Z +1) · ((n− p−3)/(w+2)−1).

Our data reflects this formula as well as can be seen in Figures 1 and 2 for the 256-bit and the 521-bit cases, respec-
tively. In our experiments we will set an additional bound d on the number of triples we use in total, which limits the
lattice rank to d + 1. To this end, we sort the triples by zi and then pick the first d triples to construct the lattice. We
adopt this approach for our experiments and the results can be found in Section 5.

471

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

Z=1
Z=2
Z=3

Fig. 1: Number of signatures against bits per signa-
ture in the 256 bit case.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120

Z=1
Z=2
Z=3
Z=4

Fig. 2: Number of signatures against bits per signa-
ture in the 521 bit case.

4.2 Incorrect solutions

The analysis of Nguyen and Shparlinski [22] requires that the ti values in the triples are taken uniformly and inde-
pendently from a distribution that satisfies some conditions. However, it is easy to see that when two triples are taken
from the same signature, the values for the ti = br · s−1 · 2n−mi−li−1cq and t j = br · s−1 · 2n−m j−l j−1cq are not even
independent, as they differ mod q by a factor that is a power of 2 less than 2n.

Recall from Sections 2.3 and 3 how the triples are used and created, respectively. Consider a triple (ti j,ui j,zi j)
corresponding to a signature (ri,si,hi). The corresponding vi j = |α · ti j−ui j|q satisfies

|vi j|=
∣∣∣|α · (ri · s−1

i ·2
n−m j−l j−1)−2n+w−l j−1

+(hi · s−1
i +2m j+w−2m j+l) ·2n−m j−l j−1|q

∣∣∣
≤ q/2zi j+1,

which is equivalent to

|vi j|=
∣∣∣|(α · ri +hi) · s−1

i ·2
n−m j−l j−1−2n−1|q

∣∣∣≤ q/2zi j+1,

where p+1 < m j < n− l j and zi j = l−w. Now (α · ri +hi) · s−1
i = ki mod q and we know that the previous statement

holds due to the structure of ki, specifically due to its bits m j + w, . . . ,m j + l j − 1 repeating, with bit m j + l j being
different than the preceding bit. But the map x 7→ (x · ri +hi) · s−1

i is a bijection mod q, and hence for each i there will
be many numbers X such that for all j

|vi j(X)|=
∣∣∣|(X · ri +hi) · s−1

i ·2
n−m j−l j−1−2n−1|q

∣∣∣≤ q/2zi j+1.

Let Si = {X : |vi j(X)| ≤ q/2zi j+1 for all j}. If we now have that there exists an X ∈
⋂

i Si such that

X2 +∑
i, j

(2zi j · vi j(X))2 < α
2 +∑

i, j
(2zi j · vi j(α))2,

then it is very unlikely that the lattice algorithm will find α , because X corresponds to a better solution to the lattice
problem. Note that this problem arises when fewer signatures are used, because this leads to fewer distinct values for
(ri,si,hi) and hence fewer sets Si that need to intersect. This suggests that increasing the number of signatures could
increase the success probability.

Assuming that the Si are random, we want to determine what is the probability that their intersection is non-empty.
First we consider the size of the Si. Recall that Si consists of all X mod q such that vi j(X) has ‘the same structure as

472

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ki’. This means that for each triple specified by m j and l j, the bits m j +w, . . . ,m j + l j−1 repeat, and bit m j + l j is the
opposite of the preceding bits. There are approximately 2n−(l j−w+1)+1 numbers mod q that have this structure. Let fi
be the number of triples of signature i and gi j = (l j−w+1) be the number of bits fixed by triple j of signature i. Then,
because the triples do not overlap and because vi j(.) is a bijection, we have that

log2(|Si|) = n−
fi

∑
j=1

(1−gi j) = n− fi +
fi

∑
j=1

gi j.

Let si = |Si| and assume that the Si are chosen randomly and independently from all the subsets of integers in the range
[0, . . . ,N−1] (of size si), where N = 2n. Consider the following probability

pi = P(0 ∈ Si) = si/N,

since Si is randomly chosen. Now, because the Si are also chosen independently, we have

P

(
0 ∈

⋂
i

Si

)
= ∏

i
pi.

Finally, since this argument holds for any j ∈ [0, . . . ,N−1], we can apply the union bound to obtain

pfail = P

(⋃
j

(
j ∈
⋂

i

Si

))
≤∑

j
P

(
0 ∈

⋂
i

Si

)
= N ·∏

i
pi. (8)

Recall that each signature has fi = 21−Z · ((n− p−3)/(w + 2)−1) triples on average and each triple contributes
Z + 1 bits on average, which means gi j = Z + 2 on average. If we plug in the numbers n = 256, p = 129, w = 3 and
Z = 3, we get that fi ≈ 6, gi j = 5 and hence pi ≈ 2−6·(5−1) ≈ 2−24 if we assume an average number of triples and bits
in each signature. This in turn gives us an upper bound of pfail ≤ N/224·k. If k ≥ 11, this upper bound is less than one,
so this clearly suggests that from about eleven signatures and up, we should succeed with some probability, which is
indeed the case from our experiments.

Repeating this for n = 521, p = 259, w = 4 and Z = 4, we obtain fi ≈ 5, gi j = 6 and hence pi ≈ 2−5·(6−1) ≈ 2−25.
Consequently, pfail ≤ N/225·k, which is less than one when k ≥ 21. However, in our experiments we require at least
30 signatures to obtain the secret key with some probability. Thus the above analysis is only approximate as the secret
key length increases.

5 Results With a Perfect Side-Channel

Subsection 2.3 outlined our (heuristic) approach to obtain the secret key from a number of triples (ti,ui,zi) using
lattices and Section 3 outlined how to generate these triples from the side-channel information. In this section we will
look at some experimental results to see if our heuristic assumptions are justified.

As per Section 4, we used the following approach for our experiments. First, we fix a number of signatures s, a
lattice rank d and a bound Z. We then take s signatures at random from our data set and derive all triples such that
zi ≥ Z, sorting them such that the zi are in descending order. If we have more than d triples, we only take the first d to
construct the lattice. Finally we attempt to solve the lattice problem and note the result. All executions were performed
in single thread on an Intel Core i7-3770S CPU running at 3.10 GHz.

When solving the CVP instances there are three possible outcomes. We obtain either no solution, the private key or
a wrong solution. No solution means that the lattice problem was too hard for the algorithm and constraints we used,
but spending more time and using stronger algorithms might still solve it. When a ‘wrong’ solution is obtained, this
means that our heuristics failed: the solution vector was not unique, in the sense that there were other lattice vectors
within the expected distance from our target vector.

When solving the SVP instance there are only two outcomes. Either we obtain the private key or not. However,
in this case it is not as clear whether a wrong solution means that there were other solutions due to the additional
heuristics involved. The complete details of our experimental data are given in the Appendix.

473

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

5.1 256 bit key

For the 256 bit case, we used BKZ with block size 20 from fplll [6] to solve the SVP instances, as well as to pre-
process the CVP instances. To solve the CVP, we applied Schnorr-Euchner enumeration [23] using linear pruning [12]
and limiting the number of enumerated nodes to 229.

The CVP approach seems the best, as the lattice rank (d +1) remains quite small. We restrict our triples to Z = 3
to keep the rank small, but a smaller Z would not improve our results much. See the appendix for details. We observed
that failures are mostly caused by ‘wrong’ solutions in this case, rather than the lattice problem being too hard. In
all cases we found that using 75 triples gave the best results. Table 2 in the Appendix lists the runtimes and success
probabilities of the lattice part of the attack for varying s. The results are graphically presented in Figures 4 and 5 in
the Appendix.

5.2 521 bit key

For the 521 bit case, we used BKZ with block size 20 from fplll [6] to solve the SVP instances. Due to the higher
lattice ranks in this case, solving the CVP instances proved much less efficient, even when restricting the triples to
Z = 4.

With 30 signatures we get a small probability of success in the lattice attack whereas with 40 signatures we can
obtain the secret key in more than half of the cases. It should be noted that as the number of signatures increases, the
choice of d becomes less important, because the number of triples with more information increases. See the Appendix
for Table 4 details and Figures 6 and 7 for a graphical representation.

6 Results in a Real-Life Attack

So far our discussion was based on the assumption of a perfect side-channel. That is, we assumed that the double-and-
add chains are recovered without any errors. Perfect side-channels are, however, very rare. In this section we extend
the results to the actual side-channel exposed by the FLUSH+RELOAD technique.

The attack was carried on an HP Elite 8300, running CentOS 6.5. The victim process runs OpenSSL 1.0.1f,
compiled to include debugging symbols. These symbols are not used at run-time and do not affect the performance of
OpenSSL. We use them because they assist us in finding the addresses to probe by avoiding reverse engineering [9].
The spy uses a time slot of 1,200 cycles (0.375µs). In each time slot it probes the memory lines containing the
last field multiplication within the group add and double functions. (ec GFp simple add and ec GFp simple dbl,
respectively.) Memory lines that contain function calls are accessed both before and after the call, reducing the chance
of a spy missing the access due to overlap with the probe. Monitoring code close to the end of the function eliminates
false positives due to speculative execution. See Yarom and Falkner [27] for a discussion of overlaps and speculative
execution.

D|D||||A|A|||||A||||A||D|D|||D|D|||D|||D||D|||D|D|||D||||A|||D|||D|||D|||D|||D|||D|||D|||D|||D|||D|||D|

||D|||D|||D|||D|||A|||D|||D|||D|||D|||A||D|D||D|D|||D|||D|||D|||A||D|D|||D|||D|||D||||D|||D|||D|||D|||D|||A|||D|||D|||D|||D|||A||D|D||D|D||D|||D|||A|||D|||D|||D|||D|||D|||D|||

D|||A|||D|||D|||D||D||||A|||D|||D|||D|||D|||A|A||D|||D|||D|||D|||A|||D|||D|||D|||D|||D|||A|||D|||D|||D||D|D|||A|||D|||D|||D|||D|||D|||A|||D|||D|||D|||D|||A||D|D||D|||D|||D|||A|

||D|||D |||D|||D|||A|||D|||D|||D|||D|||D||D|D|||D|||A|||D|||D|||D|||D|||A|||D|||D|||D|||D|||D|||A||D|D|||D|||D|||D|||D|||A|||D||D|D|||D|||D|||D||D|D|||A|||D|||D|||D|||D|||D|||D

|||D|||D|||A|||D|||D|||D|||D|||A||D|D|||D|||D|||D|||A||D|D||D|||D||D|D|||A|||D|||D|||D|||D|-------|||||||||||||D|D|||A|||D|||D|||D|||D|||D|||A||D|D|||D|||D|||D|||A|||D|||D|||D

|||D|||D|||A|||D|||D|||D|||D|||A|A||D|||D|||D|||D|||D||D|D|||D|||A||D|D|||D|||D|||D|||D|||A|A||D|||D|||D|||D|||D|||A|||D|||D|||D|||D|||A|||D|||D|||D|D|||D|||D|||A||D|D|||D|||D

|||D|||A||D|D||D|D||D|D||D|D|||D|||A||D|D|||D|||D|||D|||A||D|D||D|D||D|D|||D|||D|||D|||D|||D|||A|||D|||D|||D|||D|||A|A||D|D|||D|||D|||D|||D|||A||D|||D|D|||D|||D|||D|||D|||D|||

D|||D|||A||D|D|||D|||D|||D|||A|||D|||D|||D|||D|||D|||D|||A||D|D||D|D||D|D|||D|||D||D|D|||A|||D|||D|||D|||D|||D|||A|||D|||D|||D|||D|||D|||A|||||||||||||||||||||||||||||||||||||

Fig. 3: FLUSH+RELOAD spy output. Vertical bars indicate time-slot boundaries; ‘A’ and ‘D’ are probes for OpenSSL
access to add and double; dashes indicate missed time-slots.

Figure 3 shows an example of the output of the spy when OpenSSL signs using secp256k1. The double and three
addition operations at the beginning of the captured sequence are the calculation of the pre-computed wNAF digits.
Note the repeated capture of the double and add operations due to monitoring a memory line that contains a function
call. The actual wNAF multiplication starts closer to the end of the line, with 7 double operations followed by a group
addition.

474

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

In this example, the attack captures most of the double and add chain. It does, however, miss a few time-slots
and consequently a few group operations in the chain. The spy recognises missed time-slots by noting inexplicable
gaps in the processor cycle counter. As we do not know which operations are missed, we lose the bit positions of the
operations that precede the missed time-slots. We believe that the missed time-slots are due to system activity which
suspends the spy.

Occasionally OpenSSL suspends the calculation of the scalar multiplication to perform memory management
functions. These suspends confuse our spy program, which assumes that the scalar multiplication terminated. This, in
turn, results in a short capture, which cannot be used for the lattice attack.

To test prevalence of capture errors we captured 1,000 scalar multiplications and compared the capture results to
the ground truth. 342 of these captures contained missed time-slots. Another 77 captures contains less than 250 group
operations and are, therefore, too short. Of the remaining 581 captures, 577 are perfect while only four contain errors
that we could not easily filter out.

Recall, from Section 5, that 13 perfectly captured signatures are sufficient for breaking the key of a 256 bits curve
with over 50% probability. An attacker using FLUSH+RELOAD to capture 25 signatures can thus expect to be able to
filter out 11 that contain obvious errors, leaving 14 that contain no obvious errors. With less than 1% probability that
each of these 14 captures contains an error, the probability that more than one of these captures contains an error is
also less than 1%. Hence, the attacker only needs to test all the combination of choosing 13 captures out of these 14 to
achieve a 50% probability of breaking the signing key.

Several optimisations can be used to improve the figure of 25 signatures. Some missed slots can be recovered and
the spy can be improved to correct short captures. Nevertheless, it should be noted that this figure is still an order of
magnitude than the previously best known result of 200 signatures [2], where 200 signatures correspond to a 3.5%
probability of breaking the signing key, whereas 300 signatures were required to get a success probability greater than
50%.

Acknowledgements

The authors would like to thank Ben Sach for helpful conversations during the course of this work. The first and second
authors work has been supported in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO, by EPSRC
via grant EP/I03126X, and by Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL) under agreement number FA8750-11-2-00793.

The third author wishes to thank Dr Katrina Falkner for her advice and support and the Defence Science and
Technology Organisation (DSTO) Maritime Division, Australia, who partially funded his work.

References

1. American National Standards Institute. ANSI X9.62, Public Key Cryptography for the Financial Services Industry: The Elliptic
Curve Digital Signature Algorithm, 1999.

2. Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. “Ooh aah. . . , just a little bit”: A small amount of side
channel can go a long way. In Lejla Batina and Matthew Robshaw, editors, Proceedings of the 16th International Workshop on
Cryptographic Hardware and Embedded Systems, volume 8731 of Lecture Notes in Computer Science, pages 75–92, Busan,
Korea, September 2014. Springer.

3. Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the most significant bits of secret keys in diffie-hellman
and related schemes. In CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 129–142, 1996.

4. Billy Bob Brumley and Risto M. Hakala. Cache-timing template attacks. In Mitsuru Matsui, editor, Advances in Cryptology -
ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science, pages 667–684. Springer-Verlag, 2009.

5. Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still practical. In Vijay Atluri and Claudia Diaz, editors,
Computer Security - ESORICS 2011, pages 355–371, Leuven, Belgium, September 2011.

3 The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of Defense Advanced Research Projects Agency
(DARPA) or the U.S. Government.

475

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

6. David Cadé, Xavier Pujol, and Damien Stehlé. FPLLL-4.0.4. http://perso.ens-lyon.fr/damien.stehle/fplll/,
2013.

7. Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters, Version 2.0, January 2010.
8. Mathieu Ciet and Marc Joye. (virtually) free randomization techniques for elliptic curve cryptography. In Sihan Qing, Dieter

Gollmann, and Jianying Zhou, editors, Proceedings of the fifth International Conference on Information and Communications
Security, volume 2836 of Lecture Notes in Computer Science, pages 348–359, Huhehaote, China, October 2003. Springer.

9. Teodoro Cipresso and Mark Stamp. Software reverse engineering. In Peter Stavroulakis and Mark Stamp, editors, Handbook
of Information and Communication Security, chapter 31, pages 659–696. Springer, 2010.

10. Richard E. Crandall. Method and apparatus for public key exchange in a cryptographic system. US Patent 5,159,632, October
1992.

11. Benoit Feix, Mylène Roussellet, and Alexandre Venelli. Side-channel analysis on blinded regular scalar multiplications. In
Willi Meier and Debdeep Mukhopadhyay, editors, Proceedings of the 15th International Conference on Cryptology in India
(INDOCRYPT 2014), Lecture Notes in Computer Science, New Delhi, India, December 2014. Springer.

12. Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration using extreme pruning. In EUROCRYPT, volume
6110 of Lecture Notes in Computer Science, pages 257–278, 2010.

13. Daniel M. Gordon. A survey of fast exponentiation methods. Journal of Algorithms, 27(1):129–146, April 1998.
14. Nick Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital signature schemes. Designs, Codes and Cryptography,

23(3):283–290, 2001.
15. Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. kvm: the Linux virtual machine monitor. In Proceedings

of the Linux Symposium, volume one, pages 225–230, Ottawa, Ontario, Canada, June 2007.
16. Arjen K. Lenstra, Hendrik W. Lenstra, and Lászlo Lovász. Factoring polynomials with rational coefficients. Mathematische

Annalen, 261(4):515 –534, 1982.
17. Lixin Li, James E. Just, and R. Sekar. Address-space randomization for Windows systems. In Proceedings of the 22nd Annual

Computer Security Applications Conference, pages 329–338, Miami Beach, Florida, United States, December 2006.
18. Bodo Möller. Parallelizable elliptic curve point multiplication method with resistance against side-channel attacks. In

Agnes Hui Chan and Virgil D. Gligor, editors, Proceedings of the fifth International Conference on Information Security,
number 2433 in Lecture Notes in Computer Science, pages 402–413, São Paulo, Brazil, September 2002.

19. Bodo Möller. Improved techniques for fast exponentiation. In P. J. Lee and C. H. Lim, editors, Information Security and
Cryptology - ICISC 2002, number 2587 in Lecture Notes in Computer Science, pages 298–312. Springer-Verlag, 2003.

20. National Institute of Standards and Technology. FIPS PUB 186-4 Digital Signature Standard (DSS), 2013.
21. Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the digital signature algorithm with partially known nonces.

Journal of Cryptology, 15(3):151–176, June 2002.
22. Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the elliptic curve digital signature algorithm with partially known

nonces. Designs, Codes and Cryptography, 30(2):201–217, September 2003.
23. Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems.

In Fundamentals of Computation Theory – FCT 1991, volume 529 of Lecture Notes in Computer Science, pages 68–85.
Springer, 1991.

24. Jerome A. Solinas. Generalized Mersenne numbers. Technical Report CORR-39, University of Waterloo, 1999.
25. Carl A. Waldspurger. Memory resource management in VMware ESX Server. In David E. Culler and Peter Druschel, editors,

Proceedings of the Fifth Symposium on Operating Systems Design and Implementation, pages 181–194, Boston, Massachusetts,
United States, December 2002.

26. Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA nonces using the FLUSH+RELOAD cache side-channel attack.
Cryptology ePrint Archive, Report 2014/140, February 2014. http://eprint.iacr.org/.

27. Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a high resolution, low noise, L3 cache side-channel attack. In Proceedings
of the 23rd USENIX Security Symposium, pages 719–732, San Diego, California, United States, August 2014.

476

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

A Experimental results

A.1 256 Bit Keys

SVP CVP
s d Time (s) psucc (%) Time (s) psucc (%)

10 60 1.47 0.0 1.56 0.5
10 65 1.42 1.0 1.90 2.5
10 70 1.44 1.5 2.45 4.0
10 75 1.50 1.5 2.25 7.0
11 60 1.28 0.0 1.63 0.5
11 65 1.68 5.0 2.35 6.5
11 70 1.86 2.5 3.15 19.0
11 75 2.05 7.5 4.66 25.0
11 80 2.12 6.0
12 60 1.27 2.0 1.69 7.0
12 65 1.71 2.5 2.45 10.5
12 70 2.20 7.5 3.99 29.5
12 75 2.57 10.5 7.68 38.5
12 80 2.90 13.0
12 85 3.12 8.5
12 90 3.21 15.5
13 60 1.30 3.5 1.92 8.5
13 65 1.77 6.0 2.79 25.5
13 70 2.39 11.0 4.48 46.5
13 75 3.16 19.0 11.30 54.0
13 80 3.67 18.5
13 85 3.81 21.5
13 90 4.37 25.0

Table 1: Results for d triples taken from s signatures with a 256-bit key (Z = 3)

s Time (s) psucc (%)
10 2.25 7.0
11 4.66 25.0
12 7.68 38.5
13 11.30 54.0

Table 2: CVP results for 75 triples taken from s signatures with a 256-bit key (Z = 3)

A.2 521 Bit Keys

477

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

s d Time (s) psucc (%) s d Time (s) psucc (%)
30 130 50.10 4.0 31 130 48.50 7.5
30 135 58.80 3.0 31 135 59.91 3.5
30 140 66.65 3.5 31 140 67.35 6.0
30 145 69.68 2.5 31 145 69.96 5.5
32 130 50.15 6.5 33 130 49.70 8.0
32 135 58.07 6.5 33 135 56.52 11.5
32 140 62.55 4.0 33 140 60.31 11.5
32 145 67.46 5.0 33 145 66.39 8.5
32 150 70.77 9.5 33 150 70.54 13.5
34 130 50.00 15.5 33 155 75.49 8.5
34 135 55.93 10.5 35 130 49.76 12.0
34 140 62.83 16.0 35 135 55.33 24.5
34 145 64.41 14.0 35 140 59.50 15.5
34 150 70.50 16.0 35 145 65.59 19.5
34 155 71.07 11.5 35 150 66.93 24.0
36 130 48.71 24.5 35 155 69.67 20.0
36 135 54.74 21.0 37 130 48.20 24.0
36 140 59.25 22.5 37 135 54.79 23.5
36 145 62.32 29.0 37 140 58.60 28.0
36 150 65.60 29.0 37 145 60.05 29.0
36 155 68.57 24.5 37 150 63.40 27.5
38 130 49.04 38.5 37 155 69.14 34.5
38 135 53.86 36.0 39 135 50.99 45.5
38 140 57.14 38.5 39 140 58.81 46.0
38 145 61.31 42.5 39 145 57.08 47.5
38 150 66.75 36.5 39 150 62.35 41.5
38 155 66.52 36.5 39 155 64.99 42.5
40 130 47.73 53.0
40 135 50.80 49.0
40 140 54.88 52.0
40 145 60.47 47.0
40 150 64.77 53.0
40 155 64.95 52.5

Table 3: SVP results for d triples taken from s signatures with a 521-bit key (Z = 4)

s d Time (s) psucc (%)
30 130 50.10 4.0
31 130 48.50 7.5
32 150 70.77 9.5
33 150 70.54 13.5
34 140 62.83 16.0
35 135 55.33 24.5
36 145 62.32 29.0
37 155 69.14 34.5
38 145 61.31 42.5
39 145 57.08 47.5
40 130 47.73 53.0

Table 4: SVP results for d triples taken from s signatures with a 521-bit key (Z = 4)

478

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 0

 10

 20

 30

 40

 50

 60

 10 11 12 13

S
u
c
c
e
ss

 p
ro

b
a
b
il
it

y
 (

%
)

Signatures

SVP
CVP

Fig. 4: Success probability per number of signatures
against a 256 bit key

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 11 12 13

1
0

0
 x

 T
im

e
 /

 p
ro

b

Signatures

SVP
CVP

Fig. 5: Expected running time per number of signa-
tures against a 256 bit key

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 30 32 34 36 38 40

S
u
c
c
e
ss

 p
ro

b
a
b
il
it

y
 (

%
)

Signatures

SVP

Fig. 6: Success probability per number of signatures
against a 521 bit key

 0

 200

 400

 600

 800

 1000

 1200

 1400

 30 32 34 36 38 40

1
0

0
 x

 T
im

e
 /

 p
ro

b

Signatures

SVP

Fig. 7: Expected running time per number of signa-
tures against a 521 bit key

479

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

